首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Homology-directed repair of DNA double-strand breaks (DSBs) represents a highly faithful pathway. Non–crossover repair dominates in mitotically growing cells, likely through a preference for synthesis-dependent strand annealing (SDSA). How homology-directed repair mechanism choice is orchestrated in time and space is not well understood. Here, we develop a microscopy-based assay in living fission yeast to determine the dynamics and kinetics of an engineered, site-specific interhomologue repair event. We observe highly efficient homology search and homology-directed repair in this system. Surprisingly, the initial distance between the DSB and the donor sequence does not correlate with the duration of repair. Instead, we observe that repair often involves multiple site-specific and Rad51-dependent colocalization events between the DSB and donor sequence. Upon loss of the RecQ helicase Rqh1 (BLM in humans) we observe rapid repair possibly involving a single strand invasion event, suggesting that multiple strand invasion cycles antagonized by Rqh1 could reflect ongoing SDSA. However, failure to colocalize with the donor sequence and execute repair is also more likely in rqh1Δ cells, possibly reflecting erroneous strand invasion. This work has implications for the molecular etiology of Bloom syndrome, caused by mutations in BLM and characterized by aberrant sister chromatid crossovers and inefficient repair.  相似文献   

2.
Certain group I introns insert into intronless DNA via an endonuclease that creates a double-strand break (DSB). There are two models for intron homing in phage: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR). The Cr.psbA4 intron homes efficiently from a plasmid into the chloroplast psbA gene in Chlamydomonas , but little is known about the mechanism. Analysis of co-transformants selected using a spectinomycin-resistant 16S gene (16Sspec) provided evidence for both pathways. We also examined the consequences of the donor DNA having only one-sided or no homology with the psbA gene. When there was no homology with the donor DNA, deletions of up to 5 kb involving direct repeats that flank the psbA gene were obtained. Remarkably, repeats as short as 15 bp were used for this repair, which is consistent with the single-strand annealing (SSA) pathway. When the donor had one-sided homology, the DSB in most co-transformants was repaired using two DNAs, the donor and the 16Sspec plasmid, which, coincidentally, contained a region that is repeated upstream of psbA . DSB repair using two separate DNAs provides further evidence for the SDSA pathway. These data show that the chloroplast can repair a DSB using short dispersed repeats located proximally, distally, or even on separate molecules relative to the DSB. They also provide a rationale for the extensive repertoire of repeated sequences in this genome.  相似文献   

3.
The contributions of the Sgs1, Mph1, and Srs2 DNA helicases during mitotic double-strand break (DSB) repair in yeast were investigated using a gap-repair assay. A diverged chromosomal substrate was used as a repair template for the gapped plasmid, allowing mismatch-containing heteroduplex DNA (hDNA) formed during recombination to be monitored. Overall DSB repair efficiencies and the proportions of crossovers (COs) versus noncrossovers (NCOs) were determined in wild-type and helicase-defective strains, allowing the efficiency of CO and NCO production in each background to be calculated. In addition, the products of individual NCO events were sequenced to determine the location of hDNA. Because hDNA position is expected to differ depending on whether a NCO is produced by synthesis-dependent-strand-annealing (SDSA) or through a Holliday junction (HJ)–containing intermediate, its position allows the underlying molecular mechanism to be inferred. Results demonstrate that each helicase reduces the proportion of CO recombinants, but that each does so in a fundamentally different way. Mph1 does not affect the overall efficiency of gap repair, and its loss alters the CO-NCO by promoting SDSA at the expense of HJ–containing intermediates. By contrast, Sgs1 and Srs2 are each required for efficient gap repair, strongly promoting NCO formation and having little effect on CO efficiency. hDNA analyses suggest that all three helicases promote SDSA, and that Sgs1 and Srs2 additionally dismantle HJ–containing intermediates. The hDNA data are consistent with the proposed role of Sgs1 in the dissolution of double HJs, and we propose that Srs2 dismantles nicked HJs.  相似文献   

