共查询到20条相似文献,搜索用时 15 毫秒
1.
Sara Varela-Cervero Álvaro López-García José Miguel Barea Concepción Azcón-Aguilar 《Mycorrhiza》2016,26(5):489-496
As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs. 相似文献
2.
Christian L Lauber Kelly S Ramirez Zach Aanderud Jay Lennon Noah Fierer 《The ISME journal》2013,7(8):1641-1650
Although numerous studies have investigated changes in soil microbial communities across space, questions about the temporal variability in these communities and how this variability compares across soils have received far less attention. We collected soils on a monthly basis (May to November) from replicated plots representing three land-use types (conventional and reduced-input row crop agricultural plots and early successional grasslands) maintained at a research site in Michigan, USA. Using barcoded pyrosequencing of the 16S rRNA gene, we found that the agricultural and early successional land uses harbored unique soil bacterial communities that exhibited distinct temporal patterns. α-Diversity, the numbers of taxa or lineages, was significantly influenced by the sampling month with the temporal variability in α-diversity exceeding the variability between land-use types. In contrast, differences in community composition across land-use types were reasonably constant across the 7-month period, suggesting that the time of sampling is less important when assessing β-diversity patterns. Communities in the agricultural soils were most variable over time and the changes were significantly correlated with soil moisture and temperature. Temporal shifts in bacterial community composition within the successional grassland plots were less predictable and are likely a product of complex interactions between the soil environment and the more diverse plant community. Temporal variability needs to be carefully assessed when comparing microbial diversity across soil types and the temporal patterns in microbial community structure can not necessarily be generalized across land uses, even if those soils are exposed to the same climatic conditions. 相似文献
3.
Assessment of soil fungal communities using pyrosequencing 总被引:1,自引:0,他引:1
Young Woon Lim Byung Kwon Kim Changmu Kim Hack Sung Jung Bong-Soo Kim Jae-Hak Lee Jongsik Chun 《Journal of microbiology (Seoul, Korea)》2010,48(3):284-289
Pyrosequencing, a non-electrophoretic method of DNA sequencing, was used to investigate the extensive fungal community in
soils of three islands in the Yellow Sea of Korea, between Korea and China. Pyrosequencing was carried out on amplicons derived
from the 5′ region of 18S rDNA. A total of 10,166 reads were obtained, with an average length of 103 bp. The maximum number
of fungal phylotypes in soil predicted at 99% similarity was 3,334. The maximum numbers of phylotypes predicted at 97% and
95% similarities were 736 and 286, respectively. Through phylogenetic assignment using BLASTN, a total of 372 tentative taxa
were identified. The majority of true fungal sequences recovered in this study belonged to the Ascomycota (182 tentative taxa
in 2,708 reads) and Basidiomycota (172 tentative taxa in 6,837 reads). The predominant species of Ascomycota detected have
been described as lichen-forming fungi, litter/wood decomposers, plant parasites, endophytes, and saprotrophs: Peltigera neopolydactyla (Lecanoromycetes), Paecilomyces sp. (Sordariomycetes), Phacopsis huuskonenii (Lecanoromycetes), and Raffaelea hennebertii (mitosporicAscomycota). The majority of sequences in the Basidiomycota matched ectomycorrhizal and wood rotting fungi, including
species of the Agaricales and Aphyllophorales, respectively. A high number of sequences in the Thelephorales, Boletales, Stereales,
Hymenochaetales, and Ceratobasidiomycetes were also detected. By applying high-throughput pyrosequencing, we observed a high
diversity of soil fungi and found evidence that pyrosequencing is a reliable technique for investigating fungal communities
in soils. 相似文献
4.
