首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the authors developed HEK293 cell lines that stably coexpressed optimal amounts of beta-arrestin2-Rluc and VENUS fusions of G protein-coupled receptors (GPCRs) belonging to both class A and class B receptors, which include receptors that interact transiently or stably with beta-arrestins. This allowed the use of a bioluminescence resonance energy transfer (BRET) 1- beta-arrestin2 translocation assay to quantify receptor activation or inhibition. One of the developed cell lines coexpressing CCR5-VENUS and beta-arrestin2- Renilla luciferase was then used for high-throughput screening (HTS) for antagonists of the chemokine receptor CCR5, the primary co-receptor for HIV. A total of 26,000 compounds were screened for inhibition of the agonist-promoted beta-arrestin2 recruitment to CCR5, and 12 compounds were found to specifically inhibit the agonist-induced beta-arrestin2 recruitment to CCR5. Three of the potential hits were further tested using other functional assays, and their abilities to inhibit CCR5 agonist-promoted signaling were confirmed. This is the 1st study describing a BRET1-beta-arrestin recruitment assay in stable mammalian cells and its successful application in HTS for GPCRs antagonists.  相似文献   

2.
The recruitment of bone marrow CD34- mesenchymal stem- and progenitor cells (MSC) and their subsequent differentiation into distinct tissues is the precondition for in situ tissue engineering. The objective of this study was to determine the entire chemokine receptor expression profile of human MSC and to investigate their chemotactic response to the selected chemokines CCL2, CXCL8 and CXCL12. Human MSC were isolated from iliac crest bone marrow aspirates and showed a homogeneous population presenting a typical MSC-related cell surface antigen profile (CD14-, CD34-, CD44+, CD45-, CD166+, SH-2+). The expression profile of all 18 chemokine receptors was determined by real-time PCR and immunohistochemistry. Both methods consistently demonstrated that MSC express CC, CXC, C and CX(3)C receptors. Gene expression and immunohistochemical analysis documented that MSC express chemokine receptors CCR2, CCR8, CXCR1, CXCR2 and CXCR3. A dose-dependent chemotactic activity of CXCR4 and CXCR1/CXCR2 ligands CXCL12 and CXCL8 (interleukin-8) was demonstrated using a 96-well chemotaxis assay. In contrast, the CCR2 ligand CCL2 (monocyte chemoattractant protein-1, MCP-1) did not recruited human MSC. In conclusion, we report that the chemokine receptor expression profile of human MSC is much broader than known before. Furthermore, for the first time, we demonstrate that human MSC migrate upon stimulation with CXCL8 but not CCL2. In combination with already known data on MSC recruitment and differentiation these are promising results towards in situ regenerative medicine approaches based on guiding of MSC to sites of degenerated tissues.  相似文献   

3.
Chemokine receptors form a large subfamily of G protein-coupled receptors that predominantly activate heterotrimeric Gi proteins and are involved in immune cell migration. CCX-CKR is an atypical chemokine receptor with high affinity for CCL19, CCL21, and CCL25 chemokines, but is not known to activate intracellular signaling pathways. However, CCX-CKR acts as decoy receptor and efficiently internalizes these chemokines, thereby preventing their interaction with other chemokine receptors, like CCR7 and CCR9. Internalization of fluorescently labeled CCL19 correlated with β-arrestin2-GFP translocation. Moreover, recruitment of β-arrestins to CCX-CKR in response to CCL19, CCL21, and CCL25 was demonstrated using enzyme-fragment complementation and bioluminescence resonance energy transfer methods. To unravel why CCX-CKR is unable to activate Gi signaling, CCX-CKR chimeras were constructed by substituting its intracellular loops with the corresponding CCR7 or CCR9 domains. The signaling properties of chimeric CCX-CKR receptors were characterized using a cAMP-responsive element (CRE)-driven reporter gene assay. Unexpectedly, wild type CCX-CKR and a subset of the chimeras induced an increase in CRE activity in response to CCL19, CCL21, and CCL25 in the presence of the Gi inhibitor pertussis toxin. CCX-CKR signaling to CRE required an intact DRY motif. These data suggest that inactive Gi proteins impair CCX-CKR signaling most likely by hindering the interaction of this receptor with pertussis toxin-insensitive G proteins that transduce signaling to CRE. On the other hand, recruitment of the putative signaling scaffold β-arrestin to CCX-CKR in response to chemokines might allow activation of yet to be identified signal transduction pathways.  相似文献   