4.
Merker JD  Dominska M  Petes TD 《Genetics》2003,165(1):47-63
The double-strand break repair (DSBR) model of recombination predicts that heteroduplexes will be formed in regions that flank the double-strand break (DSB) site and that the resulting intermediate is resolved to generate either crossovers or noncrossovers for flanking markers. Previous studies in Saccharomyces cerevisiae, however, failed to detect heteroduplexes on both sides of the DSB site. Recent physical studies suggest that some recombination events involve heterodupex formation by a mechanism, synthesis-dependent strand annealing (SDSA), that is inherently asymmetric with respect to the DSB site and that leads exclusively to noncrossovers of flanking markers. Below, we demonstrate that many of the recombination events initiated at the HIS4 recombination hotspot are consistent with a variant of the DSBR model in which the extent of heteroduplex on one side of the DSB site is much greater than that on the other. Events that include only one flanking marker in the heteroduplex (unidirectional events) are usually resolved as noncrossovers, whereas events that include both flanking markers (bidirectional events) are usually resolved as crossovers. The unidirectional events may represent SDSA, consistent with the conclusions of others, although other possibilities are not excluded. We also show that the level of recombination reflects the integration of events initiated at several different DSB sites, and we identify a subset of gene conversion events that may involve break-induced replication (BIR) or repair of a double-stranded DNA gap.  相似文献   

5.
SAW1, coding for Saw1, is required for single-strand annealing (SSA) DNA double-strand break (DSB) repair in Saccharomycescerevisiae. Saw1 physically associates with Rad1 and Rad52 and recruits the Rad1–Rad10 endonuclease. Herein we show by fluorescence microscopy that SAW1 is similarly required for recruitment of Rad10 to sites of Synthesis-Dependent Strand Annealing (SDSA) and associates with sites of SDSA repair in a manner temporally overlapped with Rad10. The magnitude of induction of colocalized Saw1-CFP/Rad10-YFP/DSB-RFP foci in SDSA is more dramatic in S and G2 phase cells than in M phase, consistent with the known mechanism of SDSA. We observed a substantial fraction of foci in which Rad10 was localized to the repair site without Saw1, but few DSB sites that contained Saw1 without Rad10. Together these data are consistent with a model in which Saw1 recruits Rad1–Rad10 to SDSA sites, possibly even binding as a protein–protein complex, but departs the repair site in advance of Rad1–Rad10.  相似文献   

6.
Synthesis-dependent strand-annealing (SDSA)-mediated homologous recombination replaces the sequence around a DNA double-strand break (DSB) with a copy of a homologous DNA template, while maintaining the original configuration of the flanking regions. In somatic cells at the 4n stage, Holliday-junction-mediated homologous recombination and nonhomologous end joining (NHEJ) cause crossovers (CO) between homologous chromosomes and deletions, respectively, resulting in loss of heterozygosity (LOH) upon cell division. However, the SDSA pathway prevents DSB-induced LOH. We developed a novel yeast DSB-repair assay with two discontinuous templates, set on different chromosomes, to determine the genetic requirements for somatic SDSA and precise end joining. At first we used our in vivo assay to verify that the Srs2 helicase promotes SDSA and prevents imprecise end joining. Genetic analyses indicated that a new DNA/RNA helicase gene, IRC20, is in the SDSA pathway involving SRS2. An irc20 knockout inhibited both SDSA and CO and suppressed the srs2 knockout-induced crossover enhancement, the mre11 knockout-induced inhibition of SDSA, CO, and NHEJ, and the mre11-induced hypersensitivities to DNA scissions. We propose that Irc20 and Mre11 functionally interact in the early steps of DSB repair and that Srs2 acts on the D-loops to lead to SDSA and to prevent crossoverv.  相似文献   

7.
Correct repair of DNA double-strand breaks (DSBs) is critical for maintaining genome stability. Whereas gene conversion (GC)-mediated repair is mostly error-free, repair by break-induced replication (BIR) is associated with non-reciprocal translocations and loss of heterozygosity. We have previously shown that a Recombination Execution Checkpoint (REC) mediates this competition by preventing the BIR pathway from acting on DSBs that can be repaired by GC. Here, we asked if the REC can also determine whether the ends that are engaged in a GC-compatible configuration belong to the same break, since repair involving ends from different breaks will produce potentially deleterious translocations. We report that the kinetics of repair are markedly delayed when the two DSB ends that participate in GC belong to different DSBs (termed Trans) compared to the case when both DSB ends come from the same break (Cis). However, repair in Trans still occurs by GC rather than BIR, and the overall efficiency of repair is comparable. Hence, the REC is not sensitive to the “origin” of the DSB ends. When the homologous ends for GC are in Trans, the delay in repair appears to reflect their tethering to sequences on the other side of the DSB that themselves recombine with other genomic locations with which they share sequence homology. These data support previous observations that the two ends of a DSB are usually tethered to each other and that this tethering facilitates both ends encountering the same donor sequence. We also found that the presence of homeologous/repetitive sequences in the vicinity of a DSB can distract the DSB end from finding its bona fide homologous donor, and that inhibition of GC by such homeologous sequences is markedly increased upon deleting Sgs1 but not Msh6.  相似文献   

