共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells 总被引:14,自引:0,他引:14 下载免费PDF全文
Identification of proteins that couple kinetochores to spindle microtubules is critical for understanding how accurate chromosome segregation is achieved in mitosis. Here we show that the protein hNuf2 specifically functions at kinetochores for stable microtubule attachment in HeLa cells. When hNuf2 is depleted by RNA interference, spindle formation occurs normally as cells enter mitosis, but kinetochores fail to form their attachments to spindle microtubules and cells block in prometaphase with an active spindle checkpoint. Kinetochores depleted of hNuf2 retain the microtubule motors CENP-E and cytoplasmic dynein, proteins previously implicated in recruiting kinetochore microtubules. Kinetochores also retain detectable levels of the spindle checkpoint proteins Mad2 and BubR1, as expected for activation of the spindle checkpoint by unattached kinetochores. In addition, the cell cycle block produced by hNuf2 depletion induces mitotic cells to undergo cell death. These data highlight a specific role for hNuf2 in kinetochore-microtubule attachment and suggest that hNuf2 is part of a molecular linker between the kinetochore attachment site and tubulin subunits within the lattice of attached plus ends. 相似文献
4.
5.
Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells 总被引:19,自引:0,他引:19
Petiot A Ogier-Denis E Blommaart EF Meijer AJ Codogno P 《The Journal of biological chemistry》2000,275(2):992-998
3-Methyladenine which stops macroautophagy at the sequestration step in mammalian cells also inhibits the phosphoinositide 3-kinase (PI3K) activity raising the possibility that PI3K signaling controls the macroautophagic pathway (Blommaart, E. F. C., Krause, U., Schellens, J. P. M., Vreeling-Sindelárová, H., and Meijer, A. J. (1997) Eur. J. Biochem. 243, 240-246). The aim of this study was to identify PI3Ks involved in the control of macroautophagic sequestration in human colon cancer HT-29 cells. An increase of class I PI3K products (phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-triphosphate) caused by either feeding cells with synthetic lipids (dipalmitoyl phosphatidylinositol 3, 4-bisphosphate and dipalmitoyl phosphatidylinositol 3,4, 5-triphosphate) or by stimulating the enzymatic activity by interleukin-13 reduced macroautophagy. In contrast, an increase in the class III PI3K product (phosphatidylinositol 3-phosphate), either by feeding cells with a synthetic lipid or by overexpressing the p150 adaptor, stimulates macroautophagy. Transfection of a specific class III PI3K antisense oligonucleotide greatly inhibited the rate of macroautophagy. In accordance with a role of class III PI3K, wortmannin (an inhibitor of PI3Ks) inhibits macroautophagic sequestration and protein degradation in the low nanomolar range (IC(50) 5-15 nM). Further in vitro enzymatic assay showed that 3-methyladenine inhibits the class III PI3K activity. Dipalmitoyl phosphatidylinositol 3-phosphate supplementation or p150 overexpression rescued the macroautophagic pathway in HT-29 cells overexpressing a GTPase-deficient mutant of the Galpha(i3) protein suggesting that both class III PI3K and trimeric G(i3) protein signaling are required in the control macroautophagy in HT-29 cells. In conclusion, our results demonstrate that distinct classes of PI3K control the macroautophagic pathway in opposite directions. The roles of PI3Ks in macroautophagy are discussed in the context of membrane recycling. 相似文献
6.
Mitotic and interphase HeLa cells were labeled with [3H]serine. Ceramide and its derivatives, lactosylceramide and sphingomyelin, were biosynthetically labeled under both conditions. Only in the absence of nocodazole, as the cells entered telophase, was an additional glycosphingolipid synthesized which was identified as GA2 (GalNAc(beta 1,4)Gal(beta 1,4)Glc(beta 1,1)Cer). Ceramide, the basic sphingolipid precursor, is synthesized in the endoplasmic reticulum, whereas its immediate derivatives are synthesized in early Golgi compartments. Transport of newly synthesized proteins from the endoplasmic reticulum to the Golgi is inhibited in mitotic cells while ceramide acquires early Golgi modifications under the same conditions, suggesting that ceramide can be delivered to the Golgi by a different route. Since GA2 is synthesized in late Golgi, its absence in mitotic cells strongly argues for an in vivo inhibition of intra-Golgi transport, an observation with important implications for the mechanism of Golgi division. 相似文献
7.
