首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme oxygenase-1 (HO-1) gene expression is induced by various oxidative stress stimuli including sodium arsenite. Since mitogen-activated protein kinases (MAPKs) are involved in stress signaling we investigated the role of arsenite and MAPKs for HO-1 gene regulation in primary rat hepatocytes. The Jun N-terminal kinase (JNK) inhibitor SP600125 decreased sodium arsenite-mediated induction of HO-1 mRNA expression. HO-1 protein and luciferase activity of reporter gene constructs with -754 bp of the HO-1 promoter were induced by overexpression of kinases of the JNK pathway and MKK3. By contrast, overexpression of Raf-1 and ERK2 did not affect expression whereas overexpression of p38alpha, beta, and delta decreased and p38gamma increased HO-1 expression. Electrophoretic mobility shift assays (EMSA) revealed that a CRE/AP-1 element (-668/-654) bound c-Jun, a target of the JNK pathway. Deletion or mutation of the CRE/AP-1 obliterated the JNK- and c-Jun-dependent up-regulation of luciferase activity. EMSA also showed that an E-box (-47/-42) was bound by a putative p38 target c-Max. Mutation of the E-box strongly reduced MKK3, p38 isoform-, and c-Max-dependent effects on luciferase activity. Thus, the HO-1 CRE/AP-1 element mediates HO-1 gene induction via activation of JNK/c-Jun whereas p38 isoforms act through a different mechanism via the E-box.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Collagenase-1 (matrix metalloproteinase-1, MMP-1) is expressed by several types of cells, including fibroblasts, and apparently plays an important role in the remodeling of collagenous extracellular matrix in various physiologic and pathologic situations. Here, we have examined the molecular mechanisms of the activation of fibroblast MMP-1 gene expression by a naturally occurring non-phorbol ester type tumor promoter okadaic acid (OA), a potent inhibitor of serine/threonine protein phosphatase 2A. We show that in fibroblasts OA activates three distinct subgroups of mitogen activated protein kinases (MAPKs): extracellular signal-regulated kinase 1,2 (ERK 1,2), c-Jun N-terminal-kinase/stress-activated protein kinase (JNK/SAPK) and p38. Activation of MMP-1 promoter by OA is entirely blocked by overexpression of dual-specificity MAPK phosphatase CL100. In addition, expression of kinase-deficient forms of ERK 1,2, SAPKβ, p38, or JNK/SAPK kinase SEK1 strongly inhibited OA-elicited activation of MMP-1 promoter. OA-elicited enhancement of MMP-1 mRNA abundance was also strongly prevented by two chemical MAPK inhibitors: PD 98059, a specific inhibitor of the activation of ERK1,2 kinases MEK1,2; and SB 203580, a selective inhibitor of p38 activity. Results of this study show that MMP-1 gene expression in fibroblasts is coordinately regulated by ERK1,2, JNK/SAPK, and p38 MAPKs and suggest an important role for the stress-activated MAPKs JNK/SAPK and p38 in the activation of MMP-1 gene expression. Based on these observations, it is conceivable that specific inhibition of stress-activated MAPK pathways may serve as a novel therapeutic target for inhibiting degradation of collagenous extracellular matrix.  相似文献   

17.
Cardiotonic steroid (CTS) ouabain is a well‐established inhibitor of Na,K‐ATPase capable of inducing signalling processes including changes in the activity of the mitogen activated protein kinases (MAPK) in various cell types. With increasing evidence of endogenous CTS in the blood and cerebrospinal fluid, it is of particular interest to study ouabain‐induced signalling in neurons, especially the activation of MAPK, because they are the key kinases activated in response to extracellular signals and regulating cell survival, proliferation and apoptosis. In this study we investigated the effect of ouabain on the level of phosphorylation of three MAPK (ERK1/2, JNK and p38) and on cell survival in the primary culture of rat cerebellar cells. Using Western blotting we described the time course and concentration dependence of phosphorylation for ERK1/2, JNK and p38 in response to ouabain. We discovered that ouabain at a concentration of 1 μM does not cause cell death in cultured neurons while it changes the phosphorylation level of the three MAPK: ERK1/2 is phosphorylated transiently, p38 shows sustained phosphorylation, and JNK is dephosphorylated after a long‐term incubation. We showed that ERK1/2 phosphorylation increase does not depend on ouabain‐induced calcium increase and p38 activation. Changes in p38 phosphorylation, which is independent from ERK1/2 activation, are calcium dependent. Changes in JNK phosphorylation are calcium dependent and also depend on ERK1/2 and p38 activation. Ten‐micromolar ouabain leads to cell death, and we conclude that different effects of 1‐μM and 10‐μM ouabain depend on different ERK1/2 and p38 phosphorylation profiles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Human endometrium-derived mesenchymal stem cells (hMESC) under the sublethal oxidative stress induced by H2O2 activate both the p53/p21/Rb and p38/MAPKAPK-2 pathways that are responsible for the induction of hMESC premature senescence (Borodkina et al., 2014). However, the interrelations between the p53/p21/Rb and MAPK signaling pathways, including ERK1/2, p38, and JNK, remain yet unexplored. Here, we used the specific inhibitors—pifithrin-α (PFT), U0126, SB203580, and SP600125 to “switch off” one of the proteins in these cascades and to evaluate the functional status alterations of the rest of the proteins. Each MAPK suppression significantly increased the p53 phosphorylation level, as well as p21 protein expression followed by Rb hypophosphorylation. On the other hand, PFT-induced p53 inhibition enhanced mostly the ERK1/2 activation rather than p38 and JNK. These results suggest the existence of a reciprocal negative regulation between p53- and MAPK-dependent signaling pathways. By analyzing the possible interactions among the members of the MAPK family, we showed that p38 and JNK can function as ERK antagonists: JNK is able to activate ERK, while p38 may block ERK activation. Together, these results demonstrate the existence of complex links between different signaling cascades in stressed hMESC, implicating ERK, p38, and JNK in regulation of premature senescence via the p53/p21/Rb pathway.  相似文献   

20.
In bovine adrenal chromaffin cells (BACC) histamine promotes a rapid increase in the intracellular levels of Ca2+ together with the release of catecholamines and the phosphorylation of the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH). In this study we investigated the role of the mitogen-activated protein kinases (MAPK) extracellular signal-regulated kinases (ERK1/2), stress activated protein kinase (p38) and Jun N-terminal kinases (JNK) on the histamine-induced activation and phosphorylation of TH. We found that in BACC histamine produced a rapid, long lasting and histamine type-1 (H1) receptor-dependent increase in the phosphorylation levels of ERK1/2, p38 and JNK which was accompanied by a H1 receptor-dependent increase in TH activity. This increase in TH activity was partially blocked by the MEK1/2 inhibitor U0126 but was unaffected by the p38 antagonist SB203580 or the JNK blocker JNKI1. To study the effect of MAPK inhibition on histamine-induced TH phosphorylation, we generated phospho-specific antibodies against the different phosphorylated forms of TH. Treatment with U0126 totally inhibited the histamine-induced phosphorylation of TH at Ser31, without affecting the phosphorylation of either Ser40 or Ser19. Neither SB203580 nor JNKI1 treatments produced any significant modification of the histamine-induced TH phosphorylation. Our data support the hypothesis that the up-regulation of the ERK1/2 pathway, but not that of p38 or JNK, promoted by histamine is involved in the phosphorylation of TH at Ser31 and that this phosphorylation event is required for the full activation of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号