8.
In recent years, multiple factors involved in DNA double‐strand break (DSB) repair have been characterised in Arabidopsis thaliana. Using homologous sequences in somatic cells, DSBs are mainly repaired by two different pathways: synthesis‐dependent strand annealing (SDSA) and single‐strand annealing (SSA). By applying recombination substrates in which recombination is initiated by the induction of a site‐specific DSB by the homing endonuclease I‐SceI, we were able to characterise the involvement of different factors in both pathways. The nucleases MRE11 and COM1, both involved in DSB end processing, were not required for either SDSA or SSA in our assay system. Both SDSA and SSA were even more efficient without MRE11, in accordance with the fact that a loss of MRE11 might negatively affect the efficiency of non‐homologous end joining. Loss of the classical recombinase RAD51 or its two paralogues RAD51C and XRCC3, as well as the SWI2/SNF2 remodelling factor RAD54, resulted in a drastic deficiency in SDSA but had hardly any influence on SSA, confirming that a strand exchange reaction is only required for SDSA. The helicase FANCM, which is postulated to be involved in the stabilisation of recombination intermediates, is surprisingly not only needed for SDSA but to a lesser extent also for SSA. Both SSA and SDSA were affected only weakly when the SMC6B protein, implicated in sister chromatid recombination, was absent, indicating that SSA and SDSA are in most cases intrachromatid recombination reactions.  相似文献   

9.
DNA double-strand breaks (DSBs), a major source of genome instability, are often repaired through homologous recombination pathways. Models for these pathways have been proposed, but the precise mechanisms and the rules governing their use remain unclear. In Drosophila, the synthesis-dependent strand annealing (SDSA) model can explain most DSB repair. To investigate SDSA, we induced DSBs by excision of a P element from the male X chromosome, which produces a 14-kb gap relative to the sister chromatid. In wild-type males, repair synthesis tracts are usually long, resulting in frequent restoration of the P element. However, repair synthesis is often incomplete, resulting in internally deleted P elements. We examined the effects of mutations in spn-A, which encodes the Drosophila Rad51 ortholog. As expected, there is little or no repair synthesis in homozygous spn-A mutants after P excision. However, heterozygosity for spn-A mutations also resulted in dramatic reductions in the lengths of repair synthesis tracts. These findings support a model in which repair DNA synthesis is not highly processive. We discuss a model wherein repair of a double-strand gap requires multiple cycles of strand invasion, synthesis, and dissociation of the nascent strand. After dissociation, the nascent strand may anneal to a complementary single strand, reinvade a template to be extended by additional synthesis, or undergo end joining. This model can explain aborted SDSA repair events and the prevalence of internally deleted transposable elements in genomes.  相似文献   

10.
Petter Portin 《Genetica》2010,138(9-10):1033-1045
The mus309 gene in Drosophila melanogaster encodes a RecQ helicase which is involved in DNA double-strand break (DSB) repair and specifically in the choice between the different pathways of the repair. In a brood pattern analysis of mus309 and wild type females which either had or had not experienced a temperature shock, different parameters of meiotic crossing over including map distances and crossover interference in the X chromosome were measured. The results suggest that, like in other eukaryotes studied, the control of meiotic crossover formation also in D. melanogaster is a two-phase process. The first phase seems to be temperature shock sensitive, independent of the mus309 gene and coincidental with the premeiotic DNA synthesis, thus most likely representing the formation of DSBs. The second phase seems to be temperature shock tolerant, dependent on the mus309 gene, occurring during the meiotic prophase and most likely representing the choice made by the oocyte between the different pathways of the DSB repair. A hypothesis of the localization of chiasmata is also presented, combining the mechanisms of interference and the so-called centromere effect, and based on the balance between the SDSA and DSBR pathways of DSB repair.  相似文献   

