首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyglycerol represents the first hyperbranched polymer that can be prepared in a controlled synthesis. It is characterized by the combination of a stable, biocompatible polyether scaffold, high-end group functionality and a compact, well-defined dendrimer-like architecture. These characteristics can be used to generate new materials properties and for biomedical applications to molecularly amplify or multiply effects or to create extremely high local concentrations of drugs, molecular labels, or probe moieties. Therefore, dendritic polyglycerols are expected to lead to new strategies for 'molecular medicine'. In this brief summary, the current state of the art in polyglycerol research is given, focusing on applications in life sciences.  相似文献   

2.
RGD (arginine-glycine-aspartic acid) is a known peptide sequence that binds platelet integrin GPIIbIIIa and disrupts platelet-fibrinogen binding and platelet cross-linking during thrombosis. RGD peptides are unsuitable for clinical applications due to their high 50% inhibitory concentration (IC50) and low in vivo residence times. We addressed these issues by conjugating RGD peptides to biocompatible macromolecular carriers: hyperbranched polyglycerols (HPG) via divinyl sulfone. The GPIIbIIIa binding activity of RGD was maintained after conjugation and the effectiveness of the HPG-RGD conjugate was dependent upon molecular weight and the number of RGD peptides attached to each HPG molecule. These polyvalent inhibitors of platelet aggregation decreased the IC50 of RGD in an inverse linear manner based on the number of RGD peptides per HPG. Since HPG-RGD conjugates do not cause platelet activation by degranulation and certain substitution ratios do not increase fibrinogen binding to resting platelets, HPG-RGD may serve as a model for a novel class of antithrombotics.  相似文献   

3.
Combining various imaging modalities often leads to complementary information and synergistic advantages. A trimodal long-circulating imaging agent tagged with radioactive, magnetic resonance, and fluorescence markers is able to combine the high sensitivity of SPECT with the high resolution of MRI over hours and days. The fluorescence marker helps to confirm the in vivo imaging information at the microscopic level, in the context of the tumor microenvironment. To make a trimodal long-circulating probe, high-molecular-weight hyperbranched polyglycerols (HPG) were modified with a suitable ligand for (111)In radiolabeling and Gd coordination, and additionally tagged with a fluorescent dye. The resulting radiopharmaceutical and contrast agent was nontoxic and hemocompatible. Measured radioactively, its total tumor uptake increased from 2.6% at 24 h to 7.3% at 72 h, which is twice the increase expected due to tumor growth in this time period. Both in vivo MRI and subsequent histological analyses of the same tumors confirmed maximum HPG accumulation at 3 days post injection. Furthermore, Gd-derivatized HPG has an excellent contrast enhancement on T1-weighted MRI at 10× lower molar concentrations than commercially available Galbumin. HPG derivatized with gadolinium, radioactivity, and fluorescence are thus long-circulating macromolecules with great potential for imaging of healthy and leaky blood vessels using overlapping multimodal approaches and for the passive targeting of tumors.  相似文献   

4.
The molecular modeling of hyperbranched molecules is currently constrained by difficulties in model building, due partly to lack of parameterization of their building blocks. We have addressed this problem with specific relevance to a class of hyperbranched macromolecules known as dendrimers by describing a new concept and developing a method that translates monomeric linear sequences into a full atomistic model of a hyperbranched molecule. Such molecular-modeling-based advances will enable modeling studies of important biological interactions between naturally occurring macromolecules and synthetic macromolecules. Our results also suggest that it should be possible to apply this sequence-based methodology to generate hyperbranched structures of other dendrimeric structures and of linear polymers.  相似文献   

5.
Li X  Su Y  Chen Q  Lin Y  Tong Y  Li Y 《Biomacromolecules》2005,6(6):3181-3188
A series of novel AB3-type monomers were prepared from nontoxic natural gallic acid and amino acids. These monomers were then melt-polycondensed in the presence of MgO as a catalyst via a transesterification process at 170-190 degrees C to yield the hyperbranched poly(ester-amide)s bearing terminal acetyl groups. FTIR and NMR spectra confirmed the structures of all the monomers and polymers. The degrees of branching, estimated from 1H NMR and quantitative 13C NMR spectra, were 0.50-0.68. These hyperbranched polymers displayed moderately high molecular weights. Hydrolytic and enzymatic degradation studies were carried out in vitro at 37.5 degrees C in NaOH hydrotropic solution and in Tris-HCl buffer (pH = 8.6) containing proteinase K, respectively. The results indicate that the hyperbranched poly(ester-amide)s are degradable hydrolytically as well as enzymatically, and the rate of hydrolytic degradation increases with the pH value of the solution.  相似文献   