Background and aims
Vineyards harbour a variety of weeds, which are usually controlled since they compete with grapevines for water and nutrients. However, weed plants may host groups of fungi and bacteria exerting important functions.Methods
We grew three different common vineyard weeds (Taraxacum officinalis, Trifolium repens and Poa trivialis) in four different soils to investigate the effects of weeds and soil type on bacterial and fungal communities colonising bulk soil, rhizosphere and root compartments. Measurements were made using the cultivation-independent technique Automated Ribosomal Intergenic Spacer Analysis (ARISA).Results
Weeds have a substantial effect on roots but less impact on the rhizosphere and bulk soil, while soil type affects all three compartments, in particular the bulk soil community. The fungal, but not the bacterial, bulk soil community structure was affected by the plants at the late experimental stage. Root communities contained a smaller number of Operational Taxonomic Units (OTUs) and different bacterial and fungal structures compared with rhizosphere and bulk soil communities.Conclusions
Weed effect is localised to the rhizosphere and does not extend to bulk soil in the case of bacteria, although the structure of fungal communities in the bulk soil may be influenced by some weed plants. 相似文献5.
Soil characteristics more strongly influence soil bacterial communities than land-use type 总被引:2,自引:0,他引:2
Kuramae EE Yergeau E Wong LC Pijl AS van Veen JA Kowalchuk GA 《FEMS microbiology ecology》2012,79(1):12-24
To gain insight into the factors driving the structure of bacterial communities in soil, we applied real-time PCR, PCR-denaturing gradient gel electrophoreses, and phylogenetic microarray approaches targeting the 16S rRNA gene across a range of different land usages in the Netherlands. We observed that the main differences in the bacterial communities were not related to land-use type, but rather to soil factors. An exception was the bacterial community of pine forest soils (PFS), which was clearly different from all other sites. PFS had lowest bacterial abundance, lowest numbers of operational taxonomic units (OTUs), lowest soil pH, and highest C : N ratios. C : N ratio strongly influenced bacterial community structure and was the main factor separating PFS from other fields. For the sites other than PFS, phosphate was the most important factor explaining the differences in bacterial communities across fields. Firmicutes were the most dominant group in almost all fields, except in PFS and deciduous forest soils (DFS). In PFS, Alphaproteobacteria was most represented, while in DFS, Firmicutes and Gammaproteobacteria were both highly represented. Interestingly, Bacillii and Clostridium OTUs correlated with pH and phosphate, which might explain their high abundance across many of the Dutch soils. Numerous bacterial groups were highly correlated with specific soil factors, suggesting that they might be useful as indicators of soil status. 相似文献
6.
【目的】不合理施肥所引发的土壤环境问题逐渐成为制约我国农业可持续发展的重要因素之一,土壤真菌作为一类重要的土壤微生物,研究长期施肥对土壤真菌多样性及群落分布格局,探讨其理化因子对真菌群落结构的影响具有一定意义。【方法】本研究以东北黑土玉米田长期定位施肥试验(1984–2017)为基础,通过常规分析和Illumina Mi Seq高通量测序技术,分析长期施肥对黑土玉米田土壤养分含量和真菌群落结构变化的影响。【结果】长期施用氮肥明显降低土壤p H,却增加了玉米产量,秸秆与化肥配施可以增加土壤有机质和全氮的含量。稀释曲线结果表明长期施肥降低了土壤真菌序列的丰度和均匀度,并且在秸秆与化肥配施中序列数最低;在优势菌群中,共检测出5个已知真菌门,分别是子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、接合菌门(Zygomycota)、球囊菌门(Glomeromycota)和壶菌门(Chytridiomycota),子囊菌门占总序列平均值的57.0%,并且在氮磷钾配施高量秸秆有机肥(NPK+S0.5)的土壤中,子囊菌门丰度高达70.35%。在土壤真菌属水平的物种丰度分析中,共检测出109个已知真菌属,Humicola、Fusarium、Verticillium、Mortierella这4个菌属为优势菌属;Chaetomium、Trichocladium、Podospora、Preussia 4个菌属在秸秆与化肥配施处理中丰度较高,并同属一个分支聚类。从多样性指数分析得出,秸秆与化肥配施可以增加物种丰度和群落多样性;从热图分析可知,施用氮肥和不施用氮肥处理间真菌群落组成存在明显差异。RDA分析中,土壤理化性质影响着土壤真菌群落结构,尤其是土壤的p H、全量氮磷钾(T-N、T-P、T-K)、有效磷钾(A-P、A-K)和铵态氮(NH4+-N)浓度是重要环境因素。【结论】因此,施用氮肥虽然增加了产量,但也造成土壤酸化,真菌数量增加,其丰富度和多样性明显降低。而秸秆与化肥配施可以维持土壤健康生态环境和真菌群落多样性。 相似文献
7.