11.
We designed DNA substrates to study intrachromosomal recombination in mammalian chromosomes. Each substrate contains a thymidine kinase (tk) gene fused to a neomycin resistance (neo) gene. The fusion gene is disrupted by an oligonucleotide containing the 18-bp recognition site for endonuclease I-SceI. Substrates also contain a “donor” tk sequence that displays 1% or 19% sequence divergence relative to the tk portion of the fusion gene. Each donor serves as a potential recombination partner for the fusion gene. After stably transfecting substrates into mammalian cell lines, we investigated spontaneous recombination and double-strand break (DSB)-induced recombination following I-SceI expression. No recombination events between sequences with 19% divergence were recovered. Strikingly, even though no selection for accurate repair was imposed, accurate conservative homologous recombination was the predominant DSB repair event recovered from rodent and human cell lines transfected with the substrate containing sequences displaying 1% divergence. Our work is the first unequivocal demonstration that homologous recombination can serve as a major DSB repair pathway in mammalian chromosomes. We also found that Msh2 can modulate homologous recombination in that Msh2 deficiency promoted discontinuity and increased length of gene conversion tracts and brought about a severalfold increase in the overall frequency of DSB-induced recombination.  相似文献   

12.
This study investigated the efficiency of Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair systems in rejoining DNA double-strand breaks (DSB) induced in CCD-34Lu cells by different γ-ray doses. The kinetics of DNA repair was assessed by analyzing the fluorescence decrease of γ-H2AX foci measured by SOID (Sum Of Integrated Density) parameter and counting foci number in the time-interval 0.5–24 hours after irradiation. Comparison of the two methods showed that the SOID parameter was useful in determining the amount and the persistence of DNA damage signal after exposure to high or low doses of ionizing radiation. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1, S, and G2 phase cells on the basis of nuclear fluorescence of the CENP-F protein. Six hours after irradiation, γ-H2AX foci resolution was higher in G2 compared to G1 cells in which both NHEJ and HR can cooperate. The rejoining of γ-H2AX foci in G2 phase cells was, moreover, decreased by RI-1, the chemical inhibitor of HR, demonstrating that homologous recombination is at work early after irradiation. The relevance of HR in DSB repair was assessed in DNA-PK-deficient M059J cells and in CCD-34Lu treated with the DNA-PKcs inhibitor, NU7026. In both conditions, the kinetics of γ-H2AX demonstrated that DSBs repair was markedly affected when NHEJ was absent or impaired, even in G2 phase cells in which HR should be at work. The recruitment of RAD51 at DSB sites was, moreover, delayed in M059J and in NU7026 treated-CCD-34Lu, with respect to DNA-PKcs proficient cells and continued for 24 hours despite the decrease in DNA repair. The impairment of NHEJ affected the efficiency of the HR system and significantly decreased cell survival after ionizing radiation, confirming that DSB rejoining is strictly dependent on the integrity of the NHEJ repair system.  相似文献   

13.
Using an antibody against the phosphorylated form of His2Av (γ-His2Av), we have described the time course for the series of events leading from the formation of a double-strand break (DSB) to a crossover in Drosophila female meiotic prophase. MEI-P22 is required for DSB formation and localizes to chromosomes prior to γ-His2Av foci. Drosophila females, however, are among the group of organisms where synaptonemal complex (SC) formation is not dependent on DSBs. In the absence of two SC proteins, C(3)G and C(2)M, the number of DSBs in oocytes is significantly reduced. This is consistent with the appearance of SC protein staining prior to γ-His2Av foci. However, SC formation is incomplete or absent in the neighboring nurse cells, and γ-His2Av foci appear with the same kinetics as in oocytes and do not depend on SC proteins. Thus, competence for DSB formation in nurse cells occurs with a specific timing that is independent of the SC, whereas in the oocytes, some SC proteins may have a regulatory role to counteract the effects of a negative regulator of DSB formation. The SC is not sufficient for DSB formation, however, since DSBs were absent from the heterochromatin even though SC formation occurs in these regions. All γ-His2Av foci disappear before the end of prophase, presumably as repair is completed and crossovers are formed. However, oocytes in early prophase exhibit a slower response to X-ray–induced DSBs compared to those in the late pachytene stage. Assuming all DSBs appear as γ-His2Av foci, there is at least a 3:1 ratio of noncrossover to crossover products. From a comparison of the frequency of γ-His2Av foci and crossovers, it appears that Drosophila females have only a weak mechanism to ensure a crossover in the presence of a low number of DSBs.  相似文献   

