首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ancestor of avian IgY was the evolutionary precursor of mammalian IgG and IgE, and present day chicken IgY performs the function of human IgG despite having the domain structure of human IgE. The kinetics of IgY binding to its receptor on a chicken monocyte cell line, MQ-NCSU, were measured, the first time that the binding of a non-mammalian antibody to a non-mammalian cell has been investigated (k(+1) = 1.14 +/- 0.46 x 10(5) mol(-1)sec(-1), k(-1) = 2.30 +/- 0.14 x 10(-3) s(-1), and K(a) = 4.95 x 10(7) m(-1)). This is a lower affinity than that recorded for mammalian IgE-high affinity receptor interactions (Ka approximately 10(10) m(-1)) but is within the range of mammalian IgG-high affinity receptor interactions (human: Ka approximately 10(8)-10(9) m(-1) mouse: Ka approximately 10(7)-10(8) m(-1). IgE has an extra pair of immunoglobulin domains when compared with IgG. Their presence reduces the dissociation rate of IgE from its receptor 20-fold, thus contributing to the high affinity of IgE. To assess the effect of the equivalent domains on the kinetics of IgY binding, IgY-Fc fragments with and without this domain were cloned and expressed in mammalian cells. In contrast to IgE, their presence in IgY has little effect on the association rate and no effect on dissociation. Whatever the function of this extra domain pair in avian IgY, it has persisted for at least 310 million years and has been co-opted in mammalian IgE to generate a uniquely slow dissociation rate and high affinity.  相似文献   

2.
We have examined the binding of [3H]bradykinin to bovine myometrial membranes and assessed its sensitivity to guanine nucleotides. Total binding displayed a typical B2 kinin receptor specificity. However, saturation binding isotherms were resolved into at least two components with KD values of 8 pM (45%) and 378 pM (55%). Low affinity binding exhibited relatively rapid rates of association (kobs = 1.40 x 10(-2) s-1) and dissociation (k-1 = 3.82 x 10(-3) s-1), while high affinity binding exhibited considerably slower rates (kobs = 9.52 x 10(-4) s-1 and k-1 = 4.43 x 10(-5) s-1). Pre-equilibrium dissociation kinetics revealed that formation of high affinity binding was characterized as a time-dependent accumulation of the slow dissociation rate at the expense of at least one other more rapid dissociation rate. In the presence of 10 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p), at least two binding components were resolved with KD values of 37 pM (12%) and 444 pM (88%). Gpp(NH)p apparently specifically perturbed high affinity binding by completely preventing the accumulation of the slow dissociation phase. Instead, two more rapid dissociation rates (k-1 = 8.53 x 10(-3) s-1 and 4.43 x 10(-4) s-1) were observed. These results suggest that [3H]bradykinin interacts with at least two B2 kinin receptor-like binding sites in bovine myometrial membranes. A three-state model for the guanine nucleotide-sensitive agonist interaction with the high affinity binding sites is proposed.  相似文献   

3.
Using solid phase systems, the kinetics of binding of monoclonal antibody (LRB 45, IgG2b,kappa) to apoC-I and apoC-I on lipoproteins were investigated. At 25 degrees C, the association constant of LRB 45 antibody to apoC-I (3.56 X 10(6) M-1 X sec-1) was almost three times slower than the association constant LRB 45 antibody to lipoproteins (10.4 X 10(6) M-1 X sec-1). However, the dissociation constant of apoC-I from LRB 45 antibody (0.865 X 10(-4) sec-1) was also slower than the dissociation constant of lipoprotein from antibody (1.5 X 10(-4) sec-1). Thus, the calculated affinity constant (association constant/dissociation constant) of LRB 45 antibody for apoC-I was approximately half of that for lipoproteins (4.12 X 10(10) M-1 vs. 6.92 X 10(10) M-1). The intrinsic affinity constants for antibody binding to apoC-I and apoC-I on lipoproteins were determined by Scatchard analysis. The intrinsic affinity constant of antibody bound to apoC-I was estimated to be 5.49 X 10(10) M-1 whereas that of antibody binding to lipoproteins was 30 to 200 times less. Furthermore, ascites fluid from LRB 45 cell lines could immunoprecipitate serum lipoproteins. Thus, it is concluded that there is multiple binding of antibody to apoC-I on lipoproteins. This binding appears to increase the calculated affinity constant (avidity) for antibody-antigen interaction.  相似文献   