不同施肥模式对雷竹林土壤真菌群落特征的影响 总被引:3,自引:0,他引:3
为探明施肥处理对雷竹林土壤真菌群落特征的影响,采用末端限制性片段长度多态性(T-RFLP)和荧光定量PCR技术,分析有机肥(M)、化肥(CF)、化肥配施有机肥(CFM)、化肥配施有机肥加覆盖(CFMM)及不施肥(CK)处理土壤真菌群落结构和数量特征.结果表明:施肥显著影响真菌群落结构与多样性,表层(0~20 cm)土壤中M、CFMM处理与CK,亚表层(20~40 cm)土壤中CF、CFMM处理与CK之间真菌群落结构均存在明显差异;且表层土壤中CF、CFMM处理真菌Shannon指数和均匀度指数显著低于CK.M、CFM处理表层土壤真菌数量显著高于CK.土壤有机质、全氮、铵态氮和速效钾含量显著影响了真菌群落结构的变异;全氮、铵态氮、硝态氮含量与真菌数量均呈显著正相关.表明雷竹林表层和亚表层土壤中真菌群落对施肥处理的响应存在明显差异,表层土壤真菌群落明显受有机质添加的影响,而亚表层则对化肥投入较为敏感;施肥对真菌群落多样性的影响主要集中在表层土壤. 相似文献
8.
《Fungal Ecology》2015
A considerable amount of symbiotic functional variability has been demonstrated among arbuscular mycorrhizal fungal (AMF) species. However, little is known about the functional divergence in AMF communities from contrasting climates. Ecotypes of Pennisetum flaccidum were grown in growth chambers with AMF communities originating from two elevations (3 105 and 4 176 m asl) on Mount Segrila in Tibet. The combinations were grown under two temperature regimes (7–12 °C and 14–19 °C), equivalent to the mean temperatures during the growing season at the two elevations. AMF communities from different elevations showed different fungal performance at both temperatures. In most cases, AMF from cold habitats developed higher intraradical and extraradical colonization at 7–12 °C than AMF from the warmer habitat, and vice versa. For mycorrhizal growth responses (MGR), there was no consistent local versus foreign effect, but AMF inoculum from colder habitats consistently led to a higher MGR than the other inoculum. These results provide strong evidence for functional differences among AMF communities from contrasting climates. 相似文献
9.
We assessed whether the presence and abundance of plant pathogens and antagonists change in soil fungal communities along a land abandonment gradient. The study was carried out in the Cilento area (Southern Italy) at a site with three different habitats found along a land abandonment gradient: agricultural land, Mediterranean shrubland and woodland. For all microbiological substrates the colony forming units were about 3.1 × 106 g−1 soil for agricultural land and about 1.1 × 106 g−1 soil for Mediterranean shrubland and woodland. We found the following genera in all habitats: Cladosporium, Mortierella, Penicillium and Trichoderma. In agricultural land, the significantly most abundant fungus genera were Aspergillus, Fusarium, Cylindrocarpon and Nectria; in Mediterranean shrubland, Rhizopus and Trichoderma; and in woodland, Bionectria, Mortierella, Cladosporium, Diplodia, Paecilomyces, Penicillium and Trichoderma. We found a total of 8, 8 and 9 species of fungal antagonist, and 16, 6 and 6 species of fungal plant pathogens in agricultural land, Mediterranean shrubland and woodland respectively. Fungal plant pathogens decreased significantly over a land abandonment gradient, while we no found significant differences among fungal antagonists in the three habitats. We conclude that a decrease in the number of fungal pathogen species occurs when formerly cultivated areas are abandoned. On the other hand, fungal antagonists seem not to be affected by this process. 相似文献
10.
Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change 总被引:11,自引:0,他引:11
Glomalin is a soil proteinaceous substance produced by arbuscular mycorrhizal fungi. Most of the information available concerning this protein has been collected in relation to its role in soil aggregation. In this study, we explored the distribution of glomalin across soil horizons, decomposition of glomalin, and relationship with soil C and N in an agricultural field, a native forest, and an afforested system. Glomalin was present in A, B, and C horizons in decreasing concentrations. Land-use type significantly affected glomalin concentrations (mg cm–3), with native forest soils having the highest concentrations of the three land-use types in both A and B horizons. In terms of glomalin stocks (Mg ha–1), calculated based on corrected horizon weights, the agricultural area was significantly lower than both afforested and native forest areas. As measured after a 413 day laboratory soil incubation, glomalin was least persistent in the A horizon of the afforested area.. In agricultural soils and native soils, ca. 50% of glomalin was still remaining after this incubation, indicating that some glomalin may be in the slow or recalcitrant soil C fraction. Comparison of glomalin decomposition with CO2-C respired during incubation indicates that glomalin makes a large contribution to active soil organic C pools. Soil C and N were highly correlated with glomalin across all soils and within each land-use type, indicating that glomalin may be under similar controls as soil C. Our results show that glomalin may be useful as an indicator of land-use change effects on deciduous forest soils. 相似文献
11.
We used 454 sequencing of the internal transcribed spacer region to characterize fungal communities in tallgrass prairie soils subdivided into strata 0-10, 10-20, 30-40 and 50-60 cm deep. The dataset included more than 14000 fungal sequences distributed across Basidiomycota, Ascomycota, basal fungal lineages and Glomeromycota in order of decreasing frequency. As expected the community richness and diversity estimators tended to decrease with increasing depth. Although species richness was significantly reduced for samples from the deeper profiles, even the deepest stratum sampled contained richness of more than a third of that in the topmost stratum. More importantly, nonparametric multidimensional scaling (NMS) ordination analyses indicated that the fungal communities differed across vertical profiles, although only the topmost and deepest strata were significantly different when the NMS axis scores were compared by ANOVA. These results emphasize the importance of considering the fungal communities across the vertical strata because the deeper soil horizons might maintain a distinct community composition and thus contribute greatly to overall richness. The majority of operational taxonomic units (OTUs) declined in frequency with increasing depth, although a linear regression analysis indicated that some increased with increasing depth. The OTUs and BLAST-assigned taxa that showed increasing frequencies were mainly unculturable fungi, but some showed likely affinities to families Nectriaceae and Venturiaceae or to genus Pachnocybe. Although the ecological roles of the fungi in the deeper strata remain uncertain, we hypothesize that the fungi with preferences for deeper soil have adequate access to substrates and possess environmental tolerances that enable their persistence in those environments. 相似文献
12.
The influence of sampling strategies and spatial variation on the detected soil bacterial communities under three different land-use types 总被引:1,自引:0,他引:1
Osborne CA Zwart AB Broadhurst LM Young AG Richardson AE 《FEMS microbiology ecology》2011,78(1):70-79
To determine the influence of pooling strategies on detected soil bacterial communities, we sampled 45 soil cores each from a eucalypt woodland, a sown pasture and a revegetated site in an Australian landscape. We assessed the spatial variation within each land-use plot, including the influence of sampling distance, soil chemical characteristics and, where appropriate, proximity to trees on the soil bacterial community, by generating terminal restriction fragment length polymorphism profiles of the bacterial 16S rRNA genes. The soil bacterial community under the revegetated site was more similar to the original woodland than the pasture, and this result was found regardless of the soil- or the DNA-pooling strategy used. Analyzing as few as eight cores per plot was sufficient to detect significant differences between the bacterial communities under the different plots to be distinguished. Soil pH was found to be most strongly associated with soil bacterial community composition within the plots and there was no association found with proximity to trees. This study has investigated sampling strategies for further research into the transitions of soil microbial communities with land-use change across broader temporal and spatial scales. 相似文献
13.
Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high‐throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored. 相似文献
14.
