首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
An invasive new biotype of the tomato/potato psyllid (Bactericera [Paratrioza] cockerelli [Sulc.]) (Homoptera: Psyllidae) recently has caused losses exceeding 50% on fresh market tomatoes in western North America. Despite these extensive losses, little is known regarding the threshold levels at which populations must be suppressed in order to prevent economic losses. A series of experiments were therefore designed using combinations of two common tomato cultivars (QualiT 21 and Yellow Pear), five pest-densities (0, 20, 30, 40 and 50 nymphs/plant), and three feeding-duration (5 days, 10 days, and lifetime) treatments to test the relative importance of pest density, feeding period, and cumulative psyllid-days to establish economic threshold levels for psyllids. The cultivars differed considerably in their response to the toxin injected by the psyllid nymphs. ‘Yellow Pear' plants could recover from feeding by up to 40 nymphs for as long as 10 d, whereas ‘QualiT 21' plants were irreparably damaged by densities of 20 nymphs feeding for only 5 days. On ‘Yellow Pear', all plant measurements such as the number of yellow leaves and plant height were significantly better correlated with cumulative psyUid-days than with either pest density or feeding duration. On ‘QualiT 21 ', all plant measurements other than the number of yellow leaflets and leaves were significantly better correlated with pest density than with feeding duration or cumulative psyUid-days, and pest density was a better predictor of psyUid damage. Potential reasons for the variable responses between cultivars and the implications for psyllid sampling and integrated pest management are discussed.  相似文献   

2.
The tomato-potato psyllid Bactericera [Paratrioza] cockerelli (Sulc) has recently caused losses exceeding 50% on fresh market tomatoes in California and Baja, Mexico by injecting a toxin that results in a condition known as 'psyllid yellows'. The objectives of this study were to: (i) document oviposition preferences on a range of tomato cultivars; (ii) determine threshold levels for psyllid densities that would cause psyllid yellows on tomatoes within the first three weeks following transplanting; and (iii) identify the most important 'psyllid yellows' symptoms that might be used in surveying and monitoring for this pest. Plant lines tested included the commonly-planted commercial cultivars 'Shady Lady' and 'QualiT 21', an older, previously commercial cultivar '7718 VFN', a common cultivar planted by consumers 'Yellow Pear', and a wild type plant accession, PI 134417. When given a choice, psyllids significantly preferred 'Yellow Pear' and avoided PI 134417 for oviposition. Under no-choice conditions psyllids laid significantly fewer eggs on PI 134417, but all the other plant lines were equally good substrates for laying eggs. Thus, oviposition preference is not likely to provide a functional management strategy in large plantings. On 'Shady Lady', psyllids preferred to oviposit on plants already infested with adults. On both 'Shady Lady' and '7718 VFN' oviposition was significantly greater on plants previously infested by nymphs as compared to uninfested control plants. This suggests that, at least for some cultivars, there is a physiological change in plant attractiveness following psyllid feeding. 'Yellow Pear' and 'QualiT 21' were relatively tolerant of psyllids, requiring 18 nymphs per plant to produce the disease symptoms. Only eight nymphs per plant were needed on 'Shady Lady' and '7718 VFN'. For all cultivars, the pest density showed strong correlations with measurements such as the number of yellowing leaves and leaflets and distorted leaves, which were as good as or better than the first factor extracted from principal component analysis. Therefore, such measurements have the potential to simplify field surveys.  相似文献   

3.
Successful transmission of plant pathogens by insects depends on the vector inoculation efficiency and how rapidly the insect can effectively transmit the pathogen to the host plant. The potato psyllid, Bactericera cockerelli (Sulc), has recently been found to transmit "Candidatus Liberibacter solanacearum," a bacterium associated with zebra chip (ZC), an emerging and economically important disease of potato in several parts of the world. Currently, little is known about the epidemiology of ZC and its vector's inoculation capabilities. Studies were conducted in the field and laboratory to 1) assess transmission efficiency of potato psyllid nymphs and adults; 2) determine whether psyllid inoculation access period affects ZC incidence, severity, and potato yield; and 3) determine how fast the psyllid can transmit liberibacter to potato, leading to ZC development. Results showed that adult potato psyllids were highly efficient vectors of liberibacter that causes ZC and that nymphs were less efficient than adults at transmitting this bacterium. It was also determined that inoculation access period had little influence on overall ZC disease incidence, severity, and resulting yield loss. Moreover, results showed that exposure of a plant to 20 adult potato psyllids for a period as short as 1 h resulted in ZC symptom development. Furthermore, it was shown that a single adult potato psyllid was capable of inoculating liberibacter to potato within a period as short as 6 h, thereby inducing development of ZC. This information will help in developing effective management strategies for this serious potato disease.  相似文献   

