首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
喀斯特植被演替过程土壤丛枝菌根真菌(AMF)多样性   总被引:2,自引:0,他引:2  
喀斯特生态系统维持了丰富的微生物多样性,丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)结构和组成会随喀斯特植被演替而改变。以贵州贵阳花溪、毕节织金和关岭花江典型喀斯特区域按时空替代法采集了乔木林、灌木林和草本群落样地土壤,采用Illumina HiSeq分子测序技术,通过OTU聚类分析、物种注释及数据库比对,探索了喀斯特不同演替阶段土壤AMF物种多样性。结果表明:(1)喀斯特生境土壤获得球囊菌门Glomeromycota OTU为275个,分属于4目8科13属19种,属水平上AMF丰度表明根内根孢囊霉属Rhizophagus为优势属,花江拥有最高AMF丰富度,缩隔球囊霉Septoglomus constrictum、根内根孢囊霉Rhizophagus intraradices、Claroideoglomus sp. MIB8381和稀有内养囊霉Entrophospora infrequens均分布于各样地的不同植被演替阶段,为常见种。(2)AM真菌多样性Shannon指数与Simpson指数在不同演替阶段表现为花溪:乔木≈灌木草本(P0.05)、花江:灌木≈草本乔木(P0.05)、织金:乔木灌木草本,但差异不显著,Chao1和Abundance-based coverag estimator(ACE)指数表现为花江灌木≈草地乔木(P0.05)。(3)Spearman相关性分析表明土壤全磷与AMF ACE指数显著负相关,且与Chao1指数极显著负相关;速效磷与Shannon和Simpson指数显著负相关。(4)典范对应分析(Canonical Correlation Analysis,CCA)表明土壤全氮、速效氮、有机质、全磷和速效钾与AMF群落分布有显著相关性。结果表明喀斯特植被演替过程中土壤丛枝菌根真菌多样性随着演替进行或升高或降低,无一致变化规律,并与土壤理化性质关系密切,其中以磷的影响最大。  相似文献   

3.
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with higher plants, which support the establishment and maintenance of plant communities across a range of environments, including those adversely affected by anthropogenic activity as well as natural sites. This study aimed at determining the diversity and distribution of AMF in areas of the tropical semi-arid region of Caatinga, Brazil, and compare areas in a naturally preserved state with anthropized sites. We characterized AMF communities in soil samples (n = 108), based on morphological taxonomy, at three sampling occasions and from six areas (typical Caatinga, extremely sandy Caatinga, stony Caatinga, rocky Caatinga, and two typical Caatinga areas that had been modified by human activities), at the National Park of Catimbau, Northeast Brazil. Eighty AMF species were recorded, with Glomus and Acaulospora predominating at all sites. There were significant differences in the composition of AMF communities between natural and anthropized sites, and among sampling occasions. Habitat-types also influenced AMF communities in Caatinga. Extensive tropical dry forest areas, such as the Catimbau National Park possess distinct niches, which maintain diverse AMF communities that are determined by anthropogenic activities, as well as vegetation types and environmental conditions.  相似文献   

4.
The origins and composition of soil organic matter (SOM) are still largely uncertain. Arbuscular mycorrhizal fungi (AMF) are recognized as indirect contributors through their influence on soil aggregation, plant physiology, and plant community composition. Here we present evidence that AMF can also make large, direct contributions to SOM. Glomalin, a recently discovered glycoprotein produced by AMF hyphae, was detected in tropical soils in concentrations of over 60 mg cm–3. Along a chronosequence of soils spanning ages from 300 to 4.1 Mio years, a pattern of glomalin concentrations is consistent with the hypothesis that this protein accumulates in soil. Carbon dating of glomalin indicated turnover at time scales of several years to decades, much longer than the turnover of AMF hyphae (which is assumed to be on the order of days to weeks). This suggests that contributions of mycorrhizae to soil carbon storage based on hyphal biomass in soil and roots may be an underestimate. The amount of C and N in glomalin represented a sizeable amount (ca. 4–5%) of total soil C and N in the oldest soils. Our results thus indicate that microbial (fungal) carbon that is not derived from above- or below-ground litter can make a significant contribution to soil carbon and nitrogen pools and can far exceed the contributions of soil microbial biomass (ranging from 0.08 to 0.2% of total C for the oldest soils).  相似文献   