6.
Three hyperbranched fluoropolymers were synthesized and their micelles were constructed as potential (19)F MRI agents. A hyperbranched star-like core was first synthesized via atom transfer radical self-condensing vinyl (co)polymerization (ATR-SCVCP) of 4-chloromethyl styrene (CMS), lauryl acrylate (LA), and 1,1,1-tris(4'-(2'-bromoisobutyryloxy)phenyl)ethane (TBBPE). The polymerization gave a small core with M n of 5.5 kDa with PDI of 1.6, which served as a macroinitiator. Trifluoroethyl methacrylate (TFEMA) and tert-butyl acrylate (tBA) in different ratios were then "grafted" from the core to give three polymers with M(n) of about 120 kDa and PDI values of about 1.6-1.8. After acidolysis of the tert-butyl ester groups, amphiphilic, hyperbranched star-like polymers with M(n) of about 100 kDa were obtained. These structures were subjected to micelle formation in aqueous solution to give micelles having TEM-measured diameters ranging from 3-8 nm and DLS-measured hydrodynamic diameters from 20-30 nm. These micelles gave a narrow, single resonance by (19)F NMR spectroscopy, with a half-width of approximately 130 Hz. The T1/T2 parameters were about 500 and 50 ms, respectively, and were not significantly affected by the composition and sizes of the micelles. (19)F MRI phantom images of these fluorinated micelles were acquired, which demonstrated that these fluorinated micelles maybe useful as novel (19)F MRI agents for a variety of biomedical studies.  相似文献   

7.
We report a systematic study on the encapsulation of palladium nanoparticles in optically active amphiphilic hyperbranched polyglycerols with different optical signs and different degrees of polymerization, namely (−)-P(G40C160.5) 1 and (+)-P(G73C160.5) 2. Several issues have been addressed here: (a) relatively wide size distributions (1-5 nm) of palladium nanoparticles have been achieved, (b) a remarkable template effect (1, DPn = 40, 1.2 ± 0.1 nm; 2, DPn = 73, 2.3 ± 0.1 nm average particle size) has been observed using TEM technique, as shown by the particle size dependent on the degree of polymerization of the polymers, (c) NaBH4 is found to be a convenient reducing agent to produce small particle size compared with gaseous hydrogen, (d) catalytic Heck reaction of 2,3-dihydrofuran and aryl triflate has been tested successfully without enantiocontrol.  相似文献   

8.
The objective of this study was to evaluate the tolerability, to establish a dosing regimen, and to evaluate the efficacy of intravesical docetaxel (DTX) formulations in a mouse model of bladder cancer. DTX in commercial formulation (Taxotere, DTX in Tween 80) or loaded in hyperbranched polyglycerols (HPGs) was evaluated. The synthesis and characterization of HPGs with hydrophobic cores and derivatized with methoxy poly(ethylene glycol) in the shell and further functionalized with amine groups (HPG-C(8/10)-MePEG and HPG-C(8/10)-MePEG-NH(2)) is described. Intravesical DTX in either commercial or HPGs formulations (up to 1.0 mg/mL) was instilled in mice with orthotopic bladder cancer xenografts and was well tolerated with no apparent signs of local or systemic toxicities. Furthermore, a single dose of intravesical DTX (0.5 mg/mL) loaded in HPGs was significantly more effective in reducing the tumor growth in an orthotopic model of bladder cancer than the commercial formulation of Taxotere. In addition, DTX-loaded HPG-C(8/10)-MePEG-NH(2) was found to be more effective at lower instillation dose than DTX (0.2 mg/mL)-loaded HPG-C(8/10)-MePEG. Overall, our data show promising antitumor efficacy and safety in a recently validated orthotopic model of bladder cancer. Further research is warranted to evaluate its safety and efficacy in early phase clinical trials in patients refractory to standard intravesical therapy.  相似文献   