4.
125I-labelled retinol-binding protein (RBP) bound to specific receptors in human placental brush-border membranes. Binding at 22 degrees C reached equilibrium within 15 min, but prolonged incubation caused a subsequent decline. Scatchard analysis of the equilibrium binding data at 22 degrees C and 15 min showed high-(3.0 +/- 2.7 x 10(-9) M) and low-(9.5 +/- 3.5 x 10(-8) M) affinity binding components. 125I-RBP, bound to membranes at 22 degrees C for 15 min and subsequently dissociated with excess unlabelled RBP, exhibited biphasic dissociation kinetics consisting of fast and slow components of release. In contrast, Scatchard analysis and dissociation kinetics of the binding that had taken place at 37 degrees C for 1 h showed the fast-dissociating/low-affinity binding component, but little of the slow-dissociating/higher-affinity binding component. When 125I-RBP, after incubation with membranes at 37 degrees C for 1 h, was re-isolated and subjected to dissociation kinetic analysis using a fresh batch of membranes, the fast-dissociating phase was unchanged, but the slow phase was almost absent. The complex kinetics were interpreted in terms of a heterogeneity in RBP consisting of high- and low-affinity binding forms. The higher-affinity-binding form is thought to be converted into the lower-affinity state on binding to the receptor. Transthyretin inhibited 125I-RBP binding to the membrane, suggesting that free, rather than transthyretin-associated, RBP bound to the receptor. The RBP receptor was trypsin-, heat- and thiol-group-specific-reagent sensitive and was highly specific for RBP.  相似文献   

5.
Four monoclonal antibodies directed against porcine colipase have been generated by hybridization of myeloma cells with spleen cells of BALB/c immunized mice. Antibodies were screened by binding to immobilized colipase in a solid-phase assay. Monoclonal antibodies were purified by affinity chromatography on colipase coupled to Sepharose. All monoclonal antibodies are of the IgG1 class with high affinity for the antigen. The dissociation constant of the complex formed in solution between porcine colipase and antibody varied from 1.1 X 10(-10) M to 1.8 X 10(-8) M. Epitope specificity was studied for each antibody and in pairs with an enzyme-linked immunosorbent assay (ELISA). Results indicate that the four monoclonal antibodies react with at least three different antigenic regions of colipase. Finally, three monoclonal antibodies were found to be potent inhibitors of colipase activity. Antiporcine monoclonal antibodies appear to be suitable probes for studying the lipid affinity site of the protein cofactor of pancreatic lipase.  相似文献   

6.
The recognition molecule L1 plays important functional roles in the nervous system and in non-neural tissues. Since antibodies to L1 are of prime importance to study its functional properties, we have generated affinity matured human single chain variable fragment (scFv) antibodies against mouse L1 by introducing random mutations in the complementarity determining regions (CDRs) of a previously isolated scFv antibody heavy chain (CDR1 and CDR2) and light chain (CDR3). After biopanning the mutant library, a clone (5F7) that gave the strongest ELISA signal was expressed, purified, and characterized. The dissociation constant of 5F7 (2.86 x 10(-8)M) was decreased 60-fold compared to the wild type clone G6 (1.72 x 10(-6)M). 5F7 detected L1 by Western blot analysis in mouse brain homogenates and recognized L1 in L1 transfected cells and cryosections from mouse retina and optic nerve by immunofluorescence. Bivalent 5F7 scFv antibody (5F7-Cys) was also generated and showed a dissociation constant of 5.22 x 10(-9)M that is 5.5-fold lower than that of monomeric 5F7 antibody. The bivalent affinity matured L1 scFv antibody thus showed stronger binding by a factor of 310 compared to the wild type clone. This antibody should be useful in various biological assays.  相似文献   

7.
Eleven unique monoclonal IgG antibodies were raised against rabbit brain acetylcholinesterase (AChE, EC 3.1.1.7), purified to electrophoretic homogeneity by a two-step procedure involving immunoaffinity chromatography. The apparent dissociation constants of these antibodies for rabbit AChE ranged from about 10 nM to more than 100 nM (assuming one binding site per catalytic subunit). Species cross-reactivity was investigated with crude brain extracts from rabbit, rat, mouse cat, guinea pig, and human. One antibody bound rabbit AChE exclusively; most bound AChE from three or four species; two bound enzyme from all species tested. Identical, moderate affinity for rat and mouse brain AChE was displayed by two antibodies; two others were able to distinguish between these similar antigens. Nine of the antibodies had lowered affinity for AChE in the presence of 1 M NaCl, but two were salt resistant. Analysis of mutual interferences in AChE binding suggested that certain of the antibodies were competing for nearby epitopes on the AChE surface. One antibody was a potent AChE inhibitor (IC50 = 10(-8) M), blocking up to 90% of the enzyme activity. Most of the antibodies were less able to bind the readily soluble AChE of detergent-free brain extracts than the AChE which required detergent for solubilization. The extreme case, an antibody that was unable to recognize nearly half of the "soluble" AChE, was suspected of lacking affinity for the hydrophilic enzyme form.  相似文献   

