首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Visceral leishmaniasis (VL) is one of the most important parasitic diseases with approximately 350 million people at risk. Due to the non availability of an ideal drug, development of a safe, effective, and affordable vaccine could be a solution for control and prevention of this disease. In this study, a potential Th1 stimulatory protein- Triose phosphate isomerase (TPI), a glycolytic enzyme, identified through proteomics from a fraction of Leishmania donovani soluble antigen ranging from 89.9–97.1 kDa, was assessed for its potential as a suitable vaccine candidate. The protein- L. donovani TPI (LdTPI) was cloned, expressed and purified which exhibited the homology of 99% with L. infantum TPI. The rLdTPI was further evaluated for its immunogenicity by lymphoproliferative response (LTT), nitric oxide (NO) production and estimation of cytokines in cured Leishmania patients/hamster. It elicited strong LTT response in cured patients as well as NO production in cured hamsters and stimulated remarkable Th1-type cellular responses including IFN-ã and IL-12 with extremely lower level of IL-10 in Leishmania-infected cured/exposed patients PBMCs in vitro. Vaccination with LdTPI-DNA construct protected naive golden hamsters from virulent L. donovani challenge unambiguously (∼90%). The vaccinated hamsters demonstrated a surge in IFN-ã, TNF-á and IL-12 levels but extreme down-regulation of IL-10 and IL-4 along with profound delayed type hypersensitivity and increased levels of Leishmania-specific IgG2 antibody. Thus, the results are suggestive of the protein having the potential of a strong candidate vaccine.  相似文献   

4.
We investigated the properties of leishmania exosomes with respect to influencing innate and adaptive immune responses. Exosomes from Leishmania donovani modulated human monocyte cytokine responses to IFN-γ in a bimodal fashion by promoting IL-10 production and inhibiting that of TNF-α. Moreover, these vesicles were inhibitory with respect to cytokine responses (IL-12p70, TNF-α, and IL-10) by human monocyte-derived dendritic cells. Exosomes from wild-type (WT) L. donovani failed to prime monocyte-derived dendritic cells to drive the differentiation of naive CD4 T cells into IFN-γ-producing Th1 cells. In contrast, vesicles from heat shock protein (HSP)100(-/-) L. donovani showed a gain-of-function and proinflammatory phenotype and promoted the differentiation of naive CD4 lymphocytes into Th1 cells. Proteomic analysis showed that exosomes from WT and HSP100(-/-) leishmania had distinct protein cargo, suggesting that packaging of proteins into exosomes is dependent in part on HSP100. Treatment of C57BL/6 mice with WT L. donovani exosomes prior to challenge with WT organisms exacerbated infection and promoted IL-10 production in the spleen. In contrast, HSP100(-/-) exosomes promoted spleen cell production of IFN-γ and did not adversely affect hepatic parasite burdens. Furthermore, the proparasitic properties of WT exosomes were not species specific because BALB/c mice exposed to Leishmania major exosomes showed increased Th2 polarization and exacerbation of disease in response to infection with L. major. These findings demonstrate that leishmania exosomes are predominantly immunosuppressive. Moreover, to our knowledge, this is the first evidence to suggest that changes in the protein cargo of exosomes may influence the impact of these vesicles on myeloid cell function.  相似文献   

5.
The development of a vaccine against visceral leishmaniasis (VL) conferring long-lasting immunity remains a challenge. Identification and proteomic characterization of parasite proteins led to the detection of p45, a member of the methionine aminopeptidase family. To our knowledge the present study is the first known report that describes the molecular and immunological characterization of p45. Recombinant Leishmania donovani p45 (rLdp45) induced cellular responses in cured hamsters and generated Th1-type cytokines from peripheral blood mononuclear cells of cured/endemic VL patients. Immunization with rLdp45 exerted considerable prophylactic efficacy (~85%) supported by an increase in mRNA expression of iNOS, IFN-γ, TNF-α and IL-12 and decrease in TGF-β and IL-4, indicating its potential as a vaccine candidate against VL.  相似文献   