4.
Wuriyanghan H  Rosa C  Falk BW 《PloS one》2011,6(11):e27736
The potato/tomato psyllid, Bactericerca cockerelli (B. cockerelli), and the Asian citrus psyllid, Diaphorina citri (D. citri), are very important plant pests, but they are also vectors of phloem-limited bacteria that are associated with two devastating plant diseases. B. cockerelli is the vector of Candidatus Liberibacter psyllaurous (solanacearum), which is associated with zebra chip disease of potatoes, and D. citri is the vector of Ca. Liberibacter asiaticus, which is associated with the Huanglongbing (citrus greening) disease that currently threatens the entire Florida citrus industry. Here we used EST sequence information from D. citri to identify potential targets for RNA interference in B. cockerelli. We targeted ubiquitously expressed and gut-abundant mRNAs via injection and oral acquisition of double-stranded RNAs and siRNAs and were able to induce mortality in recipient psyllids. We also showed knockdown of target mRNAs, and that oral acquisition resulted primarily in mRNA knockdown in the psyllid gut. Concurrent with gene knockdown was the accumulation of target specific ~ 21 nucleotide siRNAs for an abundant mRNA for BC-Actin. These results showed that RNAi can be a powerful tool for gene function studies in psyllids, and give support for continued efforts for investigating RNAi approaches as possible tools for psyllid and plant disease control.  相似文献   

5.
6.
Adult tomato psyllid, Bactericerca (Paratrioza) cockerelli (Sulc) (Homoptera: Psyllidae), behavioral responses were evaluated for five tomato plant lines and for the interactions of insecticides with four commercial cultivars. Plant lines tested included the commercial 'Shady Lady', 'Yellow Pear', '7718 VFN', 'QualiT 21', and the plant introduction line PI 134417. Insecticides included a kaolin particle film, pymetrozine, pyriproxyfen, spinosad, and imidacloprid. Psyllids spent significantly more time feeding on 'Yellow Pear' than all other plant lines except '7718 VFN'. In comparisons among plant lines, psyllids exposed to the wild accession PI 1.34417 showed a 98% reduction in feeding, a significant increase in jumping behavior, and a significant tendency to abandon the leaves, thereby demonstrating repellency, not just an antixenosis response. Interactions between plant lines and insecticides influenced behavioral responses. All insecticides tested significantly reduced feeding durations on all cultivars except the preferred 'Yellow Pear'. However, nonfeeding activities such as walking, probing, resting, and jumping varied substantially with chemical and cultivar combination. The behavior assay results offered insight into host resistance mechanisms, provided a useful technique for measuring effects of interaction of plant lines with insecticides, and generated information for selecting insecticides for specific cultivars used in integrated pest management program for the tomato psyllid.  相似文献   

7.
In plant pathosystems involving insect vectors, disease spread, incidence, and severity often depend on the density of the vector population and its rate of infectivity with the disease pathogen. The potato psyllid, Bactericera cockerelli (Sulc), has recently been associated with zebra chip (ZC), an emerging and economically important disease of potato in the United States, Mexico, Central America, and New Zealand. "Candidatus Liberibacter solanacearum," a previously undescribed species of liberibacter has been linked to the disease and is transmitted to potato by B. cockerelli. Experiments were conducted under laboratory and field conditions to determine the impact of B. cockerelli density on ZC incidence, potato yield, and tuber processing quality. Insect densities ranging from one to 25 liberibacter-infective psyllids per plant were used during the experiments. Results showed that a single adult potato psyllid was capable of inoculating liberibacter to potato and causing ZC disease after a 72-h inoculation access period and was as damaging as 25 psyllids per plant. In addition, ZC-diseased plants showed a sharp reduction in tuber yield but the disease response was independent of the density of psyllids. Furthermore, both glucose and sucrose were found to have highly elevated concentrations in ZC-diseased potato tubers compared with noninfected ones and psyllid density did not vary the response. The high reducing sugar concentrations found in ZC-infected potato tubers are believed to be responsible for browning and reduced quality in processed ZC-infected tubers. This information could help ZC-affected potato producers in making effective management decisions for this serious disease.  相似文献   