4.
5.
NK cells respond to various chemokines, suggesting that they express receptors for these chemokines. In this paper, we show that IL-2-activated NK (IANK) cells express CC chemokine receptor 4 (CCR4) and CCR8, as determined by flow cytometric, immunoblot, and RNase protection assays. Macrophage-derived chemokine (MDC), the ligand for CCR4, induces the phosphorylation of CCR4 within 0.5 min of activating IANK cells with this ligand. This is corroborated with the recruitment of G protein-coupled receptor kinases 2 and 3 and their association with CCR4 in IANK cell membranes. Also, CCR4 is internalized between 5 and 45 min but reappears in the membranes after 60 min of stimulation with MDC. MDC, thymus and activation-regulated chemokine (TARC), and I-309 induce the chemotaxis of IANK cells, an activity that is inhibited upon pretreatment of these cells with pertussis toxin, suggesting that receptors for these chemokines are coupled to pertussis toxin-sensitive G proteins. In the calcium release assay, cross-desensitization experiments showed that TARC completely desensitizes the calcium flux response induced by MDC or I-309, whereas both MDC and I-309 partially desensitize the calcium flux response induced by TARC. These results suggest that TARC utilizes CCR4 and CCR8. Our results are the first to show that IL-2-activated NK cells express CCR4 and CCR8, suggesting that these receptors are not exclusive for Th2 cells.  相似文献   

6.
CCL18 has been reported to be present constitutively at high levels in the circulation, and is further elevated during inflammatory diseases. Since it is a rather poor chemoattractant, we wondered if it may have a regulatory role. CCL18 has been reported to inhibit cellular recruitment mediated by CCR3, and we have shown that whilst it is a competitive functional antagonist as assessed by Schild plot analysis, it only binds to a subset of CCR3 receptor populations. We have extended this inhibitory activity to other receptors and have shown that CCL18 is able to inhibit CCR1, CCR2, CCR4 and CCR5 mediated chemotaxis, but has no effect on CCR7 and CCR9, nor the CXC receptors that we have tested. Whilst CCL18 is able to bind to CCR3, it does not bind to the other receptors that it inhibits. We therefore tested the hypothesis that it may displace glycosaminoglycan (GAG) chemokines bound either in cis- on the leukocyte, or in trans-presentation on the endothelial surface, thereby inhibiting the recruitment of leukocytes into the site of inflammation. We show that CCL18 selectivity displaces heparin bound chemokines, and that chemokines from all four chemokine sub-classes displace cell bound CCL18. We propose that CCL18 has regulatory properties inhibiting chemokine function when GAG-mediated presentation plays a role in receptor activation.  相似文献   

7.
Parody TR  Stone MJ 《Cytokine》2004,27(1):38-46
The specificity of leukocyte trafficking in inflammation is controlled by the interactions of chemokines with chemokine receptors. Reliable structure-function studies of chemokine-receptor interactions would benefit from cell lines that express consistent high levels of chemokine receptors. We describe herein two new Chinese hamster ovary (CHO) cell lines in which the genes for chemokine receptors CCR2 and CCR3 have been incorporated into identical positions in the host genome. CCR2 is the primary receptor for the chemokine monocyte chemoattractant protein-1 (MCP-1) whereas CCR3 is the primary receptor for the chemokines eotaxin-1, eotaxin-2 and eotaxin-3. Both receptors are expressed at >5,000,000 copies per cell, substantially higher levels than in previous cell lines, and both are competent for binding and activation by the cognate chemokines for these receptors. Using these cell lines we confirm that eotaxin-1 and eotaxin-3 can act as an agonist and an antagonist, respectively, of CCR2. In addition, we show that eotaxin-2 is an antagonist of CCR2 and MCP-1 is an agonist of CCR3. Comparison of the chemokine sequences reveals several positions that are identical in MCP-1 and eotaxin-1 but different in eotaxin-2 and eotaxin-3, suggesting that these amino acids play a role in CCR2 activation.  相似文献   