14.
Double-strand breaks (DSBs) are particularly deleterious DNA lesions for which cells have developed multiple mechanisms of repair. One major mechanism of DSB repair in mammalian cells is homologous recombination (HR), whereby a homologous donor sequence is used as a template for repair. For this reason, HR repair of DSBs is also being exploited for gene modification in possible therapeutic approaches. HR is sensitive to sequence divergence, such that the cell has developed ways to suppress recombination between diverged (“homeologous”) sequences. In this report, we have examined several aspects of HR between homeologous sequences in mouse and human cells. We found that gene conversion tracts are similar for mouse and human cells and are generally ≤100 bp, even in Msh2/ cells which fail to suppress homeologous recombination. Gene conversion tracts are mostly unidirectional, with no observed mutations. Additionally, no alterations were observed in the donor sequences. While both mouse and human cells suppress homeologous recombination, the suppression is substantially less in the transformed human cells, despite similarities in the gene conversion tracts. BLM-deficient mouse and human cells suppress homeologous recombination to a similar extent as wild-type cells, unlike Sgs1-deficient Saccharomyces cerevisiae.The ability of a cell to repair DNA damage is integral to maintaining genome integrity. One common type of damage that is particularly detrimental is a double-strand break (DSB), where both strands of DNA are broken. If not accurately repaired, DSBs can lead to cell death, chromosomal rearrangements, and loss of genetic material (reviewed in references 14 and 19). One mechanism of DSB repair is homologous recombination (HR), in which an unbroken homologous sequence, the donor of genetic information, is used as a template for repair of the broken sequence, the recipient of genetic information. HR intermediates possess heteroduplex DNA (hDNA), where one strand of DNA is derived from the donor sequence, and the second strand is derived from the recipient sequence. Mismatches in hDNA are substrates of the mismatch repair machinery (MMR) (reviewed in reference 38), leading to gene conversion. HR is the preferred repair pathway of DSBs in Saccharomyces cerevisiae (reviewed in references 42 and 46), plays an important role in repair of DSBs in Drosophila (1, 32), and is a major repair pathway of DSBs that occur during S/G2 in mammalian cells (33, 54).Two pathways appear to predominate for the repair of DSBs by HR, both of which can give rise to noncrossover products, which predominate in mitotic mammalian cells (Fig. (Fig.1)1) (29, 52, 60). In the DSB repair model proposed by Szostak et al. (61), double Holliday junctions are resolved to result in recombinant products (Fig. (Fig.1A).1A). More recent evidence suggests the existence of an alternative pathway, termed synthesis-dependent strand annealing (SDSA) (Fig. (Fig.1B)1B) (20, 40, 42, 52). One difference between these two pathways is that the DSB repair model requires capture of both DNA ends (Fig. (Fig.1A),1A), which can lead to bidirectional gene conversion tracts. In contrast, SDSA can involve only one end of the broken DNA followed by dissociation (Fig. (Fig.1B),1B), resulting in predominantly unidirectional gene conversion tracts. Another difference is that the donor sequence can be altered during DSB repair while it typically remains unchanged after SDSA.Open in a separate windowFIG. 1.Models for noncrossover gene conversion resulting from DSB repair. DSB repair is initiated by resection of the DNA ends (black; strand directionality is designated a 3′ “tail”). The resected 3′ overhang invades the homologous donor template (gray), forming hDNA at the site of invasion (i), which acts as a primer/template for repair synthesis (gray dotted line). (A) In the canonical DSB repair (DSBR) model, the second strand of the DSB is captured, resulting in another stretch of hDNA (ii) and repair synthesis, to form a double Holliday junction. Depending on how the double Holliday junction is cleaved (arrowheads), resolution can result in a crossover (data not shown) or a noncrossover, as shown. (B) In SDSA, the newly synthesized strand dissociates from the D-loop and anneals to the other DNA end to form another stretch of hDNA (iii). Repair synthesis and ligation result in a noncrossover product. While one-end invasion is illustrated for the SDSA model, it is possible for both DNA ends to invade, resulting in gene conversion on both sides of the DSB (data not shown). In both models, hDNA formed by the newly synthesized strands can be repaired by MMR, resulting in gene conversion of markers (data not shown).HR repair is sensitive to differences between the recombining sequences, and cells have developed ways to suppress recombination between diverged sequences. This suppression of “homeologous” recombination reduces HR both between diverged repeats and with foreign DNA. Suppression of homeologous recombination is conserved across species and requires the MMR machinery (7, 10, 11, 49, 56). For example, MSH2 dramatically reduces both gene targeting (12) and DSB-induced HR (15) between sequences with >1% divergence in murine embryonic stem (ES) cells.Another protein that has been proposed to suppress homeologous recombination is Sgs1, the budding yeast RecQ helicase, as sequence divergence has little effect on recombination frequencies in Sgs1 mutants (39, 59). Sgs1 mutants have other phenotypes as well; for example, they demonstrate a hyperrecombination phenotype associated with spontaneous repair (22, 65, 68). The mammalian homolog of Sgs1 is BLM, mutants of which also have a hyperrecombination phenotype, as evidenced by a high frequency of sister-chromatid exchange (SCE) in both human and mouse cells (18, 24, 34, 69). Evidence suggests that Drosophila BLM, like Sgs1, has a role in the suppression of homeologous recombination (30) although mammalian BLM has not been tested in this regard. Supporting a possible role for BLM in suppressing homeologous recombination is the observation that BLM associates with MMR factors in a large protein complex (64; reviewed in reference 21), and BLM directly interacts with two components of the MMR machinery, MLH1 (45) and MSH6 (44), which, like MSH2, is known to suppress homeologous recombination (13).To gain more insight into mammalian HR mechanisms, as well as factors that control recombination between homeologous sequences, we examined recombination between homologous and homeologous sequences in both murine and human cells. By taking advantage of multiple, single base pair polymorphisms distributed along the donor in gene conversion substrates, we examined both the nature of gene conversion tracts and the fate of the donor sequence. Unidirectional tracts with a bias in conversion to one side of the DSB predominated in both mouse and human cells, supporting an SDSA mechanism of HR. Moreover, the donor remained unaltered after HR. Interestingly, while transformed human cells suppressed homeologous recombination, the degree of suppression was less than that observed in mouse cells. For either cell type, BLM deficiency did not alter this suppression, unlike what is observed in yeast Sgs1 mutants. Either other RecQ helicase family members play a role in the suppression of homeologous recombination, or mammalian RecQ helicases do not play a role in this process.  相似文献   