9.
Based on a commercially available hyperbranched aliphatic polyester, novel multifunctional gadolinium complexes were prepared bearing protective PEG chains, a folate targeting ligand and EDTA or DTPA chelate moieties. Their relatively high water relaxivity values coupled with biodegradability of the hyperbranched scaffold, folate receptor specificity render these non-toxic dendritic polymers promising candidates for MRI applications.  相似文献   

10.
Wurm F  Dingels C  Frey H  Klok HA 《Biomacromolecules》2012,13(4):1161-1171
Polymer-protein conjugates generated from side chain functional synthetic polymers are attractive because they can be easily further modified with, for example, labeling groups or targeting ligands. The residue specific modification of proteins with side chain functional synthetic polymers using the traditional coupling strategies may be compromised due to the nonorthogonality of the side-chain and chain-end functional groups of the synthetic polymer, which may lead to side reactions. This study explores the feasibility of the squaric acid diethyl ester mediated coupling as an amine selective, hydroxyl tolerant, and hydrolysis insensitive route for the preparation of side-chain functional, hydroxyl-containing, polymer-protein conjugates. The hydroxyl side chain functional polymers selected for this study are a library of amine end-functional, linear, midfunctional, hyperbranched, and linear-block-hyperbranched polyglycerol (PG) copolymers. These synthetic polymers have been used to prepare a diverse library of BSA and lysozyme polymer conjugates. In addition to exploring the scope and limitations of the squaric acid diethylester-mediated coupling strategy, the use of the library of polyglycerol copolymers also allows to systematically study the influence of molecular weight and architecture of the synthetic polymer on the biological activity of the protein. Comparison of the activity of PG-lysozyme conjugates generated from relatively low molecular weight PG copolymers did not reveal any obvious structure-activity relationships. Evaluation of the activity of conjugates composed of PG copolymers with molecular weights of 10000 or 20000 g/mol, however, indicated significantly higher activities of conjugates prepared from midfunctional synthetic polymers as compared to linear polymers of similar molecular weight.  相似文献   

11.
Gao C  Xu Y  Yan D  Chen W 《Biomacromolecules》2003,4(3):704-712
A novel approach to hyperbranched polymers is presented in this work. Hyperbranched polyesters with a large amount of terminal hydroxyl groups are prepared by a one-pot synthesis from commercially available AB-type and CD(n)-type monomers (n >/= 2). In this paper, Michael addition of diethanolamine (CD(2)) or N-methyl-d-glucamine (CD(5)) to methyl acrylate (AB) generates dominantly AD(n)-type intermediates. Further self-condensation of intermediates at higher temperature and in the presence of catalyst gives hyperbranched polyesters. Because of the tertiary amino groups in the backbone and the hydroxyl groups in the linear and terminal units, the resulting hyperbranched polyester is highly soluble in water. Furthermore, the hyperbranched polymer is degradable because of its ester units. So, the water-soluble hyperbranched polyesters might be applied as a novel material for drug delivery.  相似文献   

12.
A simplified method is presented for the oxidation of the olefinic bond of the sphingosine moiety of glycosphingolipids to a carboxyl group. Coupling of such "glycolipid acids" to glass beads, agarose gels, proteins, and polyacrylic hydrazide polymers is described. Solid supports and macromolecules that have been derivatized in this fashion are useful reagents for a variety of studies in cell biology and immunology.  相似文献   

13.
The impact of alkyl side‐chain substituents on conjugated polymers on the photovoltaic properties of bulk heterojunction (BHJ) solar cells has been studied extensively, but their impact on small molecules has not received adequate attention. To reveal the effect of side chains, a series of star‐shaped molecules based on a triphenylamine (TPA) core, bithiophene, and dicyanovinyl units derivatized with various alkyl end‐capping groups of methyl, ethyl, hexyl and dodecyl is synthesiyed and studied to comprehensively investigate structure‐properties relationships. UV‐vis absorption and cyclic voltammetry data show that variations of alkyl chain length have little influence on the absorption and highest occupied molecular orbital (HOMO)‐lowest unoccupied molecular orbital (LUMO) levels. However, these seemingly negligible changes have a pronounced impact on the morphology of BHJ thin films as well as their charge carrier separation and transportation, which in turn influences the photovoltaic properties of these small‐molecule‐based BHJ devices. Solution‐processed organic solar cells (OSCs) based on the small molecule with the shortest methyl end groups exhibit high short circuit current (Jsc) and fill factor (FF), with an efficiency as high as 4.76% without any post‐treatments; these are among the highest reported for solution‐processed OSCs based on star‐shaped molecules.  相似文献   