8.
Great specificity is demonstrated for the prostaglandin E1 high affinity binding sites of rat thymocytes. Whereas prostaglandin E2 has the same affinity as prostaglandin E1, 13 other prostaglandin derivatives and antagonists are bound with 2-1000 times smaller affinities. 50% inhibition of the high affinity binding of prostaglandin E1 to rat thymocytes is demonstrated for three non-steroidal antiinflammatory drugs, indomethacin (3.6. 10(-5) M), salicylic acid (2.9. 10(-3) M) and acetylsalicylic acid (2.10(-2) M). The low affinity binding of prostaglandin E1 is enhanced by the same concentration of indomethacin, however, to a lesser degree and more variable than the inhibition of the high affinity binding of prostaglandin E1. Like intact cells a 50-fold purified plasma membrane fraction, isolated from a homogenate of rat thymocytes, shows reversible high affinity binding of prostaglandin E1 as well as irreversible binding of unidentified tritiated compounds. The binding data are compatible with a localization in the plasma membrane of high affinity sites for reversible binding with a considerably higher dissociation constant than that found for whole cells. Their identity remains to be demonstrated.  相似文献   

9.
The hypothesis was investigated that axial ligands bound to Fe(III)-bleomycin [Fe(III)Blm] are destabilized at specific 5'-guanine-pyrimidine-3' binding sites but are stable at nonselective dinucleotides. DNA oligomers and calf-thymus DNA were used in reactions with L-Fe(III)Blm, where phosphate and cyanide served as examples of large and small ligands (L). Both ligands underwent dissociation when L-Fe(III)Blm was bound to d(GGAAGCTTCC)2 (I) but not d(GGAAATTTCCC)2 (II) and at large ratios of calf-thymus DNA to drug. Fe(III)Blm is high spin in 20 mM phosphate buffer, signifying the presence of a phosphate adduct. In the titration of HPO4-Fe(III)Blm with calf-thymus DNA, a large excess of DNA was needed to reach the low-spin state, consistent with an equilibrium competition between phosphate and DNA for Fe(III)Blm. Equilibrium constants for binding Fe(III)Blm and CN-Fe(III)Blm to calf-thymus DNA (6.8x10(5) M(-1) and 5.9x10(4) M(-1), respectively, in HEPES buffer at 25 degrees C and pH 7.4) showed that the CN- ligand also reduced the affinity of DNA for the drug. The kinetics of dissociation of CN- from CN-Fe(III)Blm-DNA were slow and first order in bound drug. The reversible nature of these dissociation reactions was shown using 1H NMR spectroscopy of Fe(III)Blm-I in the absence and presence of large excesses of CN- or phosphate. The results are discussed in terms of a two-state hypothesis for the binding of L-Fe(III)Blm to specific and nonspecific dinucleotides. It is proposed that steric restrictions at specific sites inhibit binding of these ligands.  相似文献   

10.
The equilibrium and kinetics of ethyl isocyanide binding to ferroperoxidase were studied. At pH9.1 the results of both studies are consistent with a single-process model with an affinity constant of 95m(-1) and combination and dissociation constants of 2.2x10(3)m(-1).s(-1) and 23s(-1) respectively. Ethyl isocyanide is not bound significantly at pH values lower than 6.0, and in this behaviour and the pH-dependence of the affinity constant, similarities exist between isocyanide and cyanide binding. The enthalpy of the process measured by equilibrium methods is -59kJ/mol (-14kcal/mol). At pH values below 9, the ethyl isocyanide adduct changes in a slow time-dependent manner, giving rise to a new species. These changes are reversible on increasing the pH. The results are discussed in relation to other known information about ligand binding to ferroperoxidase and to myoglobin.  相似文献   

11.
Joshi RV  Zarutskie JA  Stern LJ 《Biochemistry》2000,39(13):3751-3762
Peptide binding reactions of class II MHC proteins exhibit unusual kinetics, with extremely slow apparent rate constants for the overall association (<100 M(-)(1) s(-)(1)) and dissociation (<10(-)(5) s(-)(1)) processes. Various linear and branched pathways have been proposed to account for these data. Using fluorescence resonance energy transfer between tryptophan residues in the MHC peptide binding site and aminocoumarin-labeled peptides, we measured real-time kinetics of peptide binding to empty class II MHC proteins. Our experiments identified an obligate intermediate in the binding reaction. The observed kinetics were consistent with a binding mechanism that involves an initial bimolecular binding step followed by a slow unimolecular conformational change. The same mechanism is observed for different peptide antigens. In addition, we noted a reversible inactivation of the empty MHC protein that competes with productive binding. The implications of this kinetic mechanism for intracellular antigen presentation pathways are discussed.  相似文献   