5.
喀斯特地区丛枝菌根真菌遗传多样性   总被引:7,自引:0,他引:7  
为探明喀斯特地区丛枝菌根真菌( AMF)的遗传多样性特征,利用巢式PCR和DGGE相结合的分子生物学方法对茂兰喀斯特多个植被类型下的AMF遗传多样性进行了研究.结果表明,喀斯特地区AMF遗传多样性指数和物种丰富度分别平均为3.50和41,远高于非喀斯特对照样地的2.68和17,分析表明,喀斯特地区较高的AMF多样性与此地区丰富的植物多样性以及特殊的生态环境有关,是与喀斯特生态系统长期相互选择的结果.不同植被类型下的AMF多样性差异显著,相似性指数最高为0.34,喀斯特地区AMF的群落结构随着植被类型的改变发生显著变化;基因测序显示,喀斯特地区AMF的优势菌属是生态适应性很强的球囊霉属,在喀斯特石漠化生态恢复中具有较强的利用潜力.  相似文献   

6.
丛枝菌根真菌物种多样性研究进展   总被引:22,自引:1,他引:22  
丛枝菌根(arbuscular mycorrhiza, AM)真菌是生态系统中生物多样性的重要组分之一,具有十分丰富的物种多样性、遗传多样性和功能多样性.该真菌分类地位不断提高已上升至门,下设1个纲、4个目、13个科,19个属,现已报道214种.丛枝菌根对保持生态平衡、稳定和提高生态系统可持续生产力具有重要作用.本文分析了世界范围内丛枝菌根真菌物种多样性研究现状、不同生态系统中影响丛枝菌根真菌物种多样性的关键因子及其调控途径;认为分子生物学技术是今后丛枝菌根真菌物种多样性研究的主要方法.  相似文献   

7.
Arbuscular mycorrhizal (AM) fungi form symbiotic associations with plant roots. Around 150 species have been described and it is becoming clear that many of these species have different functional properties. The species diversity of AM fungi actively growing in roots is therefore an important component of ecosystem diversity. However, it is difficult to identify AM fungi below the genus level from morphology in planta , as they possess few informative characters. We present here a molecular method for identifying infrageneric sequence types that estimate the taxonomic diversity of AM fungi present in actively growing roots. Bluebell roots were sampled from beneath two different canopy types, oak and sycamore, and DNA sequences were amplified from roots by the polymerase chain reaction with fungal-specific primers for part of the small subunit ribosomal RNA gene. Restriction fragment length polymorphism among 141 clones was assessed and 62 clones were sequenced. When aligned, discrete sequence groups emerged that cluster into the three families of AM fungi: Acaulosporaceae, Gigasporaceae and Glomaceae. The sequence variation is consistent with rRNA secondary structure. The same sequence types were found at both sampling times. Frequencies of Scutellospora increased in December, and Acaulospora increased in abundance in July. Sites with a sycamore canopy show a reduced abundance of Acaulospora , and those with oak showed a reduced abundance of Glomus . These distribution patterns are consistent with previous morphological studies carried out in this woodland. The molecular method provides an alternative method of estimating the distribution and abundance of AM fungi, and has the potential to provide greater resolution at the infrageneric level.  相似文献   