6.
We determine that OmpA of Shigella flexneri 2a is recognized by TLR2 and consequently mediates the release of proinflammatory cytokines and activates NF-κB in HEK 293 cells transfected with TLR2. We also observe that in RAW macrophages TLR2 is essential to instigate the early immune response to OmpA via NF-κB activation and secretion of cytokines and NO. Consistent with these results, TLR2 knockdown using siRNA abolishes the initiation of immune responses. Processing and presentation of OmpA depend on TLR2; MHCII presentation of the processed antigen and expression of CD80 significantly attenuated in TLR2 knockdown macrophages. The optimum production of IFN-γ by the macrophages:CD4(+) T cells co-culture depends on both TLR2 activation and antigen presentation. So, TLR2 is clearly recognized as a decisive factor in initiating host innate immune response to OmpA for the development of CD4(+) T cell adaptive response. Furthermore, we demonstrate in vivo that intranasal immunization of mice with OmpA selectively enhances the release of IFN-γ and IL-2 by CD4(+) T cells. Importantly, OmpA increases the level of IFN-γ production in Ag-primed splenocytes. The addition of neutralizing anti-IL-12p70 mAb to cell cultures results in the decreased release of OmpA-enhanced IFN-γ by Ag-primed splenocytes. Moreover, coincubation with OmpA-pretreated macrophages enhances the production of IFN-γ by OmpA-primed CD4(+) T cells, representing that OmpA may enhance IFN-γ expression in CD4(+) T cells through the induction of IL-12 production in macrophages. These results demonstrate that S. flexneri 2a OmpA may play a critical role in the development of Th1 skewed adaptive immune response.  相似文献   

7.
Leishmania is known to elicit Th2 response that causes leishmaniasis progression; on the other hand, Th1 cytokines restricts amastigote growth and disease progression. In this study, we report the potential of two leishmanial antigens (65 and 98?kDa, in combination) which enhance strong macrophage effector functions, viz., production of respiratory burst enzymes, nitric oxide, and Th1 cytokines. The identification of antigens were done by resolving the crude soluble antigens on SDS-PAGE and eluted by reverse staining method. Further, RAW264.7 macrophages were challenged with eluted antigens, and the innate immune response was observed by detecting respiratory burst enzymes, nitric oxide (NOx), TNF-α, IFN-γ, IL-12, toll-like receptors (TLRs) gene expression, and TLR-signaling proteins. These antigens increased the production of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase, NOx, TNF-α, IFN-γ, IL-12, TLR2, and p38 mitogen-activated protein kinase. These antigens also induced human peripheral blood mononuclear cells proliferation and Th1 cytokine production. This study concludes that these antigens induce innate immune response as well as have prophylactic efficacy.  相似文献   

8.
In this study, we tested the protective efficacy of recombinant Leishmania donovani iron superoxide dismutase B1 (SODB1) against Leishmania major infection in BALB/c mice. Mice were challenged with L. major 3weeks after the second boost immunization with rSODB1 alone or in the presence of adjuvants. Injection of BALB/c mice with rSODB1 alone elicited both humoral and cellular immune responses. Administration of rSODB1 with CpG ODN or GLA-SE (a synthetic toll-like receptor 4 agonist) adjuvant resulted in the induction of anti-SODB1 IgG1, and more importantly of significantly high levels of IgG2a isotype. Immunization of mice with rSODB1 alone or with adjuvant induced the production of IFN-γ by splenocytes in response to stimulation with L. major soluble leishmanial antigens (SLA). Moreover, immunization protocols involving rSODB1 resulted in a significant decrease in IL-10 as compared to controls. The presence of CpG ODN or GLA-SE adjuvant in the immunization protocols resulted in a relative increase in IFN-γ in response to stimulation with rSODB1 in comparison to immunization with rSODB1 alone. Mice immunized with rSODB1 plus CpG ODN or GLA-SE, were able to partially control their Leishmania infections, as indicated by the reduction in footpad swelling and parasite numbers, compared to controls. These results suggest that immunization with recombinant SODB1 protein together with CpG ODN or GLA-SE can be potential vaccine candidate against leishmaniasis.  相似文献   

9.
Visceral leishmaniasis (VL) caused by Leishmania donovani is a major parasitic disease prevalent in endemic regions of Bihar in India. In the absence of good chemotherapeutic options, there is a need to develop an effective vaccine against VL which should be dependent on the generation of a T helper type 1 (Th1) immune response. We have shown that soluble proteins from promastigote of a new clinical isolate of L. donovani (2001) ranging from 68 to 97.4 kDa (F2 fraction), induce Th1 responses in the peripheral blood mononuclear cells of cured Leishmania patients and hamsters and also showed significant prophylactic potential. To understand the nature of F2 proteins, it was further characterized using 2-DE, MALDI-TOF and MALDI-TOF/TOF-MS. In all, 63 spots were cut from a CBB stained gel for analysis and data was retrieved for 52 spots. A total of 33 proteins were identified including six hypothetical/unknown proteins. Major immunostimulatory proteins were identified as elongation factor-2, p45, heat shock protein (HSP)70, HSP83, aldolase, enolase, triosephosphate isomerase, protein disulfideisomerase and calreticulin. This study substantiates the usefulness of proteomics in characterizing a complex protein fraction (F2) map of soluble L. donovani promastigote antigen identified as Th1 stimulatory for its potential as vaccine targets against VL.  相似文献   