12.
Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins   总被引:2,自引:0,他引:2  
TLR4 together with CD14 and MD-2 forms a pattern recognition receptor that plays an initiating role in the innate immune response to Gram-negative bacteria. Here, we employed the surface plasmon resonance technique to investigate the kinetics of binding of LPS to recombinant CD14, MD-2 and TLR4 proteins produced in insect cells. The dissociation constants (KD) of LPS for immobilized CD14 and MD-2 were 8.7 microM, and 2.3 microM, respectively. The association rate constant (Kon) of LPS for MD-2 was 5.61 x 10(3) M-1S-1, and the dissociation rate constant (Koff) was 1.28 10 2 S 1, revealing slow association and fast dissociation with an affinity constant KD of 2.33 x 10-6 M at 25 degreesC. These affinities are consistent with the current view that CD14 conveys LPS to the TLR4/MD-2 complex.  相似文献   

13.
14.
Recently we demonstrated that human antibody fragments with binding activities against foreign antigens can be isolated from repertoires of rearranged V-genes derived from the mRNA of peripheral blood lymphocytes (PBLs) from unimmunized humans. The heavy and light chain V-genes were shuffled at random and cloned for display as single-chain Fv (scFv) fragments on the surface of filamentous phage, and the fragments selected by binding of the phage to antigen. Here we show that from the same phage library we can make scFv fragments encoded by both unmutated and mutated V-genes, with high specificities of binding to human self-antigens. Several of the affinity purified scFv fragments were shown to be a mixture of monomers and dimers in solution by FPLC gel filtration and the binding kinetics of the dimers were determined using surface plasmon resonance (k(on) = 10(5)-10(6) M-1s-1, k(off) = 10(-2)s-1 and Ka = 10(7) M-1). The kinetics of association are typical of known Ab-protein interactions, but the kinetics of dissociation are relatively fast. For therapeutic application, the binding affinities of such antibodies could be improved in vitro by mutation and selection for slower dissociation kinetics.  相似文献   

15.
Severe acute respiratory syndrome (SARS) brought aglobal outbreak in spring of 2003 [1–3], and more andmore attention has been paid on it when a new caseresurfaced in Singapore last September [4]. By the endof May in 2003, WHO reported a cumulative total of 8202infected cases with 725 deaths from 28 countries.Because of the high transmission and morality rate ofSARS, scientists in many countries have made theirefforts in studying SARS coronavirus (SARS-CoV)[5, 6]. Several genomes of…  相似文献   

16.
The binding of 11 beta-chloromethyl-[3H]estradiol-17 beta [3H]CME2) with the calf uterine estrogen receptor was investigated. The equilibrium binding analysis indicated a positive cooperative interaction yielding curvilinear Scatchard plots and Hill coefficients of 1.4-1.5. This positive cooperative interaction of [3H]CME2 was indistinguishable from the typical cooperative interaction of [3H]estradiol with the receptor. The apparent relative association constant and the relative binding affinity of CME2 for the estrogen receptor measured by competitive binding assay were 146 and 184%, respectively. The dissociation kinetics of [3H]CME2 from the receptor was biphasic, composed of a fast dissociating component (15%, t1/2 = 4 min at 0 degrees C; 9%, t1/2 = 4 min at 28 degrees C) and a slow dissociating component (85%, t1/2 greater than 50 h at 0 degrees C; 91%, t1/2 greater than 50 h at 28 degrees C). The dissociation kinetics of [3H]estradiol was also biphasic: the t1/2 of the fast dissociating component was 4 min at 0 and 28 degrees C and approximately 200 min for the slow dissociating component at both temperatures. The fraction of the slow [3H]estradiol dissociating component increased from 56 to 92% upon warming. Ethanol extraction and trichloroacetic acid treatment proved that the binding of [3H]CME2 is fully reversible. The unusual dissociation kinetics and the binding mechanism of CME2 are discussed.  相似文献   