14.
The DNA compacting and transfection properties of hyperbranched polylysines whose N-terminal amino groups were modified with histidine and arginine were studied. The histidine-modified hyperbranched polylysines were shown to provide higher efficacy of binding and transfection in comparison with unmodified or hyperbranched arginine-containing polylysines. This fact was explained by the intrinsic endosomolytic activity of the histidine-modified polymers. The dependence between the quantity of the amino acids that modified the terminal lysine residues in the hyperbranched polylysines, the efficacy of their DNA binding, and the transfection activity of the DNA complexes with the corresponding carriers was found. The possibility to increase the transfection activity of the DNA complexes with the hyperbranched polylysines by glycerin or the JTS-1 amphipathic nonapeptide was studied. At the same time, their simultaneous use was found to result in a transfection decrease.  相似文献   

15.
Abstract

Dendritic macromolecules are hyperbranched polymers that emanate from a central core, have a defined number of generations and functional end groups, and are synthesized in a stepwise process by a repetitive reaction sequence. This hyperbranched topology results in a unique series of physical and chemical properties exhibited by these molecules which, in turn, could be exploited in a number of diverse possible applications, such as nanoscale catalysis, micelle mimics, immuno-diagnostic and NMR imaging agents, chemical sensors, molecular antennae, just to name a few.

Nonetheless, if on one hand the synthesis procedure allows for control over parameters such as size, shape and reactivity (and hence, on final properties), on the other hand it really hampers the production of large quantities of these materials. Accordingly, their cost is still quite high and, therefore, the materials available for characterization is still rather limited.

Since, however, their full application potentials (particularly in material science and engineering) will not be realized before the understanding of their physical properties is considerably more advanced, in this work we report the results obtained on structural details and related properties of several amine- and nitrile-terminated poly(propylene)imine dendrimer generations by computer simulation studies and discuss them in the light of (scarce) available experimental data.  相似文献   

16.
This paper discusses the binding and release properties of hydrophobically modified hyperbranched polyglycerol-polyethylene glycol copolymers that were originally developed as human serum albumin (HSA) substitutes. Their unimolecular micellar nature in aqueous solution has been proven by size measurements and other spectroscopic methods. These polymers aggregate weakly in solution, but the aggregates are broken down by low shear forces or by encapsulating a hydrophobic ligand within the polymer. The small molecule binding properties of these polymers are compared with those of HSA. The preliminary in vitro paclitaxel release studies showed very promising sustained drug release characteristics achieved by these unimolecular micelles.  相似文献   

17.
The biodistribution profile of a series of linear N-(2-hydroxylpropyl)methacrylamide (HPMA) copolymers was compared with that of branched poly(amido amine) dendrimers containing surface hydroxyl groups (PAMAM-OH) in orthotopic ovarian-tumor-bearing mice. Below an average molecular weight (MW) of 29 kDa, the HPMA copolymers were smaller than the PAMAM-OH dendrimers of comparable molecular weight. In addition to molecular weight, hydrodynamic size and polymer architecture affected the biodistribution of these constructs. Biodistribution studies were performed by dosing mice with (125)iodine-labeled polymers and collecting all major organ systems, carcass, and excreta at defined time points. Radiolabeled polymers were detected in organ systems by measuring gamma emission of the (125)iodine radiolabel. The hyperbranched PAMAM dendrimer, hydroxyl-terminated, generation 5 (G5.0-OH), was retained in the kidney over 1 week, whereas the linear HPMA copolymer of comparable molecular weight was excreted into the urine and did not show persistent renal accumulation. PAMAM dendrimer, hydroxyl-terminated, generation 6.0 (G6.0-OH), was taken up by the liver to a higher extent, whereas the HPMA copolymer of comparable molecular weight was observed to have a plasma exposure three times that of this dendrimer. Tumor accumulation and plasma exposure were correlated with the hydrodynamic sizes of the polymers. PAMAM dendrimer, hydroxyl-terminated, generation 7.0 (G7.0-OH), showed extended plasma circulation, enhanced tumor accumulation, and prolonged retention with the highest tumor/blood ratio for the polymers under study. Head-to-head comparative study of HPMA copolymers and PAMAM dendrimers can guide the rational design and development of carriers based on these systems for the delivery of bioactive and imaging agents.  相似文献   