8.
Macrophages regulate lymphatic vasculature development; however, the molecular mechanisms regulating their recruitment to developing, and adult, lymphatic vascular sites are not known. Here, we report that resting mice deficient for the inflammatory chemokine‐scavenging receptor, ACKR2, display increased lymphatic vessel density in a range of tissues under resting and regenerating conditions. This appears not to alter dendritic cell migration to draining lymph nodes but is associated with enhanced fluid drainage from peripheral tissues and thus with a hypotensive phenotype. Examination of embryonic skin revealed that this lymphatic vessel density phenotype is developmentally established. Further studies indicated that macrophages and the inflammatory CC‐chemokine CCL2, which is scavenged by ACKR2, are associated with this phenotype. Accordingly, mice deficient for the CCL2 signalling receptor, CCR2, displayed a reciprocal phenotype of reduced lymphatic vessel density. Further examination revealed that proximity of pro‐lymphangiogenic macrophages to developing lymphatic vessel surfaces is increased in ACKR2‐deficient mice and reduced in CCR2‐deficient mice. Therefore, these receptors regulate vessel density by reciprocally modulating pro‐lymphangiogenic macrophage recruitment, and proximity, to developing, resting and regenerating lymphatic vessels.  相似文献   

9.
Chemokine receptors play a major role in immune system regulation and have consequently been targets for drug development leading to the discovery of several small molecule antagonists. Given the large size and predominantly extracellular receptor interaction of endogenous chemokines, small molecules often act more deeply in an allosteric mode. However, opposed to the well described molecular interaction of allosteric modulators in class C 7-transmembrane helix (7TM) receptors, the interaction in class A, to which the chemokine receptors belong, is more sparsely described. Using the CCR5 chemokine receptor as a model system, we studied the molecular interaction and conformational interchange required for proper action of various orthosteric chemokines and allosteric small molecules, including the well known CCR5 antagonists TAK-779, SCH-C, and aplaviroc, and four novel CCR5 ago-allosteric molecules. A chimera was successfully constructed between CCR5 and the closely related CCR2 by transferring all extracellular regions of CCR2 to CCR5, i.e. a Trojan horse that resembles CCR2 extracellularly but signals through a CCR5 transmembrane unit. The chimera bound CCR2 (CCL2 and CCL7), but not CCR5 chemokines (CCL3 and CCL5), with CCR2-like high affinities and potencies throughout the CCR5 signaling unit. Concomitantly, high affinity binding of small molecule CCR5 agonists and antagonists was retained in the transmembrane region. Importantly, whereas the agonistic and antagonistic properties were preserved, the allosteric enhancement of chemokine binding was disrupted. In summary, the Trojan horse chimera revealed that orthosteric and allosteric sites could be structurally separated and still act together with transmission of agonism and antagonism across the different receptor units.  相似文献   