8.
In this study, carried out in four water bodies in the Upper Paraná River floodplain, we assessed the occurrence of root colonization by arbuscular mycorrhizal fungi (AMF) and dark septate fungi (DSF), as well as the AMF species richness associated with 24 species of aquatic macrophytes belonging to different life forms. AMF were found in nine species of macrophytes and DSF in 16 species among the 24 investigated. AM colonization occurred mainly in eudicotiledons (five of the six species evaluated) and the Paris morphology was the most common type. Co-occurrence of AMF and DSF was observed in seven species of macrophytes (Commelinaceae sp. 1, Limnobium laevigatum (H.B.K. ex Willd) Heine, Hygrophila cf. costata, Myriophyllum brasiliense (Camb), Polygonum acuminatum Kunth, P. ferrugineum Wedd and P. stelligerum Cham). Four species of macrophytes (Pistia stratiotes L., Eichhornia crassipes (Mart.) Solms, Egeria najas Planch and Nymphaea amazonum Mart. & Zucc) were not colonized by any type of fungi. In total, 27 morphotypes of AMF were recorded, and spores occurred both in the rhizosphere of macrophytes whose roots were internally colonized by AMF and in non-colonized macrophytes. Acaulospora delicata, Acaulospora aff. laevis, Acaulospora longula, Glomus lamellosum, Glomus luteum and NID 1 (a non-identified species) were the most frequent species. Samples collected close to the roots of N. amazonum had the highest AMF richness (20 species), but this plant was not colonized by fungi. A species richness curve indicated that more root-associated fungi than reported here are likely present in this floodplain.  相似文献   

9.
AM真菌遗传多样性研究进展   总被引:2,自引:0,他引:2  
丛枝菌根(arbuscular mycorrhiza,AM)真菌是一类专性共生多核生物,至今尚未获得纯培养,与植物根系共生后才能完成其生活史。该类真菌无性繁殖,具有独特的遗传特性,属于真菌界球囊菌门(Glomeromycota),共有200余种。研究发现AM真菌种群间以及种群内,甚至单一孢子内都存在大量基因变异,表明该类真菌具有丰富的遗传多样性。本文总结了近年来有关AM真菌遗传多样性方面的研究进展,并讨论了存在的问题。  相似文献   

10.
* Here, the diversity of arbuscular mycorrhizal (AM) fungi was determined in a boreal herb-rich coniferous forest in relation to environmental variables. * Root samples of five plant species (Fragaria vesca, Galeobdolon luteum, Hepatica nobilis, Oxalis acetosella and Trifolium pratense) were analysed from stands differing in age and forest management intensity. * Thirty-four Glomeromycota taxa (small-subunit ribosomal RNA gene (SSU rDNA) sequence groups) were detected from 90 root samples (911 clones), including eight new taxa. Sequence groups related to Glomus intraradices were most common (MO-G3 and MO-G13). Samples of H. nobilis were colonized by more AM fungal taxa (3.68 +/- 0.31) than those of O. acetosella (2.69 +/- 0.34), but did not differ significantly in this respect from those of F. vesca (3.15 +/- 0.38). Effects of forest management, host plant species (except above) or season on the number or composition of fungal taxa in root samples were not detected, and neither were they explained by environmental variables (vegetation, soil and light conditions). * This is the most taxon-rich habitat described to date in terms of root-colonizing Glomeromycota. The data demonstrate the importance of temperate coniferous forests as habitats for AM fungi and plants. Lack of obvious fungal community patterns suggests more complex effects of biotic and abiotic factors, and possibly no adverse effect of common forest management practices on AM fungal diversity.  相似文献   

11.
近年来,丛枝菌根真菌(Arbuscular Mycorrhizal Fungi,AMF)在设施蔬菜生产中的应用表明,在蔬菜的育苗过程中接种AMF可以生产出秧苗质量好、抗性强、品质高的菌根苗。通过对AMF的作用效果分析,发现接种AMF可以改善蔬菜营养与水分的供应状况,增强蔬菜对环境胁迫的耐受性,增加蔬菜根部疾病及线虫的抗性,提高蔬菜产量和产品质量,具有重要的农业意义。基于AMF对于蔬菜的有益作用,本文综述了AMF在促进蔬菜生长、提高蔬菜产量和品质、缓解其非生物胁迫和控制病原菌以及与其他生物防治剂(或农药)联合施用等方面的研究进展,以期为AMF在蔬菜生产中的应用提供参考。  相似文献   