8.
Cospeciation of psyllids and their primary prokaryotic endosymbionts   总被引:3,自引:0,他引:3  
Psyllids are plant sap-feeding insects that harbor prokaryotic endosymbionts in specialized cells within the body cavity. Four-kilobase DNA fragments containing 16S and 23S ribosomal DNA (rDNA) were amplified from the primary (P) endosymbiont of 32 species of psyllids representing three psyllid families and eight subfamilies. In addition, 0.54-kb fragments of the psyllid nuclear gene wingless were also amplified from 26 species. Phylogenetic trees derived from 16S-23S rDNA and from the host wingless gene are very similar, and tests of compatibility of the data sets show no significant conflict between host and endosymbiont phylogenies. This result is consistent with a single infection of a shared psyllid ancestor and subsequent cospeciation of the host and the endosymbiont. In addition, the phylogenies based on DNA sequences generally agreed with psyllid taxonomy based on morphology. The 3' end of the 16S rDNA of the P endosymbionts differs from that of other members of the domain Bacteria in the lack of a sequence complementary to the mRNA ribosome binding site. The rate of sequence change in the 16S-23S rDNA of the psyllid P endosymbiont was considerably higher than that of other bacteria, including other fast-evolving insect endosymbionts. The lineage consisting of the P endosymbionts of psyllids was given the designation Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.).  相似文献   

9.
Most sternorrhynchan insects harbor endosymbiotic bacteria in specialized cells (bacteriocytes) near the gut which provide essential nutrients for hosts. In lineages investigated so far with molecular methods (aphids, mealybugs, whiteflies), endosymbionts apparently have arisen from independent infections of common host ancestors and co-speciated with their hosts. Some endosymbionts also exhibit putatively negative genetic effects from their symbiotic association. In this study, the identity of endosymbionts in one major sternorrhynchan lineage, psyllids (Psylloidea), was investigated to determine their position in eubacterial phylogeny and their relationship to other sternorrhynchan endosymbionts. Small-subunit ribosomal RNA genes (16S rDNA) from bacteria in three psyllid species (families Psyllidae and Triozidae) were sequenced and incorporated into an alignment including other insect endosymbionts and free-living bacteria. In phylogenetic analysis, all sequences were placed within the gamma subdivision of the Proteobacteria. Three sequences, one from each psyllid species, formed a highly supported monophyletic group whose branching order matched the host phylogeny, and also exhibited accelerated rates of evolution and mutational bias toward A and T nucleotides. These attributes, characteristic of primary (P) bacteriocyte-dwelling endosymbionts, suggested that these sequences were from the putative psyllid P endosymbiont. Two other sequences were placed within the gamma-3 subgroup of Proteobacteria and were hypothesized to be secondary endosymbionts. The analysis also suggested a sister relationship between P endosymbionts of psyllids and whiteflies. Thus, a continuous mutualistic association between bacteria and insects may have existed since the common ancestor of psyllids and whiteflies. Calculations using a universal substitution rate in bacteria corrected for endosymbiont rate acceleration support the idea that this common ancestor was also the ancestor of all Sternorrhyncha. Compared with other P endosymbiont lineages, the genetic consequences of intracellular life for some psyllid endosymbionts have been exaggerated, indicating possible differences in population structures of bacteria and/or hosts.  相似文献   