Monoculture rubber cultivation and its intensive associated human activities are known to have a negative impact on the biodiversity, ecology, and biological conservation of the ecosystems in which they occur. These negative impacts include changes to the biodiversity and function of soil fungal communities, which contribute towards nutrient cycling and interact with other organisms in belowground ecosystems, and may be pathogens. Despite the important role of soil fungi in rubber plantations, these communities have been poorly studied. In this paper, we review the existing literature on the diversity and ecology of belowground fungi in rubber plantations. Various groups of soil fungi, including saprobes, symbionts, and pathogens are discussed. Additionally, the role of plantation management is discussed in the context of both pathogenic soil fungi and the promotion of beneficial soil fungi. Management practices include clone selection, tree age and planting density, application of chemicals, and intercropping systems. Our review shows the strong need for further research into the effects of monoculture rubber plantations on soil fungal communities, and how we can best manage these systems in the future, in order to create a more sustainable approach to rubber production. 相似文献
15.
防护林作为沙漠公路的安全保护屏障,其生长和应对胁迫所需的养分供给依赖于土壤微生物。以塔里木沙漠公路防护林和自然沙漠为研究系统,探究土壤细菌和真菌群落、两种生境共有和特有微生物物种变化对土壤物质循环功能的驱动作用。结果显示,土壤细菌和真菌物种丰富度(P < 0.01, P < 0.01)及群落组成(P < 0.05, P < 0.01)均受防护林营造的显著影响,细菌物种丰富度的响应增幅为77.5%,高于真菌22.1%。细菌群落是导致土壤酶活性升高的显著驱动因素,而非真菌群落或环境因子;细菌物种丰富度(rho=0.46, P < 0.01)和群落组成(rho=0.68, P < 0.01)与土壤酶之间呈显著偏Mantel相关。共有细菌相对丰度(rho=0.47, P < 0.01)和特有细菌物种丰富度(rho=0.36, P < 0.01)是驱动土壤酶活性改善的关键因素,与土壤酶之间呈显著偏Mantel相关。研究表明,沙漠公路防护林土壤细菌而非真菌主导微生物群落的响应,细菌群落通过改变本地物种丰度和新物种数量来调控土壤功能。 相似文献
16.
Specificity in Arabidopsis thaliana recruitment of root fungal communities from soil and rhizosphere
Hector Urbina Martin F. Breed Weizhou Zhao Kanaka Lakshmi Gurrala Siv G.E. Andersson Jon Ågren Sandra Baldauf Anna Rosling 《Fungal biology》2018,122(4):231-240
Biotic and abiotic conditions in soil pose major constraints on growth and reproductive success of plants. Fungi are important agents in plant soil interactions but the belowground mycobiota associated with plants remains poorly understood. We grew one genotype each from Sweden and Italy of the widely-studied plant model Arabidopsis thaliana. Plants were grown under controlled conditions in organic topsoil local to the Swedish genotype, and harvested after ten weeks. Total DNA was extracted from three belowground compartments: endosphere (sonicated roots), rhizosphere and bulk soil, and fungal communities were characterized from each by amplification and sequencing of the fungal barcode region ITS2. Fungal species diversity was found to decrease from bulk soil to rhizosphere to endosphere. A significant effect of plant genotype on fungal community composition was detected only in the endosphere compartment. Despite A. thaliana being a non-mycorrhizal plant, it hosts a number of known mycorrhiza fungi in its endosphere compartment, which is also colonized by endophytic, pathogenic and saprotrophic fungi. Species in the Archaeorhizomycetes were most abundant in rhizosphere samples suggesting an adaptation to environments with high nutrient turnover for some of these species. We conclude that A. thaliana endosphere fungal communities represent a selected subset of fungi recruited from soil and that plant genotype has small but significant quantitative and qualitative effects on these communities. 相似文献
17.