17.
Mechanisms of ligand binding by monoclonal anti-fluorescyl antibodies   总被引:2,自引:0,他引:2  
Binding of fluorescyl ligand by five IgG anti-fluorescyl hybridoma proteins (4-4-20, 6-10-6, 20-4-4, 20-19-=1, 20-20-3) was examined. Relative reduction in fluorescence of bound fluorescein, deuterium oxide (D2O)-induced enhancement of fluorescence, and the effects of pH on binding kinetics were measured for each clone. Individual hybridoma proteins (all of which bind fluorescein with relatively high affinity) exhibited significant differences in the relative contribution of various forces (hydrophobicity, hydrogen bonding, ionic interactions) to binding and hence, affinity. The extent of such variations in binding mechanisms among monoclonal antibodies binding the same hapten is indicative of the extreme functional diversity of active sites. In addition, ligand binding by clone 20-20-3 was examined in greater detail. ABsorption spectra of ligand bound by purified intact antibody, Fab fragments, and reassociated heavy and light chains indicated that protonation of the fluorescyl ligand by a residue within the active site contributed significantly to the binding free energy. Comparative dissociation rates of fluorescein and a structural analog, rhodamine 110, were used to quantitatively substantiate the contribution of this interaction. Association and dissociation rate studies with fluorescein and antibody indicated that: 1) the active site appeared to undergo a conformational change upon ligand binding, and 2) neither intact disulfides nor intersite cooperativity affected the dissociation rate of bound ligand. Observed mechanisms of ligand binding are discussed in terms of proposed mechanisms of antibody affinity maturation and diversity.  相似文献   

18.
Surface plasmon resonance was used to investigate the kinetics, affinity, and specificity of binding between anti-Aβ (beta-amyloid) IgG antibodies and oligomeric Aβ. Two factors were needed to accurately characterize the IgG binding kinetics. First, a bivalent model was necessary to properly fit the kinetic association and dissociation sensograms. Second, a high concentration of IgG was necessary to overcome a significant mass transport limitation that existed regardless of oligomer density on the sensor surface. Using high IgG concentrations and bivalent fits, consistent kinetic parameters were found at varying sensor surface ligand densities. A comparison of binding specificity, affinity, and kinetic flux between monoclonal and natural human anti-Aβ IgG antibodies revealed the following findings. First, monoclonal antibodies 6E10 and 4G8 single-site binding affinity is similar between Aβ oligomers and monomers. Second, natural human anti-Aβ IgG binding readily binds Aβ oligomers but does not bind monomers. Third, natural human anti-Aβ IgG binds Aβ oligomers with a higher affinity and kinetic flux than 6E10 and 4G8. Both the current analytical methodology and antibody binding profiles are important for advances in antibody drug development and kinetic biomarker applications for Alzheimer’s disease.  相似文献   

19.
alpha-Agglutinin and a-agglutinin are complementary cell adhesion glycoproteins active during mating in the yeast Saccharomyces cerevisiae. They bind with high affinity and high specificity: cells of opposite mating types are irreversibly bound by a few pairs of agglutinins. Equilibrium and surface plasmon resonance kinetic analyses showed that the purified binding region of alpha-agglutinin interacted similarly with purified a-agglutinin and with a-agglutinin expressed on cell surfaces. At 20 degrees C, the K(D) for the interaction was 2 x 10(-9) to 5 x 10(-9) M. This high affinity was a result of a very low dissociation rate ( approximately 2.6 x 10(-4) s(-1)) coupled with a low association rate (= 5 x 10(4) M(-1) s(-1)). Circular-dichroism spectroscopy showed that binding of the proteins was accompanied by measurable changes in secondary structure. Furthermore, when binding was assessed at 10 degrees C, the association kinetics were sigmoidal, with a very low initial rate. An induced-fit model of binding with substantial apposition of hydrophobic surfaces on the two ligands can explain the observed affinity, kinetics, and specificity and the conformational effects of the binding reaction.  相似文献   

20.
A simplified method has been developed for the determination of antibody-hapten association kinetics that permits the study of high affinity interactions with second order forward rate constants of the order of 10-7 to 10-8 M-1 sec-1. Use of tritiated haptens of high specific activity and antibodies of high affinity allows reactions to be run at initial hapten and antibody concentrations of the order of 10-9 to 10-10M, well below the level at which mixing becomes the rate-limiting step. Separation of antibody-bound from free hapten by the use of dextran-coated charcoal can be carried out with sufficient rapidity (2 sec) that the systems under investigation are not appreciably disturbed. With this technique, the association of 3-H-ouabain with rabbit ouabain-specific antibody was found to occur with a rate constant of 0.8 times 10-7 M-1 sec-1, similar to association rates of dye haptens with antibodies of substantially lower affinity. The ratio of this association rate constant to the independently determined dissociation rate constant was 5.4 times 10-9 M-1, in satisfactory agreement with a ko value of 3.5 times 10-9 M-1 determined by Sips analysis of data obtained under equilibrium conditions. This approach should be applicable to the direct kinetic assessment of numerous high affinity antibody-hapten systems of current interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号