10.
Abstract  The Zebra chip (ZC) syndrome is an emerging disease of potato and a major threat to the potato industry. The potato psyllid, Bactericerca cockerelli (Sulc) is believed to be a vector of the ZC pathogen, which is now thought to be Candidatus Liberibacter, a bacterium. To further understand the relationship between potato psyllid infestation and ZC disease expression, healthy potato plants at different growth stages (4, 6 and 10 weeks after germination) were exposed separately to potato psyllids that were separately reared on four solanaceous hosts plants (potato, tomato, eggplant or bell pepper) for more than 1 year. ZC symptoms, leaf rates and total nonstructural carbohydrate accumulation in leaves and tubers of healthy and psyllid-infested plants were monitored and recorded. Typical ZC symptoms were observed in leaves and tubers of all plants exposed to potato psyllids regardless of the host plant on which they were reared. This was also accompanied by significant reductions in net photosynthetic rate. Caged potato plants without exposure to potato psyllids (uninfested controls) did not show any ZC symptom in both foliage and in harvested tubers. Foliage damage and ZC expression were most severe in the potato plants that were exposed to potato psyllids 4 weeks after germination compared to plants infested at later growth stages. Tubers from potato psyllid-infested plants had significantly higher levels of reducing sugars (glucose) and lower levels of starch than those in healthy plants, indicating that potato psyllid infestation interfered with carbohydrate metabolism in either leaves or tubers, resulting in ZC expression.  相似文献   

11.
Psyllids are plant sap-feeding insects that harbor prokaryotic endosymbionts in specialized cells within the body cavity. Four-kilobase DNA fragments containing 16S and 23S ribosomal DNA (rDNA) were amplified from the primary (P) endosymbiont of 32 species of psyllids representing three psyllid families and eight subfamilies. In addition, 0.54-kb fragments of the psyllid nuclear gene wingless were also amplified from 26 species. Phylogenetic trees derived from 16S-23S rDNA and from the host wingless gene are very similar, and tests of compatibility of the data sets show no significant conflict between host and endosymbiont phylogenies. This result is consistent with a single infection of a shared psyllid ancestor and subsequent cospeciation of the host and the endosymbiont. In addition, the phylogenies based on DNA sequences generally agreed with psyllid taxonomy based on morphology. The 3′ end of the 16S rDNA of the P endosymbionts differs from that of other members of the domain Bacteria in the lack of a sequence complementary to the mRNA ribosome binding site. The rate of sequence change in the 16S-23S rDNA of the psyllid P endosymbiont was considerably higher than that of other bacteria, including other fast-evolving insect endosymbionts. The lineage consisting of the P endosymbionts of psyllids was given the designation Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.).  相似文献   

12.
Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace volatiles and plant nutritional contents. Furthermore, we show in a laboratory setting that this apparent pathogen-mediated manipulation of vector behavior may facilitate pathogen spread.  相似文献   

13.
Abstract 1 The herbivorous bug Heteropsylla cubana Crawford (Homoptera: Psyllidae) is a pest of the cattle fodder crop Leucaena (Leguminosae: Mimosoideae). The interaction between the psyllid and three varieties of its Leucaena host plant was investigated in relation to the apparent resistance of some Leucaena varieties (Leucaena leucocephala, Leucaena pallida and their hybrids) to attack. 2 Field trials demonstrated that adult psyllids distinguished among the different varieties of Leucaena over a distance, and were attracted to L. leucocephala in significantly higher numbers than to L. pallida or to the hybrid. Pesticide treatment increased the attractiveness of Leucaena plants, even of those deemed to be psyllid resistant. Numbers of psyllid eggs and nymphs, sampled in the field, reflect the arrival rates of adults at the three plant varieties. 3 Wavelength reflectance data of the three Leucaena varieties were not significantly different from one another, suggesting that psyllids cannot discriminate among the three plants using brightness or wavelength cues. There was a differential release of caryophyllene among the three varieties. Release of caryophyllene in L. leucocephala and the hybrid appeared to be influenced by environmental conditions. 4 Experiments demonstrated that caryophyllene (at least on its own) did not influence the behaviour of leucaena psyllids in relation to leucaena plants. 5 The results suggest that host plant volatiles cannot be dismissed as significant in the interaction between the leucaena psyllid and its Leucaena host plants. Further avenues for investigation are recommended and these are related to novel ways of understanding resistance in insect plant inter‐relationships.  相似文献   