D Lilic 《Current opinion in microbiology》2012,15(4):420-426
Fungal infections affect individuals with an impaired immune system and are on the increase, often with serious consequences. Recent studies in patients with primary immune deficiencies (PIDs) have led to important breakthroughs in our understanding of the different, mutually exclusive pathways underlying immunity to mucocutaneous as opposed to invasive fungal infections. Patients with defects affecting segments of innate (dectin-1, CARD9, IL12RB1) or adaptive immunity (interleukin (IL)17-F, IL-17 receptor, STAT1, STAT3, antibodies to Th-17 cytokines) that disrupt the Th-17 pathway, are unable to clear superficial Candida or Dermatophyte infections and suffer with chronic mucocutaneous candidiasis (CMC). Patients with defects affecting phagocyte function (oxidative killing, neutropenia) or a severely impaired immune system are at risk of developing invasive, often fatal fungal disease with Aspergillus, Candida, Cryptococcai and other fungi. PIDs are hugely beneficial in promoting our knowledge of fungal immunity and provide important contributions toward evidence-based diagnosis and improved patient care. 相似文献
18.
Distinct impacts of reductive soil disinfestation and chemical soil disinfestation on soil fungal communities and memberships 总被引:2,自引:0,他引:2
Zhao Jun Zhou Xing Jiang Anqi Fan Juanzi Lan Tao Zhang Jinbo Cai Zucong 《Applied microbiology and biotechnology》2018,102(17):7623-7634
Applied Microbiology and Biotechnology - Soil disinfestation is an important agricultural practice to conquer soil-borne diseases and thereby ensure crop productivity. Reductive soil disinfestation... 相似文献
19.
Azoxystrobin and soil interactions: degradation and impact on soil bacterial and fungal communities 总被引:1,自引:0,他引:1
Aims: To provide an independent assessment of azoxystrobin effects on nontarget soil bacteria and fungi and generate some baseline information on azoxystrobin’s persistence in soil. Methods and Results: Plate based assay showed that azoxystrobin exhibited differential toxicity upon cultured fungi at different application rates. While 14C labelled isotopes experiments showed that less than 1% of azoxystrobin was mineralized, degradation studies revealed over 60% azoxystrobin breakdown over 21 days. PCR DGGE analysis of 16S and 18S rRNA genes from different soil microcosms showed that azoxystrobin had some effects on fungal community after 21 days (up to 84 days) of incubation in either light or dark soil microcosms. Light incubations increased fungal diversity while dark incubations reduced fungal diversity. Bacterial diversity was unaffected. Conclusions: Significant biotic breakdown of parent azoxystrobin occurred within 21 days even in the absence of light. Azoxystrobin under certain conditions can reduce fungal soil diversity. Significance and Impact of the Study: One of the few independent assessments of azoxystrobin (a widely used strobilurins fungicide) effects on soil fungi when used at the recommended rate. Azoxystrobin and metabolites may persist after 21 days and affect soil fungi. 相似文献
20.
The fungal loop model of semiarid ecosystems integrates microtopographic structures and pulse dynamics with key microbial processes. However limited data exist about the composition and structure of fungal communities in these ecosystems. The goal of this study was to characterize diversity and structure of soil fungal communities in a semiarid grassland. The effect of long-term nitrogen fertilization on fungi also was evaluated. Samples of rhizosphere (soil surrounding plant roots) and biological soil crust (BSC) were collected in central New Mexico, USA. DNA was amplified from the samples with fungal specific primers. Twelve clone libraries were generated with a total of 307 (78 operational taxonomic units, OTUs) and 324 sequences (67 OTUs) for BSC and rhizosphere respectively. Approximately 40% of soil OTUs were considered novel (less than 97% identity when compared to other sequences in NCBI using BLAST). The dominant organisms were dark-septate (melanized fungi) ascomycetes belonging to Pleosporales. Effects of N enrichment on fungi were not evident at the community level; however the abundance of unique sequences, sampling intensity and temporal variations may be uncovering the effect of N in composition and diversity of fungal communities. The fungal communities of rhizosphere soil and BSC overlapped substantially in composition, with a Jaccard abundance similarity index of 0.75. Further analyses are required to explore possible functions of the dominant species colonizing zones of semiarid grassland soils. 相似文献