Cytoplasmic axin expression frequently produces punctuate structures in cells, but the nature of axin puncta has not been fully elucidated. In an effort to analyze cytoplasmic axin puncta, we established HeLa cells expressing axin in a doxycycline-inducible manner (HeLa-Axin). We observed that axin accumulated in an aggregate-like pattern in perinuclear areas and appeared to be associated with mitochondria, Golgi apparatus, and endoplasmic reticulum (ER), but not lysosomes. Further biochemical analysis suggested that some part of the cytoplasmic axin pool was associated with mitochondria. In addition, mitochondrial proteins [i.e., cytochrome oxidase IV (CoxIV) and cytochrome c] were slightly higher in HeLa-Axin cells than in HeLa-EV cells, suggesting altered mitochondrial degradation. HeLa-Axin cells were then treated with staurosporine (STS) to determine if the mitochondria-induced apoptosis pathway was altered. Compared to STS-treated control cells (HeLa-EV), HeLa-Axin cells had less STS-induced cytotoxicity and reduced caspase-3 activation and PARP cleavage. Given that mitochondria outer membrane potential was unchanged, HeLa-Axin cells might be relatively resistant to STS-mediated mitochondrial damage. Mitochondria associated with axin aggregates were resistant to detergent-mediated permeabilization. These results suggest that axin forms aggregate-like structures in association with mitochondria, which render mitochondria resistant to STS-induced membrane damage and cytotoxicity. 相似文献
8.
Medicinal plants represent a rich source of cancer drug leads. Indioside D, a furostanol glycoside isolated from Solanum mammosum, was found to possess antiproliferative activity toward a panel of human cancer cell lines. Proteomic analysis of indioside D-treated HeLa cells revealed profound protein changes related to energy production and oxidative stress, suggesting that mitochondria dysfunction plays a role in indioside D-induced apoptosis. Indioside D caused a rapid dissipation of mitochondrial transmembrane potential (DeltaPsim) and the generation of reactive oxygen species (ROS), leading to the activation of caspase-dependent apoptotic cell death. The Fas death receptor pathway was also activated following indioside D treatment, and triggered the activation of caspase-8 and cleavage of Bid, which also acted through the mitochondrial apoptosis pathway. These results suggest that indioside D induced apoptosis in HeLa cells via both intrinsic and extrinsic cell death pathways. 相似文献
9.
Mitotic HeLa cells (M cells) synthesize protein at about 25% of the rate of S phase cells. This decrease in protein synthesis is due to a reduction in the rate of initiation. However, extracts prepared from M cells are almost as active in protein synthesis as S cell extracts. Both cell extracts are quite active in in vitro initiation of protein synthesis. Moreover, two steps in initiation, binding of Met-tRNAf to 40S ribosomal subunits and binding of mRNA to ribosomes, show similar activity in both extracts. The difference in protein synthesizing activity observed in vivo is largely eliminated in the preparation of cell-free systems. The ribosomes of M cells contain small mol wt RNA, which inhibits protein synthesis in vitro. This RNA, which has possibly a nuclear origin, may be a cause of the reduction in the rate of protein synthesis in M cells. 相似文献
10.
Kanzawa N Shintani S Ohta K Kitajima S Ehara T Kobayashi H Kizaki H Tsuchiya T 《Archives of biochemistry and biophysics》2004,422(1):103-109
Achacin, which belongs to the L-amino acid oxidase group, oxidizes free amino acids and produces hydrogen peroxide in cell culture systems. Morphological changes in cells incubated with achacin were similar to those of cells incubated with H(2)O(2). In both cases, the end result was cell death. To examine the mechanism of achacin-associated cytotoxicity, the H(2)O(2) scavenger catalase was added to culture media. Features typical of apoptosis, including morphological changes, DNA fragmentation, and PARP cleavage, were observed when cells were incubated with achacin in the presence of catalase. Moreover, apoptosis was inhibited by Z-VAD-fmk, a broad-spectrum caspase inhibitor. Herein, we present evidence that two pathways are involved in achacin-induced cell death. One is direct generation of H(2)O(2) through the L-amino acid oxidase activity of achacin. The other is the caspase-mediated apoptotic pathway that is induced by depletion of L-amino acids by achacin. 相似文献
11.