14.
Some herbivores can modify the physiology of plant modules to meet their nutritional requirements. Induction of premature leaf senescence could benefit herbivores since it is associated with the mobilisation of nutrients. We compared the effects of nymphal feeding by Cardiaspina near densitexta on Eucalyptus moluccana with endogenous processes associated with senescence to assess the relative merits of an insect manipulation or plant defence interpretation of responses. Evidence supporting insect manipulation included increased size of fourth and fifth instar nymphs (in the latter the effect was restricted to forewing pad length of females) on leaves supporting high numbers of conspecifics and feeding preventing leaf necrosis. Intra-specific competition negated greater performance at very high densities. High and very high abundances of nymphs were associated with increased concentrations of amino acid N but only very high abundances of nymphs tended to be associated with increased concentrations of six essential amino acids. Contrary to the insect manipulation interpretation, feeding by very high abundances of nymphs was associated with significant reductions in chlorophyll, carotenoids and anthocyanins. Evidence supporting plant defence included the severity of chlorosis increasing with the abundance of nymphs. Leaf reddening did not develop because ambient conditions associated with photoinhibition (high irradiance and low temperature) were not experienced by leaves with chlorotic lesions. Leaf reddening (from anthocyanins) alone is not expected to adversely affect nymphal survival; only leaf necrosis would kill nymphs. For senescence-inducing psyllids, nutritional enhancement does not fit neatly into either an insect manipulation or plant defence interpretation.  相似文献   

15.
Secondary Endosymbionts of Psyllids Have Been Acquired Multiple Times   总被引:7,自引:0,他引:7  
Previous studies have established that psyllids (Hemiptera, Psylloidea) contain primary endosymbionts, designated as Carsonella ruddii, which cospeciate with the psyllid host. This association appears to be the consequence of a single infection of a psyllid ancestor with a bacterium. Some psyllids may have additional secondary (S-) endosymbionts. We have cloned and sequenced the 16S–23S ribosomal RNA genes of seven representative psyllid S-endosymbionts. Comparison of the S-endosymbiont phylogenetic trees with those of C. ruddii indicates a lack of congruence, a finding consistent with multiple infections of psyllids with different precursors of the S-endosymbionts and/or possible horizontal transmission. Additional comparisons indicate that the S-endosymbionts are related to members of the Enterobacteriaceae as well as to several other endosymbionts and insect-associated bacteria. Received: 2 May 2000 / Accepted: 8 June 2000  相似文献   

16.
The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), and its associated pathogen "Candidatus Liberibacter solanacearum" (Ca. L. solanacearum), the putative causal agent of zebra chip (ZC) disease in potatoes (Solanum tuberosum L.), were sampled in commercial potato fields and untreated control plots for 3 yr in multiple locations in Texas, Kansas, Nebraska, and Colorado. Populations of the potato psyllid varied across years and across potato growing regions. However, the percentage of potato psyllids infected with Ca. L. solanacearum although variable across years, was consistently highest in the Lower Rio Grande Valley of Texas (LRGV), the reported overwintering location for this pest. The numbers of Ca. L. solanacearum-infected psyllids collected on field traps and large nymphs counted on leaf samples were both positively correlated with the final percentage of ZC in tubers. In the LRGV, where vector and disease pressure is the highest, population levels of immature life stages of the psyllid and percentage of ZC differed greatly between commercial and untreated fields. These results show that the pest management program that was used can be effective at controlling development of the psyllid and ultimately reducing the incidence of ZC.  相似文献   

17.
Phoretic associations between mites and insects commonly occur in patchy and ephemeral habitats. As plants provide stable habitats for herbivores, herbivorous mites are rarely dependent on other animals for phoretic dispersal. However, a phoretic gall mite, Aceria pallida, which is found on plants, seasonally attaches to a herbivorous insect, Bactericera gobica, for overwintering survival. After detachment, the gall mite shares a habitat with its vector and is likely to compete with this vector for plant resources. However, excessive competition works against the sustainability of the seasonal phoretic association. How the gall mite, as an obligate phoretic mite, balances this relationship with its vector during the growing season to achieve phoresy is unknown. Here, the plant-mediated interspecific interaction between the gall mite and the psyllid after detachment was studied in the laboratory and field. The laboratory results showed that infestation by the gall mite had detrimental effects on the survival and development of psyllid nymphs. Meanwhile, the mite population and the gall size were also adversely affected. The results from the field showed that the mean densities of the mite galls and psyllids were lower in the mixed-species infestation treatment than in the single-species infestation treatment across the investigation period. However, the interspecific interaction between the gall mite and the psyllid decreased rather than accelerated leaf abscission caused by the psyllid, which promoted the persistence of the psyllid population and then indirectly contributed to phoretic association. Our results suggest that the plant-mediated competition between the phoretic gall mite and its vector after detachment facilitates the maintenance of the phoretic association.  相似文献   