10.
Terrillon S  Bouvier M 《The EMBO journal》2004,23(20):3950-3961
The roles of betaarrestins in regulating G protein coupling and receptor endocytosis following agonist stimulation of G protein-coupled receptors are well characterised. However, their ability to act on their own as direct modulators or activators of signalling remains poorly characterised. Here, betaarrestin2 intrinsic signalling properties were assessed by forcing the recruitment of this accessory protein to vasopressin V1a or V2 receptors independently of agonist-promoted activation of the receptors. Such induction of a stable interaction with betaarrestin2 initiated receptor endocytosis leading to intracellular accumulation of the betaarrestin/receptor complexes. Interestingly, betaarrestin2 association to a single receptor protomer was sufficient to elicit receptor dimer internalisation. In addition to recapitulating betaarrestin2 classical actions on receptor trafficking, the receptor activity-independent recruitment of betaarrestin2 activated the extracellular signal-regulated kinases. In the latter case, recruitment to the receptor itself was not required since kinase activation could be mediated by betaarrestin2 translocation to the plasma membrane in the absence of any interacting receptor. These data demonstrate that betaarrestin2 can act as a 'bonafide' signalling molecule even in the absence of activated receptor.  相似文献   

11.
Chemokine receptors of both the CC and CXC families have been demonstrated to undergo a ligand-mediated homodimerization process required for Ca2+ flux and chemotaxis. We show that, in the chemokine response, heterodimerization is also permitted between given receptor pairs, specifically between CCR2 and CCR5. This has functional consequences, as the CCR2 and CCR5 ligands monocyte chemotactic protein-1 (MCP-1) and RANTES (regulated upon activation, normal T cell-expressed and secreted) cooperate to trigger calcium responses at concentrations 10- to 100-fold lower than the threshold for either chemokine alone. Heterodimerization results in recruitment of each receptor-associated signaling complex, but also recruits dissimilar signaling path ways such as G(q/11) association, and delays activation of phosphatidyl inositol 3-kinase. The consequences are a pertussis toxin-resistant Ca2+ flux and trig gering of cell adhesion rather than chemotaxis. These results show the effect of heterodimer formation on increasing the sensitivity and dynamic range of the chemokine response, and may aid in understanding the dynamics of leukocytes at limiting chemokine concentrations in vivo.  相似文献   

12.
Chemokine receptors are commonly post-translationally sulfated on tyrosine residues in their N-terminal regions, the initial site of binding to chemokine ligands. We have investigated the effect of tyrosine sulfation of the chemokine receptor CCR2 on its interactions with the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Inhibition of CCR2 sulfation, by growth of expressing cells in the presence of sodium chlorate, significantly reduced the potency for MCP-1 activation of CCR2. MCP-1 exists in equilibrium between monomeric and dimeric forms. The obligate monomeric mutant MCP-1(P8A) was similar to wild type MCP-1 in its ability to induce leukocyte recruitment in vivo, whereas the obligate dimeric mutant MCP-1(T10C) was less effective at inducing leukocyte recruitment in vivo. In two-dimensional NMR experiments, sulfated peptides derived from the N-terminal region of CCR2 bound to both the monomeric and dimeric forms of wild type MCP-1 and shifted the equilibrium to favor the monomeric form. Similarly, MCP-1(P8A) bound more tightly than MCP-1(T10C) to the CCR2-derived sulfopeptides. NMR chemical shift mapping using the MCP-1 mutants showed that the sulfated N-terminal region of CCR2 binds to the same region (N-loop and β3-strand) of both monomeric and dimeric MCP-1 but that binding to the dimeric form also influences the environment of chemokine N-terminal residues, which are involved in dimer formation. We conclude that interaction with the sulfated N terminus of CCR2 destabilizes the dimerization interface of inactive dimeric MCP-1, thus inducing dissociation to the active monomeric state.  相似文献   