15.
Synthesis‐dependent strand annealing (SDSA) and single‐strand annealing (SSA) are the two main homologous recombination (HR) pathways in double‐strand break (DSB) repair. The involvement of rice RAD51 paralogs in HR is well known in meiosis, although the molecular mechanism in somatic HR remains obscure. Loss‐of‐function mutants of rad51 paralogs show increased sensitivity to the DSB‐inducer bleomycin, which results in greatly compromised somatic recombination efficiencies (xrcc3 in SDSA, rad51b and xrcc2 in SSA, rad51c and rad51d in both). Using immunostaining, we found that mutations in RAD51 paralogs (XRCC3, RAD51C, or RAD51D) lead to tremendous impairment in RAD51 focus formation at DSBs. Intriguingly, the RAD51C mutation has a strong effect on the protein loading of its partners (XRCC3 and RAD51B) at DSBs, which is similar to the phenomenon observed in the case of blocking PI3K‐like kinases in wild‐type plant. We conclude that the rice CDX3 complex acts in SDSA recombination while the BCDX2 complex acts in SSA recombination in somatic DSB repair. Importantly, RAD51C serves as a fulcrum for the local recruitment of its partners (XRCC3 for SDSA and RAD51B for SSA) and is positively modulated by PI3K‐like kinases to facilitate both the SDSA and SSA pathways in RAD51 paralog‐dependent somatic HR.  相似文献   

16.
Synthesis-dependent strand annealing in meiosis   总被引:1,自引:0,他引:1  
Recent studies led to the proposal that meiotic gene conversion can result after transient engagement of the donor chromatid and subsequent DNA synthesis-dependent strand annealing (SDSA). Double Holliday junction (dHJ) intermediates were previously proposed to form both reciprocal crossover recombinants (COs) and noncrossover recombinants (NCOs); however, dHJs are now thought to give rise mainly to COs, with SDSA forming most or all NCOs. To test this model in Saccharomyces cerevisiae, we constructed a random spore system in which it is possible to identify a subset of NCO recombinants that can readily be accounted for by SDSA, but not by dHJ-mediated recombination. The diagnostic class of recombinants is one in which two markers on opposite sides of a double-strand break site are converted, without conversion of an intervening heterologous insertion located on the donor chromatid. This diagnostic class represents 26% of selected NCO recombinants. Tetrad analysis using the same markers provided additional evidence that SDSA is a major pathway for NCO gene conversion in meiosis.  相似文献   