10.
为了分析乳杆菌对致敏小鼠脾淋巴细胞分泌Th1/Th2细胞因子及抗体的体外影响,用牛乳β-乳球蛋白腹腔注射BALB/c小鼠建立过敏症模型,造模成功后,分离致敏小鼠的脾淋巴细胞并与4种活/死乳杆菌(107 CFU/mL)体外共同孵育,ELISA法检测细胞上清液中细胞因子(IL-12、IFN-γ和IL-4)和抗体(总IgE、β-Lg特异性IgE和总IgG)含量。4种活/死乳杆菌均可体外调节致敏小鼠脾淋巴细胞分泌细胞因子和抗体的水平,特别是热致死的发酵乳杆菌和嗜酸乳杆菌可提高淋巴细胞IL-12和IFN-γ的分泌,抑制IL-4的分泌,使其IFN-γ/IL-4比值(代表Th1/Th2细胞平衡)高于活菌,与空白对照组比较差异显著(P<0.05)。同时,这两株热致死菌还可显著下调细胞上清液中总IgE、特异性IgE和总IgG抗体的浓度(P<0.05)。试验结果表明乳杆菌可提高牛乳β-乳球蛋白致敏小鼠脾淋巴细胞的IFN-γ/IL-4比值,进而纠正Th2占优势的Th1/Th2失衡,下调抗体分泌量,且具有菌株特异性。  相似文献   

11.
Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.  相似文献   

12.
Modulation of chicken macrophage effector function by T(H)1/T(H)2 cytokines   总被引:1,自引:0,他引:1  
He H  Genovese KJ  Kogut MH 《Cytokine》2011,53(3):363-369
Regulation of macrophage activity by T(H)1/2 cytokines is important to maintain the balance of immunity to provide adequate protective immunity while avoiding excessive inflammation. IFN-γ and IL-4 are the hallmark T(H)1 and T(H)2 cytokines, respectively. In avian species, information concerning regulation of macrophage activity by T(H)1/2 cytokines is limited. Here, we investigated the regulatory function of chicken T(H)1 cytokines IFN-γ, IL-18 and T(H)2 cytokines IL-4, IL-10 on the HD11 macrophage cell line. Chicken IFN-γ stimulated nitric oxide (NO) synthesis in HD11 cells and primed the cells to produce significantly greater amounts of NO when exposed to microbial agonists, lipopolysaccharide, lipoteichoic acid, peptidoglycan, CpG-ODN, and poly I:C. In contrast, chicken IL-4 exhibited bi-directional immune regulatory activity: it activated macrophage NO synthesis in the absence of inflammatory agonists, but inhibited NO production by macrophages in response to microbial agonists. Both IFN-γ and IL-4, however, enhanced oxidative burst activity of the HD11 cells when exposed to Salmonella enteritidis. IL-18 and IL-10 did not affect NO production nor oxidative burst in HD11 cells. Phagocytosis and bacterial killing by the HD11 cells were not affected by the treatments of these cytokines. Infection of HD11 cells with S.enteritidis was shown to completely abolish NO production regardless of IFN-γ treatment. This study has demonstrated that IFN-γ and IL-4 are important T(H)1 and T(H)2 cytokines that regulate macrophage function in chickens.  相似文献   

13.
14.
Shibata T  Nagata K  Kobayashi Y 《Cytokine》2011,53(2):191-195
Early apoptotic neutrophils but not secondary necrotic ones down-regulate LPS-induced proinflammatory cytokine production of macrophages, thereby contributing to the resolution of inflammation. IFN-γ is also a well-known stimulant of macrophages, but how the apoptotic neutrophils affect IFN-γ-stimulated macrophages remains largely unexplored. Since IFN-γ induces the expression of inducible nitric oxide (NO) synthase, we examined the production of NO and various cytokines, including MIP-2, TNF-α, IL-12p40, IL-6, IL-10, and TGF-β, by IFN-γ-stimulated murine macrophages, the effect of coculturing the macrophages with early apoptotic or secondary necrotic neutrophils, and the regulatory role of NO in such cocultures. IFN-γ induced significant production of NO, IL-12p40, and IL-6 by macrophages, but not other cytokines. Early apoptotic neutrophils but not secondary necrotic ones promoted NO production, whereas secondary necrotic ones and their supernatants promoted TNF-α production. In contrast, both early apoptotic and secondary necrotic neutrophils suppressed IL-12p40 and IL-6 production. Furthermore, macrophages from inducible NO synthase-deficient mice produced significantly higher levels of MIP-2 than those from wild-type mice. Consistent with this, treatment of macrophages with l-NAME, an NO synthase inhibitor, also induced the production of a large amount of MIP-2. In conclusion, this study suggests that early apoptotic neutrophils are critical in the resolution of inflammation, but that secondary necrotic neutrophils may not cause an inflammatory response. Apoptotic neutrophils, however, appear not to modulate cytokine production via NO.  相似文献   