12.
在对西藏高原北部针茅草地根围土壤中的丛枝菌根(AM)真菌种类分离鉴定基础上,研究了藏北针茅草地的土壤质地、pH、有机质和有效磷含量对AM真菌孢子密度、分离频度、相对多度、重要值、物种多样性指数和均匀度的影响.结果表明: 针茅草地根围土壤中共分离鉴定出AM真菌3属15种,其中,球囊霉属9种、无梗囊霉属6种、盾巨孢囊霉属1种.球囊霉属和无梗囊霉属为藏北针茅草地AM真菌的优势属;近明球囊霉和光壁无梗囊霉为藏北高寒草原针茅属植物根围AM真菌的优势种.不同质地土壤中AM真菌孢子密度、分离频度、相对多度和重要值均表现出球囊霉属>无梗囊霉属>盾巨孢囊霉属的趋势;土壤pH值对AM真菌种群组成无明显影响,球囊霉属和无梗囊霉属真菌分离频度、相对多度和重要值随土壤pH升高而增加,盾巨孢囊霉属则呈现相反趋势;不同土壤有机质含量范围内,AM真菌孢子密度等各项指标均呈球囊霉属>无梗囊霉属>盾巨孢囊霉属,而AM真菌属的分布没有明显规律;土壤有效磷含量对AM真菌种丰度和孢子密度影响较小.研究区域内AM真菌物种多样性指数和均匀度随着土壤有效磷含量升高而增加.  相似文献   

13.
丛枝菌根真菌最新分类系统与物种多样性研究概况   总被引:3,自引:0,他引:3  
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)是自然界分布最广泛的一类植物共生真菌,能够与大部分高等植物的根系形成共生关系.由于它们在农林、环境等领域的巨大应用潜力,国内外关于AMF物种多样性的研究一直受到较高的关注.然而,AMF专性共生的特征以及研究方法不够理想等因素长期阻碍了AMF物种多样性的研究进展.近年来,研究方法的改进与新技术的应用为AMF物种多样性的研究提供了极好的机遇.简述了AMF的最新分类系统及全球物种数量、AMF物种多样性影响因素以及AMF物种多样性研究方法三个方面的研究进展,并分析了今后在AMF物种多样性相关领域值得关注的研究方向.  相似文献   

14.
Ancestral lineages of arbuscular mycorrhizal fungi (Glomales)   总被引:10,自引:0,他引:10  
Using new and existing 18S rRNA sequence data, we show that at least five species of glomalean fungi lie outside the previously defined families and diverged very early in the evolution of that group. These five fungi would have been missed by many previous ecological studies because their sequences are not well matched to available taxon-specific primers and they do not stain well with the standard reagents used for morphological analysis. Based upon spore morphology, these species are currently assigned to Glomus and Acaulospora, and two of the species are dimorphic, exhibiting spore stages of both genera. This suggests that dimorphic spores are the ancestral state for the order and that one or the other morphology was lost in various lineages. Our analyses also show that Geosiphon pyriforme, a symbiont with cyanobacteria, is not necessarily a sister group of the Glomales; instead, it may be derived from mycorrhizal ancestors.  相似文献   

15.
We have used molecular techniques to investigate the diversity and distribution of the arbuscular mycorrhizal (AM) fungi colonizing tree seedling roots in the tropical forest on Barro Colorado Island (BCI), Republic of Panama. In the first year, we sampled newly emergent seedlings of the understory treelet Faramea occidentalis and the canopy emergent Tetragastris panamensis, from mixed seedling carpets at each of two sites. The following year we sampled surviving seedlings from these cohorts. The roots of 48 plants were analysed using AM fungal-specific primers to amplify and clone partial small subunit (SSU) ribosomal RNA gene sequences. Over 1300 clones were screened for random fragment length polymorphism (RFLP) variation and 7% of these were sequenced. Compared with AM fungal communities sampled from temperate habitats using the same method, the overall diversity was high, with a total of 30 AM fungal types identified. Seventeen of these types have not been recorded previously, with the remainder being similar to types reported from temperate habitats. The tropical mycorrhizal population showed significant spatial heterogeneity and nonrandom associations with the different hosts. Moreover there was a strong shift in the mycorrhizal communities over time. AM fungal types that were dominant in the newly germinated seedlings were almost entirely replaced by previously rare types in the surviving seedlings the following year. The high diversity and huge variation detected across time points, sites and hosts, implies that the AM fungal types are ecologically distinct and thus may have the potential to influence recruitment and host composition in tropical forests.  相似文献   