Background
Valproic acid (VPA) is a potent anticonvulsant that inhibits histone deacetylases. Because of this inhibitory action, we investigated whether VPA would affect chromatin supraorganization, mitotic indices and the frequency of chromosome abnormalities and cell death in HeLa cells.Methodology/Principal Findings
Image analysis was performed by scanning microspectrophotometry for cells cultivated for 24 h, treated with 0.05, 0.5 or 1.0 mM VPA for 1–24 h, and subjected to the Feulgen reaction. TSA-treated cells were used as a predictable positive control. DNA fragmentation was investigated with the TUNEL assay. Chromatin decondensation was demonstrated under TSA and all VPA treatments, but no changes in chromosome abnormalities, mitotic indices or morphologically identified cell death were found with the VPA treatment conditions mentioned above, although decreased mitotic indices were detected under higher VPA concentration and longer exposure time. The frequency of DNA fragmentation identified with the TUNEL assay in HeLa cells increased after a 24-h VPA treatment, although this fragmentation occurred much earlier after treatment with TSA.Conclusions/Significance
The inhibition of histone deacetylases by VPA induces chromatin remodeling in HeLa cells, which suggests an association to altered gene expression. Under VPA doses close to the therapeutic antiepileptic plasma range no changes in cell proliferation or chromosome abnormalities are elicited. The DNA fragmentation results indicate that a longer exposure to VPA or a higher VPA concentration is required for the induction of cell death. 相似文献12.
Mitotic HeLa cells collected by shake-off synchronizing procedures were found to have elevated amino acid influx rates into the acid-extractable pool. Combined use of colchicine or chilling before testing abolished the increased uptake; high external concentrations of Mg2+ further enhanced it. Telophase and subsequent interphase populations showed a lower uptake rate which remained constant throughout most of the next cycle. 相似文献
13.
Mitotic death is a major form of cell death in cancer cells that have been treated with chemotherapeutic drugs. However, the mechanisms underlying this form of cell death is poorly understood. Here, we report that the loss of chromosome integrity is an important determinant of mitotic death. During prolonged mitotic arrest, caspase-3 is activated and it cleaves Cap-H, a subunit of condensin I. The depletion of Cap-H results in the loss of condensin I complex at the chromosomes, thus affecting the integrity of the chromosomes. Consequently, DNA fragmentation by caspase-activated DNase is facilitated, thus driving the cell towards mitotic death. By expressing a caspase-resistant form of Cap-H, mitotic death is abrogated and the cells are able to reenter interphase after a long mitotic delay. Taken together, we provide new insights into the molecular events that occur during mitotic death. 相似文献
14.
Galactosyltransferase, a marker for trans-Golgi cisternae in interphase cells, was localized in mitotic HeLa cells embedded in Lowicryl K4M by immunoelectron microscopy. Specific labeling was found only over multivesicular structures that we term Golgi clusters. Unlike Golgi stacks in interphase cells, these clusters lacked elongated cisternae and ordered stacking of their components but did comprise two distinct regions, one containing electron-lucent vesicles and the other, smaller, vesiculo-tubular structures. Labeling for galactosyltransferase was found predominantly over the latter region. Both structures were embedded in a dense matrix that excluded ribosomes and the cluster was often bounded by cisternae of the rough endoplasmic reticulum, sometimes on all sides. Clusters were present at all stages of mitosis examined, which included prometaphase, metaphase, and telophase. They were also identified in conventionally processed mitotic cells and shown to contain another trans-Golgi marker, thiamine pyrophosphatase. Serial sectioning showed that clusters were discrete and globular and multiple copies appeared to be dispersed in the cytoplasm. Their possible role in the division of the Golgi apparatus is discussed. 相似文献
15.
16.