13.
Chemokine receptors are members of the G protein-coupled receptor (GPCR) family. CCR5 and CXCR4 act as co-receptors for human immunodeficiency virus (HIV) and several efforts have been made to develop ligands to inhibit HIV infection by blocking those receptors. Removal of chemokine receptors from the cell surface using polymorphisms or other means confers some levels of immunity against HIV infection. Up to now, very limited success has been obtained using ligand therapies so we explored potential avenues to regulate chemokine receptor expression at the plasma membrane. We identified a molecular chaperone, DRiP78, that interacts with both CXCR4 and CCR5, but not the heterodimer formed by these receptors. We further characterized the effects of DRiP78 on CCR5 function. We show that the molecular chaperone inhibits CCR5 localization to the plasma membrane. We identified the interaction region on the receptor, the F(x)6LL motif, and show that upon mutation of this motif the chaperone cannot interact with the receptor. We also show that DRiP78 is involved in the assembly of CCR5 chemokine signaling complex as a homodimer, as well as with the Gαi protein. Finally, modulation of DRiP78 levels will affect receptor functions, such as cell migration in cells that endogenously express CCR5. Our results demonstrate that modulation of the functions of a chaperone can affect signal transduction at the cell surface.  相似文献   

14.
The magnitude and duration of G protein-coupled receptor (GPCR) signals are regulated through desensitization mechanisms. In leukocytes, ligand binding to chemokine receptors leads to Ca2+ mobilization and ERK activation through pertussis toxin-sensitive G proteins, as well as to phosphorylation of the GPCR. After interaction with the endocytic machinery (clathrin, adaptin), the adaptor β-arrestin recognizes the phosphorylated GPCR tail and quenches signaling to receptors. The molecular mechanisms that lead to receptor endocytosis are not universal amongst the GPCR, however, and the precise spatial and temporal events in the internalization of the CCR2 chemokine receptor remain unknown. Here we show that after ligand binding, CCR2 internalizes rapidly and reaches early endosomes, and later, lysosomes. Knockdown of clathrin by RNA interference impairs CCR2 internalization, as does treatment with the dynamin inhibitor, dynasore. Our results show that CCR2 internalization uses a combination of clathrin-dependent and -independent pathways, as observed for other chemokine receptors. Moreover, the use of dynasore allowed us to confirm the existence of a dynamin-sensitive element that regulates ERK1/2 activation. Our results indicate additional complexity in the link between receptor internalization and cell signaling.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) requires both CD4 and a coreceptor to infect cells. Macrophage-tropic (M-tropic) HIV-1 strains utilize the chemokine receptor CCR5 in conjunction with CD4 to infect cells, while T-cell-tropic (T-tropic) strains generally utilize CXCR4 as a coreceptor. Some viruses can use both CCR5 and CXCR4 for virus entry (i.e., are dual-tropic), while other chemokine receptors can be used by a subset of virus strains. Due to the genetic diversity of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) and the potential for chemokine receptors other than CCR5 or CXCR4 to influence viral pathogenesis, we tested a panel of 28 HIV-1, HIV-2, and SIV envelope (Env) proteins for the ability to utilize chemokine receptors, orphan receptors, and herpesvirus-encoded chemokine receptor homologs by membrane fusion and virus infection assays. While all Env proteins used either CCR5 or CXCR4 or both, several also used CCR3. Use of CCR3 was strongly dependent on its surface expression levels, with a larger number of viral Env proteins being able to utilize this coreceptor at the higher levels of surface expression. ChemR1, an orphan receptor recently shown to bind the CC chemokine I309 (and therefore renamed CCR8), was expressed in monocyte and lymphocyte cell populations and functioned as a coreceptor for diverse HIV-1, HIV-2, and SIV Env proteins. Use of ChemR1/CCR8 by SIV strains was dependent in part on V3 loop sequences. The orphan receptor V28 supported Env-mediated cell-cell fusion by four T- or dual-tropic HIV-1 and HIV-2 strains. Three additional orphan receptors failed to function for any of the 28 Env proteins tested. Likewise, five of six seven-transmembrane-domain receptors encoded by herpesviruses did not support Env-mediated membrane fusion. However, the chemokine receptor US28, encoded by cytomegalovirus, did support inefficient infection by two HIV-1 strains. These findings indicate that additional chemokine receptors can function as HIV and SIV coreceptors and that surface expression levels can strongly influence coreceptor use.  相似文献   