17.
Hoffmann ER  Eriksson E  Herbert BJ  Borts RH 《Genetics》2005,169(3):1291-1303
Double-strand breaks (DSBs) initiate meiotic recombination. The DSB repair model predicts that both genetic markers spanning the DSB should be included in heteroduplex DNA and be detectable as non-Mendelian segregations (NMS). In experiments testing this, a significant fraction of events do not conform to this prediction, as only one of the markers displays NMS (one-sided events). Two explanations have been proposed to account for the discrepancies between the predictions and experimental observations. One suggests that two-sided events are the norm but are "hidden" as heteroduplex repair frequently restores the parental configuration of one of the markers. Another explanation posits that one-sided events reflect events in which heteroduplex is formed predominantly on only one side of the DSB. In the absence of heteroduplex repair, the first model predicts that two-sided events would be revealed at the expense of one-sided events, while the second predicts no effect on the distribution of events when heteroduplex repair is lost. We tested these predictions by deleting the DNA mismatch repair genes MSH2 or MLH1 and analyzing the proportion of two-sided events. Unexpectedly, the results do not match the predictions of either model. In both mlh1Delta and msh2Delta, the proportion of two-sided events is significantly decreased relative to wild type. These observations can be explained in one of two ways. Either Msh2p/Mlh1p-independent mispair removal leads to restoration of one of the markers flanking the DSB site or Msh2p/Mlh1p actively promote two-sided events.  相似文献   

18.

Background

DNA polymerase lambda (Polλ) is a DNA repair polymerase, which likely plays a role in base excision repair (BER) and in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSB).

Principal Findings

Here, we described a novel natural allelic variant of human Polλ (hPolλ) characterized by a single nucleotide polymorphism (SNP), C/T variation in the first base of codon 438, resulting in the amino acid change Arg to Trp. In vitro enzyme activity assays of the purified W438 Polλ variant revealed that it retained both DNA polymerization and deoxyribose phosphate (dRP) lyase activities, but had reduced base substitution fidelity. Ectopic expression of the W438 hPolλ variant in mammalian cells increases mutation frequency, affects the DSB repair NHEJ pathway, and generates chromosome aberrations. All these phenotypes are dependent upon the catalytic activity of the W438 hPolλ.

Conclusions

The expression of a cancer-related natural variant of one specialized DNA polymerase can be associated to generic instability at the cromosomal level, probably due a defective NHEJ. These results establish that chromosomal aberrations can result from mutations in specialized DNA repair polymerases.  相似文献   

19.
20.
Gene-editing experiments commonly elicit the error-prone non-homologous end joining for DNA double-strand break (DSB) repair. Microhomology-mediated end joining (MMEJ) can generate more predictable outcomes for functional genomic and somatic therapeutic applications. We compared three DSB repair prediction algorithms – MENTHU, inDelphi, and Lindel – in identifying MMEJ-repaired, homogeneous genotypes (PreMAs) in an independent dataset of 5,885 distinct Cas9-mediated mouse embryonic stem cell DSB repair events. MENTHU correctly identified 46% of all PreMAs available, a ∼2- and ∼60-fold sensitivity increase compared to inDelphi and Lindel, respectively. In contrast, only Lindel correctly predicted predominant single-base insertions. We report the new algorithm MENdel, a combination of MENTHU and Lindel, that achieves the most predictive coverage of homogeneous out-of-frame mutations in this large dataset. We then estimated the frequency of Cas9-targetable homogeneous frameshift-inducing DSBs in vertebrate coding regions for gene discovery using MENdel. 47 out of 54 genes (87%) contained at least one early frameshift-inducing DSB and 49 out of 54 (91%) did so when also considering Cas12a-mediated deletions. We suggest that the use of MENdel helps researchers use MMEJ at scale for reverse genetics screenings and with sufficient intra-gene density rates to be viable for nearly all loss-of-function based gene editing therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号