18.
Nanoparticles composed of naturally occurring biodegradable polymers have emerged as potential carriers of various therapeutic agents for controlled drug delivery through the oral route. Chitosan, a cationic polysaccharide, is one of such biodegradable polymers, which has been extensively exploited for the preparation of nanoparticles for oral controlled delivery of several therapeutic agents. In recent years, the area of focus has shifted from chitosan to chitosan derivatized polymers for the preparation of oral nanoparticles due to its vastly improved properties, such as better drug retention capability, improved permeation, enhanced mucoadhesion and sustained release of therapeutic agents. Chitosan derivatized polymers are primarily the quaternized chitosan derivatives, chitosan cyclodextrin complexes, thiolated chitosan, pegylated chitosan and chitosan combined with other peptides. The current review focuses on the recent advancements in the field of oral controlled release via chitosan nanoparticles and discusses about its in vitro and in vivo implications.  相似文献   

19.
We have shown previously that complexes containing 1,4,5,8-tetraazaphenanthrene (TAP) ligands are able to form photoadducts with the guanine bases of DNA and oligonucleotides. In this work, we have exploited this specific photoreaction for carrying out photo-cross-linkings between guanine-containing oligonucleotides (G-ODNs) and biodegradable polymers derivatized with the photoreactive Ru(II) compounds. The aim in the future is to use these polymer conjugates as vectorizing agents of the metallic compounds inside the cells. Thus, photooxidizing Ru(II) complexes such as [Ru(TAP)3]2+ and [Ru(TAP)2phen]2+ (phen = 1,10-phenanthroline) have been derivatized by an oxyamine function to attach them, via an oxime ether linkage, to a soluble 6 or 80 kDa poly-[N-(2-hydroxyethyl)-l-glutamine] polymer that contains pendent aldehyde groups. It is demonstrated that the resulting Ru-labeled polymers exhibit photophysical properties and a photochemistry that are comparable with those of the free, nonattached complexes. The photo-cross-linkings with the G-ODNs are clearly detected by gel electrophoresis with the 6 kDa Ru conjugates upon illumination.  相似文献   

20.
Nonionic amphiphiles and particularly block copolymers of ethylene oxide and propylene oxide (Pluronics) cause pronounced chemosensitization of tumor cells that exhibit multiple resistance to antineoplastic drugs. This effect is due to inhibition of P-glycoprotein (P-gp) responsible for drug efflux. It was suggested that the inhibition of P-gp might be due to changes in its lipid surrounding. Indeed, high dependence of P-gp activity on the membrane microviscosity was demonstrated [Regev et al. (1999) Eur. J. Biochem. 259, 18-24], suggesting that the ability of Pluronics to affect the P-gp activity is mediated by their effect on the membrane structure. We have found recently that adsorption of Pluronics on lipid bilayers induced considerable disturbance of the lipid packing [Krylova et al. (2003) Chemistry 9, 3930-3936]. In the present paper, we studied 19 amphiphilic copolymers, including newly synthesized hyperbranched polyglycerols, Pluronic and Brij surfactants, for their ability to accelerate flip-flop and permeation of antitumor drug doxorubicin (DOX) in liposomes. It was found that not only bulk hydrophobicity but also the chemical microstructure of the copolymer determines its membrane disturbing ability. Copolymers containing polypropylene oxide caused higher acceleration of flip-flop and DOX permeation than polysurfactants containing aliphatic chains. The effects of copolymers containing hyperbranched polyglycerol "corona" were more pronounced, as compared to the copolymers with linear poly(ethylene oxide) chains, indicating that a bulky hydrophilic block induces additional disturbances in the lipid bilayer. A good correlation between the copolymer flippase activity and a linear combination of copolymer bulk hydrophobicity and the van der Waals volume of its hydrophobic block was found. The relationship between the structure of a copolymer and its ability to disturb lipid membranes presented in this paper may be useful for the design of novel amphiphilic copolymers capable of affecting the activity of membrane transporters in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号