15.
《Anaerobe》2009,15(3):95-98
The aim of this study was to determine the effect of exogenous nitric oxide (NO) on the induction of murine splenic immune response to Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) in vitro. BALB/c mice were immunized with A. actinomycetemcomitans LPS and a control group was sham-immunized. Spleen cells were obtained, cultured and stimulated with A. actinomycetemcomitans LPS with or without the presence of S-nitroso acetyl-penicillamine (SNAP), a NO donor, and carboxy-PTIO, an NO scavenger. Culture supernatants were assessed for inducible nitric oxide synthase (iNOS) activity, specific IgG subclass levels, and both IFN-γ and IL-4 levels. The results showed that in A. actinomycetemcomitans LPS-stimulated cells, SNAP enhances iNOS activity but inhibits the levels of specific IgG2a and IFN-γ suggesting a Th1 response. The effect of SNAP on these immune parameters was ablated by carboxy-PTIO. These results suggest that exogenous NO may suppress the Th1-like immune response of A. actinomycetemcomitans LPS-stimulated murine spleen cells.  相似文献   

16.
The emergence of an increasing number of Leishmania donovani strains resistant to pentavalent antimonials (SbV), the first line of treatment for visceral leishmaniasis worldwide, accounts for decreasing efficacy of chemotherapeutic interventions. A kinetoplastid membrane protein-11 (KMP-11)-encoding construct protected extremely susceptible golden hamsters from both pentavalent antimony responsive (AG83) and antimony resistant (GE1F8R) virulent L. donovani challenge. All the KMP-11 DNA vaccinated hamsters continued to survive beyond 8 mo postinfection, with the majority showing sterile protection. Vaccinated hamsters showed reversal of T cell anergy with functional IL-2 generation along with vigorous specific anti-KMP-11 CTL-like response. Cytokines known to influence Th1- and Th2-like immune responses hinted toward a complex immune modulation in the presence of a mixed Th1/Th2 response in conferring protection against visceral leishmaniasis. KMP-11 DNA vaccinated hamsters were protected by a surge in IFN-gamma, TNF-alpha, and IL-12 levels along with extreme down-regulation of IL-10. Surprisingly the prototype candidature of IL-4, known as a disease exacerbating cytokine, was found to have a positive correlation to protection. Contrary to some previous reports, inducible NO synthase was actively synthesized by macrophages of the protected hamsters with concomitant high levels of NO production. This is the first report of a vaccine conferring protection to both antimony responsive and resistant Leishmania strains reflecting several aspects of clinical visceral leishmaniasis.  相似文献   

17.
A pre-designed plasmid containing the gene encoding the second subunit of Echinococcus granulosus AgB8 (EgAgB8/2) was used to study the effect of the immunization route on the immune response in BALB/c mice. Mice were immunized with pDRIVEEgAgB8/2 or pDRIVE empty cassette using the intramuscular (i.m.), intranasal (i.n.) or the epidermal gene gun (g.g.) routes. Analysis of the antibody response and cytokine data revealed that gene immunization by the i.m. route induced a marked bias towards a T helper type 1 (Th1) immune response as characterized by high IFN-γ gene expression and a low IgG1/IgG2a reactivity index (R.I.) ratio of 0.04. The i.n. route showed a moderate IFN-γ expression but a higher IgG1/IgG2a R.I. ratio of 0.25 indicating a moderate Th1 response. In contrast, epidermal g.g. immunization induced a Th2 response characterized by high IL-4 expression and the highest IgG1/IgG2a R.I. ratio of 0.58. In conclusion, this study showed the advantage of genetic immunization using the i.m. route and i.n. over the epidermal g.g. routes in the induction of Th1 immunity in response to E. granulosus AgB gene immunization.  相似文献   