16.
T cells undergo chemokine receptor switches during activation and differentiation in secondary lymphoid tissues. Here we present evidence that dendritic cells can induce changes in T cell expression of chemokine receptors in two continuous steps. In the first switch over a 4-5 day period, dendritic cells up-regulate T cell expression of CXCR3 and CXCR5. Additional stimulation leads to the second switch: down-regulation of lymphoid tissue homing related CCR7 and CXCR5, and up-regulation of Th1/2 effector tissue-targeting chemoattractant receptors such as CCR4, CCR5, CXCR6, and CRTH2. We show that IL-4 and IL-12 can determine the fate of the secondary chemokine receptor switch. IL-4 enhances the generation of CCR4(+) and CRTH2(+) T cells, and suppresses the generation of CXCR3(+) T cells and CCR7(-) T cells, while IL-12 suppresses the level of CCR4 in responding T cells. Furthermore, IL-4 has positive effects on generation of CXCR5(+) and CCR7(+) T cells during the second switch. Our study suggests that the sequential switches in chemokine receptor expression occur during naive T cell interaction with dendritic cells. The first switch of T cell chemokine receptor expression is consistent with the fact that activated T cells migrate within lymphoid tissues for interaction with B and dendritic cells, while the second switch predicts the trafficking behavior of effector T cells away from lymphoid tissues to effector tissue sites.  相似文献   

17.
Efficient migration of CD4+ T cells into sites of infection/inflammation is a prerequisite to protective immunity. Inappropriate recruitment, on the other hand, contributes to inflammatory pathologies. The chemokine/chemokine receptor system is thought to orchestrate T cell homing. In this study, we show that most circulating human CD4+ T cells store the inflammatory chemokine receptors CXCR3 and CXCR1 within a distinct intracellular compartment. Equipped with such storage granules, CD4+ T cells coexpressing both receptors increased from only 1% ex vivo to approximately 30% within minutes of activation with PHA or exposure to the cyclooxygenase (COX) substrate arachidonic acid. Up-regulation was TCR independent and reduced by COX inhibitors at concentrations readily reached in vivo. The inducible inflammatory CXCR3(high)CXCR1+ phenotype identified nonpolarized cells, was preferentially triggered on CCR7+CD4+ T cells, and conferred increased chemotactic responsiveness. Thus, inducible CXCR3/1 expression occurs in a large fraction of CD4+ T cells. Its dependency on COX may explain a number of established, and point toward novel, effects of COX inhibitors.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1) entry into CD4(+) cells requires the chemokine receptors CCR5 or CXCR4 as co-fusion receptors. We have previously demonstrated that chemokine receptors are capable of cross-regulating the functions of each other and, thus, affecting cellular responsiveness at the site of infection. To investigate the effects of chemokine receptor cross-regulation in HIV-1 infection, monocytes and MAGIC5 and rat basophilic leukemia (RBL-2H3) cell lines co-expressing the interleukin-8 (IL-8 or CXCL8) receptor CXCR1 and either CCR5 (ACCR5) or CXCR4 (ACXCR4) were generated. IL-8 activation of CXCR1, but not the IL-8 receptor CXCR2, cross-phosphorylated CCR5 and CXCR4 and cross-desensitized their responsiveness to RANTES (regulated on activation normal T cell expressed and secreted) (CCL5) and stromal derived factor (SDF-1 or CXCL12), respectively. CXCR1 activation internalized CCR5 but not CXCR4 despite cross-phosphorylation of both. IL-8 pretreatment also inhibited CCR5- but not CXCR4-mediated virus entry into MAGIC5 cells. A tail-deleted mutant of CXCR1, DeltaCXCR1, produced greater signals upon activation (Ca(2+) mobilization and phosphoinositide hydrolysis) and cross-internalized CXCR4, inhibiting HIV-1 entry. The protein kinase C inhibitor staurosporine prevented phosphorylation and internalization of the receptors by CXCR1 activation. Taken together, these results indicate that chemokine receptor-mediated HIV-1 cell infection is blocked by receptor internalization but not desensitization alone. Thus, activation of chemokine receptors unrelated to CCR5 and CXCR4 may play a cross-regulatory role in the infection and propagation of HIV-1. Since DeltaCXCR1, but not CXCR1, cross-internalized and cross-inhibited HIV-1 infection to CXCR4, the data indicate the importance of the signal strength of a receptor and, as a consequence, protein kinase C activation in the suppression of HIV-1 infection by cross-receptor-mediated internalization.  相似文献   