18.
Among the many topics of interest to ecologists studying associations between phytophagous insects and their host plants are the influence of natal host plant on future oviposition decisions and the mechanisms of generalist versus specialist host selection behavior. In this study, we examined the oviposition preferences, behavior and larval development of the tomato/potato psyllid, Bactericera cockerelli. By rearing psyllids with two distinct geographically-linked haplotypes on different host plants, we were able to examine the role of natal host plant and potential local adaptation on host plant usage. Choice bioassays among three host species demonstrated that psyllids from California had clear preferences that were influenced by natal plant. We further found that patterns in choice bioassays corresponded to observed feeding and movement responses. No-choice bioassays demonstrated that there is little to no association between development and host-plant choice for oviposition, while also indicating that host choice varies between haplotypes. These findings support the concept that mothers do not always choose oviposition sites optimally and also add support for the controversial Hopkins'' host selection principle.  相似文献   

19.
The Asian citrus psyllid, Diaphorina citri, is a major pest of citrus and vector of citrus greening (huanglongbing) in Asian. In our field‐collected psyllid samples, we discovered that Fuzhou (China) and Faisalabad (Pakistan), populations harbored an obligate primary endosymbiont Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.) and a secondary endosymbiont, Wolbachia surface proteins (WSP) which are intracellular endosymbionts residing in the bacteriomes. Responses of these symbionts to different temperatures were examined and their host survival assessed. Diagnostic PCR assays showed that the endosymbionts infection rates were not significantly reduced in both D. citri populations after 24 h exposure to cold or heat treatments. Although quantitative PCR assays showed significant reduction of WSP relative densities at 40°C for 24 h, a substantial decrease occurred as the exposure duration increased beyond 3 days. Under the same temperature regimes, Ca. C. ruddii density was initially less affected during the first exposure day, but rapidly reduced at 3–5 days compared to WSP. However, the mortality of the psyllids increased rapidly as exposure time to heat treatment increased. The responses of the two symbionts to unfavorable temperature regimes highlight the complex host‐symbionts interactions between D. citri and its associated endosymbionts.  相似文献   

20.
The Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Psyllidae) is the primary vector of the bacterium causing citrus huanglongbing (citrus greening), the most serious disease of citrus worldwide. Psyllids and other hemipterans produce large amounts of honeydew, which has been used previously as an indicator of phloem sap composition and insect feeding or metabolism. Behavioral, ultrastructural and chemical studies on ACP, its honeydew and waxy secretions showed important differences between nymphs, males and females, and suggested some mechanisms by which the psyllids, especially nymphs and adult females, can minimize their contamination with honeydew excretions. The anal opening in ACP, near the posterior end of the abdomen, is on the ventral side in nymphs and on the dorsal side in adult males and females. Video recordings showed that adult males produce clear sticky droplets of honeydew gently deposited behind their body on the leaf surface, whereas adult females produce whitish honeydew pellets powerfully propelled away from the female body, probably to get their excretions away from eggs and newly hatched nymphs. ACP nymphs produce long ribbons or tubes of honeydew that frequently stay attached to the exuviae after molting, or drop when feeding on the lower side of citrus leaves. Furthermore, honeydew excretions of both nymphs and adult females are covered with a thin layer of whitish waxy material ultrastructurally composed of a convoluted network of long fine filaments or ribbons. This material is extruded from intricate arrays of wax pores in the circumanal ring (around the anus) that is found in nymphs and females but not in males of ACP or other psyllid species. Infrared microscopy and mass spectroscopy revealed that, in addition to various sugars, honeydew excretions of ACP nymphs and females are covered with a thin layer of wax similar in profile to ester waxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号