Rello-Varona S Gámez A Moreno V Stockert JC Cristóbal J Pacheco M Cañete M Juarranz A Villanueva A 《The international journal of biochemistry & cell biology》2006,38(12):2183-2195
DNA damage, cell cycle and apoptosis form a network with important implications for cancer chemotherapy. Dysfunctions of the cycle checkpoints can allow cancer cells to acquire drug resistance. Etoposide is a well-known inducer of apoptosis, which is widely used in cell biology and in clinical practice. In this work we report that a pulse of 50 μM etoposide (incubation for only 3 h) on HeLa cells causes a sequence of events that leads to abnormal mitotic figures that could be followed either by cell death or, more commonly, by interphase restitution and endocycle. The endocycling polyploid cells enter immediately into mitosis and suffer metaphase blockage with multiple spindle poles, which were generally followed by a direct triggering of apoptosis from metaphase (mitotic catastrophe), or by a new process of endocycling, until surviving cells finally became apoptotic (96 h after the treatment). 相似文献
17.
18.
The cytoplasmic domain of the lymphotoxin-beta receptor mediates cell death in HeLa cells 总被引:2,自引:0,他引:2
Activation of lymphotoxin-beta receptor (LT-betaR) by conjugation with heterotrimeric lymphotoxin, LT-alpha1/beta2, or by cross-linking with anti-LT-betaR antibodies can trigger apoptosis. We have observed that overexpression of either LT-betaR or the cytoplasmic domain of LT-betaR (LT-betaR(CD)) also induces apoptosis, which may be attributed to the tendency of LT-betaR(CD) to self-associate. The self-association domain of LT-betaR(CD) was mapped to amino acids 324-377, a region of the protein that is also essential for LT-betaR-induced apoptosis. Furthermore, we have shown that LT-betaR(CD)-induced apoptosis could be inhibited by a TRAF3 dominant negative mutant and by the caspase inhibitors Z-VAD-FMK, DEVD-FMK, and CrmA. The ligand-independent apoptosis induced by LT-betaR(CD) will help us to further dissect LT-betaR signaling pathway. 相似文献
19.
[目的]为了研究Troglitazone(Trog)对HeLa细胞自噬和程序性细胞死亡的影响.[方法]利用电镜、荧光显微镜、免疫杂交、流式细胞计数等对经Trog处理后的HeLa细胞进行了细胞发生自噬和死亡情况的观察.[结果] 电镜、荧光显微镜的结果均提示,Trog能够诱导HeLa细胞自噬活动的增加;免疫杂交显示, 该药物能增加自噬相关基因LC3的表达,并于刺激后4 h达到高峰;除了能使细胞凋亡外,Trog也可以造成细胞的坏死.[结论]上述结果表明,曲格列酮可以引起混合型细胞死亡. 相似文献
20.
Ramesh C. Adlakha David A Wright Chintaman G. Sahasrabuddhe Frances M. Davis Nagindra Prashad Hlne Bigo Potu N. Rao 《Experimental cell research》1985,160(2):471-482
Extracts from mitotic HeLa cells, when injected into Xenopus laevis oocytes, exhibit maturation-promoting activity (MPA) as evidenced by the breakdown of the germinal vesicle and the condensation of chromosomes. In this study we have attempted to purify and characterize these mitotic factors. When 0.2 M NaCl-soluble extracts of mitotic HeLa cells were concentrated by ultrafiltration and subjected to affinity chromatography on hydroxylapatite followed by DNA-cellulose, the proteins with MPA eluted as a single peak and their specific activity was increased approx. 200-fold compared with crude extracts. The molecular weight of the mitotic factors was estimated to be 100 kD as determined by chromatography on Sephacryl S-200. SDS-PAGE of the partially-purified mitotic factors indicated the presence of several polypeptides ranging from 40-150 kD with a major band of about 50 kD. The majority of these polypeptides were found to be phosphoproteins as revealed by 32P-labeling and autoradiography. Very little or no phosphorylation was observed at the 50 kD band. Several of these polypeptides were reactive with mitosis-specific monoclonal antibodies, MPM-1 or MPM-2, as shown by immunoblots of these proteins but the major polypeptide band at 50 kD was not. Removal of the immunoreactive polypeptides by precipitation with these antibodies did not destroy the MPA. The MPA of the crude or the partially-purified mitotic factors was destroyed by injection of (but not pretreatment with) alkaline phosphatase within 45 min after injection of mitotic factors. These results are discussed in terms of a possible role of phosphorylation-dephosphorylation of non-histone proteins in the regulation of mitosis and meiosis. 相似文献