19.
Interactions between proinflammatory and cell maturation signals, and the pathways that regulate leukocyte migration, are of fundamental importance in controlling trafficking and recruitment of leukocytes during the processes of innate and adaptive immunity. We have investigated the molecular mechanisms by which selective Toll-like receptor (TLR)2 and TLR4 agonists regulate expression of CCR1 and CCR2 on primary human monocytes and THP-1 cells, a human monocytic cell line. We found that activation of either TLR2 (by Pam(3)CysSerLys(4)) or TLR4 (by purified LPS) resulted in down-modulation of both CCR1 and CCR2. Further investigation of TLR-induced down-modulation of CCR1 revealed differences in the signaling pathways activated, and chemokines generated, via the two TLR agonists. TLR2 activation caused slower induction of the NF-kappa B and mitogen-activated protein kinase signaling pathways and yet a much enhanced and prolonged macrophage-inflammatory protein 1 alpha (CC chemokine ligand 3) protein production, when compared with TLR4 stimulation. Enhanced macrophage-inflammatory protein 1 alpha production may contribute to the prolonged down-regulation of CCR1 cell surface expression observed in response to the TLR2 agonist, as preventing chemokine generation with the protein synthesis inhibitor cycloheximide, or CCR1 signaling with the receptor antagonist UCB35625, abolished TLR2- and TLR4-induced CCR1 down-modulation. This result suggests an autocrine pathway, whereby TLR activation can induce chemokine production, which then leads to homologous down-regulation of the cognate receptors. This work provides further insights into the mechanisms that regulate leukocyte recruitment and trafficking during TLR-induced inflammatory responses.  相似文献   

20.
Several members of the chemokine receptor family have recently been identified as coreceptors, with CD4, for entry of human immunodeficiency virus type 1 (HIV-1) into target cells. In this report, we show that the envelope glycoproteins of several strains of HIV-2 and simian immunodeficiency virus (SIV) employ the same chemokine receptors for infection. Envelope glycoproteins from HIV-2 use CCR5 or CXCR4, while those from several strains of SIV use CCR5. Our data indicate also that some viral envelopes can use more than one coreceptor for entry and suggest that some of these coreceptors remain to be identified. To further understand how different envelope molecules use CCR5 as an entry cofactor, we show that soluble purified envelope glycoproteins (SU component) from CCR5-tropic HIV-1, HIV-2, and SIV can compete for binding of iodinated chemokine to CCR5. The competition is dependent on binding of the SU glycoprotein to cell surface CD4 and implies a direct interaction between envelope glycoproteins and CCR5. This interaction is specific since it is not observed with SU glycoprotein from a CXCR4-tropic virus or with a chemokine receptor that is not competent for viral entry (CCR1). For HIV-1, the interaction can be inhibited by antibodies specific for the V3 loop of SU. Soluble CD4 was found to potentiate binding of the HIV-2 ST and SIVmac239 envelope glycoproteins to CCR5, suggesting that a CD4-induced conformational change in SU is required for subsequent binding to CCR5. These data suggest a common fundamental mechanism by which structurally diverse HIV-1, HIV-2, and SIV envelope glycoproteins interact with CD4 and CCR5 to mediate viral entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号