18.
This study evaluates the ability of a novel TLR7 ligand (9-benzyl-2-butoxy-8-hydroxy adenine, called SA-2) to affect IL-17 response. The SA-2 activity on the expression of IL-17A and IL-17-related molecules was evaluated in acute and chronic models of asthma as well as in in vivo and in vitro α-galactosyl ceramide (α-GalCer)-driven systems. SA-2 prepriming reduced neutrophils in bronchoalveolar lavage fluid and decreased methacoline-induced airway hyperresponsiveness in murine asthma models. These results were associated with the reduction of IL-17A (and type 2 cytokines) as well as of molecules favoring Th17 (and Th2) development in lung tissue. The IL-17A production in response to α-GalCer by spleen mononuclear cells was inhibited in vitro by the presence of SA-2. Reduced IL-17A (as well as IFN-γ and IL-13) serum levels in mice treated with α-GalCer plus SA-2 were also observed. The in vitro results indicated that IL-10 produced by B cells and IL-10-promoting molecules such as IFN-α and IL-27 by dendritic cells are the major player for SA-2-driven IL-17A (and also IFN-γ and IL-13) inhibition. The in vivo experiments with anti-cytokine receptor Abs provided evidence of an early IL-17A inhibition essentially due to IL-10 produced by resident peritoneal cells and of a delayed IL-17A inhibition sustained by IFN-α and IL-27, which in turn drive effector T cells to IL-10 production. These findings suggest that such TLR7 agonist downregulating Th17 (as well as Th2) response has to be considered a valid candidate for novel vaccine formulations in allergy.  相似文献   

19.
IL-4 and IFN-γ are prototypical Th2 and Th1 cytokines, respectively. They reciprocally regulate a number of genes involved in Th1 vs Th2 immune balance. Using DD-PCR analysis, adenine nucleotide translocase (ANT) 3, an enzyme which exchanges ATP and ADP through mitochondrial membrane, has been identified as a novel target counter-regulated by IL-4 and IFN-γ. We have observed that IL-4 and IFN-γ each up-regulates ANT3 in T cells both at mRNA and protein levels, while cotreatment of IL-4 and IFN-γ counter-regulates ANT3 expression. In contrast, other isoforms of ANT were not affected by IL-4 or IFN-γ. Emplyoing transfection and overexpression of STAT6 and STAT1 in STAT-deficient cells, we demonstrate that induction of ANT3 by IL-4 and IFN-γ proceeds via pathways involving STAT6 and STAT1, respectively. Furthermore, regulation of ANT3 expression by IL-4 and IFN-γ correlated with the modulation T cell survival by these cytokines from dex-induced apoptosis. Considering the critical role of mitochondrial ANTs in energy metabolism and apoptosis, ANT3 regulation by IL-4 and IFN-γ may have a functional implication in cytokine-mediated T cell survival.  相似文献   

20.
We have evaluated the effect of combining CD2 with conventional antimonial (sb) therapy in protection in BALB/c mice infected with either drug sensitive or resistant strain of Leishmania donovani with 3×10(7) parasites via-intra-cardiac route. Mice were treated with anti CD2 adjunct SAG sub-cutaneously twice a week for 4 weeks. Assessment for measurement of weight, spleen size, anti-Leishmania antibody titer, T cell and anti-leishmanial macrophage function was carried out day 0, 10, 22 and 34 post treatments. The combination therapy was shown boosting significant proportion of T cells to express CD25 compared to SAG monotherapy. Although, the level of IFN-γ was not statistically different between combination vs monotherapy (p=0.298) but CD2 treatment even alone significantly influenced IFN-γ production than either SAG treatment (p=0.045) or with CD2 adjunct SAG treatment (p=0.005) in Ld-S strain as well as in Ld-R strain. The influence of CD2 adjunct treatment was also documented in anti-leishmanial functions in macrophages. As shown, the super-oxide generation began enhancing very early on day 10 after SAG treatment with CD2 during which SAG action was at minimum. Interestingly, the super-oxide generation ability remained intact in macrophage after treatment with immuno-chemotherapy even in mice infected with Leishmania resistant strain. Unlike SAG treatment, treatment of SAG with CD2 also led to production of nitric oxide and TNF-α, resulting in resulting in most effective clearance of L. donovani from infected macrophages. Our results indicate that CD2, which can boost up a protective Th1 response, might also be beneficial to enable SAG to induce Macrophages to produce Leishmanicidal molecules and hence control the infection in clinical situation like Kala-azar. Drug resistance is the major impedance for disease control but the encouraging results obtained after infecting mice with resistant strain of the parasite strongly imply that this drug can be effective even in treating resistant cases of Kala-azar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号