16.
环境因子对AM真菌多样性的影响   总被引:29,自引:0,他引:29  
土壤,气候和地理因子等环境因子对丝枝菌根(AM)真菌多样性有重要影响,本文系统地综述了最近10年来AM真菌生态学在该方面的最新研究成果,分析当前研究中所存在的问题和动向。  相似文献   

17.
丛枝菌根真菌在土壤氮素循环中的作用   总被引:12,自引:0,他引:12  
陈永亮  陈保冬  刘蕾  胡亚军  徐天乐  张莘 《生态学报》2014,34(17):4807-4815
作为植物需求量最大的营养元素,氮素是陆地生态系统初级生产力的主要限制因子。丛枝菌根真菌能与地球上80%以上的陆生植物形成菌根共生体,帮助宿主植物吸收土壤中的P、N等矿质养分。目前,丛枝菌根真菌与氮素循环相关研究侧重于真菌对氮素的吸收形态以及共生体中氮的传输代谢机制,却忽略了丛枝菌根真菌在固氮过程、矿化与吸收过程、硝化过程、反硝化过程以及氮素淋洗过程等土壤氮素循环过程中所起到的潜在作用,并且越来越多的证据也表明丛枝菌根真菌是影响土壤氮素循环过程的重要因子。总结了丛枝菌根真菌可利用的氮素形态及真菌的氮代谢转运相关基因的研究现状;重点分析了丛枝菌根真菌在调控土壤氮素循环过程中的潜在作用以及在生态系统中的重要生态学意义,同时提出了丛枝菌根真菌在土壤氮素循环过程中一些需要深入研究的问题。  相似文献   

18.
几种生态环境中AM真菌多样性比较研究   总被引:17,自引:3,他引:17  
王发园  刘润进  林先贵  周健民 《生态学报》2003,23(12):2666-2671
对渤海湾的海岛林地(IFL),黄河三角洲盐碱地(SAS)、鲁西南煤矿(CMS)和内蒙古退化草原(DGL)等几种生态环境中丛枝菌根(Arbuscular mycorrhiza,AM)真菌的多样性进行了调查。结果表明,在所调查的样点中,AM真菌的物种多样性不同,IFL中的最高,其次是SAS,CMS和DGL的最低。各地AM真菌种的丰度、孢子密度、频度、相对多度等也差异较大。这与各生态环境中的生态因子的差异相关。在总体上,Glomus属在各采样点出现的频度和相对多度最高,其次是Acaulospora属。但不同生态环境之问又存在差异,例如CMS中Acaulospora属的频度和相对多度比Glomus属的高。在IFL中,Gigaspora属的相对多度比Acaulospora属的高。各生态环境中的生态优势种不同,如在CMS中是A.mellea,在IFL和SAS土壤中却分别是G.margarita和G.caledonium,而DGL中各个种的分布却较均衡。  相似文献   

19.
20.
In 1998, a toxic mine spill polluted a 55-km2 area in a basin southward to Doñana National Park (Spain). Subsequent attempts to restore those trace element-contaminated soils have involved physical, chemical, or biological methodologies. In this study, the restoration approach included application of different types and doses of organic amendments: biosolid compost (BC) and leonardite (LEO). Twelve years after the last addition, molecular analyses of arbuscular mycorrhizal (AM) fungal communities associated with target plants (Lamarckia aurea and Chrysanthemum coronarium) as well as analyses of trace element concentrations both in soil and in plants were performed. The results showed an improved soil quality reflected by an increase in soil pH and a decrease in trace element availability as a result of the amendments and dosages. Additionally, the phylogenetic diversity of the AM fungal community increased, reaching the maximum diversity at the highest dose of BC. Trace element concentration was considered the predominant soil factor determining the AM fungal community composition. Thereby, the studied AM fungal community reflects a community adapted to different levels of contamination as a result of the amendments. The study highlights the long-term effect of the amendments in stabilizing the soil system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号