首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For T cell activation, two signals are required, i.e., a T cell receptor (TCR)/CD3-mediated main signal and a CD28-mediated costimulatory signal. CD28 binds to its ligand (CD80 or CD86) and transduces the most important costimulatory signal. The cytoplasmic domain of the CD28 molecule, composed of 41 amino acids, does not contain any intrinsic enzyme activity. The cytoplasmic domain of CD28 is remarkably conserved among species and is associated with a number of signaling molecules that affect the main signal. We report here that a tyrosine phosphorylated 100-kDa protein (ppl00) was coupled to the CD28 cytoplasmic domain in Jurkat and human peripheral T cells. The pp100 was distinguished from other CD28 associated molecules such as Vav, STAT5, PI 3-kinase, Valosin-containing protein (VCP), Nucleolin, Gab2 (Grb2-associated binding protein 2), and STAT6. The tyrosine phosphorylation of pp100 coprecipitated with CD28 was enhanced by CD3 stimulation by the specific antibody, tyrosine phosphatase inhibitor and PKC activator. Tyrosine phosphorylation of pp100 was attenuated by the prior addition of PKC inhibitor. These findings indicate that pp100 is a novel tyrosine phosphorylated protein coupled to CD28 under continuous control of tyrosine phosphatases and might play a role in T cell activation augmented by a TCR/CD3-mediated main signal.  相似文献   

2.
CD28 provides important signals that lower the threshold of T cell activation, augment the production of IL-2, and promote T cell survival. The recent identification of a second family of costimulatory molecules within the TNFR family has reshaped the "two-signal" model of T cell activation. In this study the role of p75 as a T cell costimulatory molecule in controlling cell fate during TCR/CD28-mediated stimulation was examined. We found that p75-deficient T cells possess a profound defect in IL-2 production in response to TCR/CD28-mediated stimulation. Examination of key signaling intermediates revealed that TCR proximal events such as global tyrosine phosphorylation and ZAP70 phosphorylation, as well as downstream MAPK cascades are unperturbed in p75-deficient T cells. In contrast, p75 is nonredundantly coupled to sustained AKT activity and NF-kappaB activation in response to TCR/CD28-mediated stimulation. Moreover, p75-deficient T cells possess a defect in survival during the early phase of T cell activation that is correlated with a striking defect in Bcl-x(L) expression. These data indicate discrete effects of p75 on the intracellular signaling milieu during T cell activation, and reveal the synergistic requirement of TCR, CD28, and p75 toward optimal IL-2 induction and T cell survival. We propose that p75 acts as one of the earliest of the identified costimulatory members of the TNFR family, and is functionally linked to CD28 for initiating and determining T cell fate during activation.  相似文献   

3.
Clonal anergy is maintained independently of T cell proliferation   总被引:2,自引:0,他引:2  
Ag encounter in the absence of proliferation results in the establishment of T cell unresponsiveness, also known as T cell clonal anergy. Anergic T cells fail to proliferate upon restimulation because of the inability to produce IL-2 and to properly regulate the G(1) cell cycle checkpoint. Because optimal TCR and CD28 engagement can elicit IL-2-independent cell cycle progression, we investigated whether CD3/CD28-mediated activation of anergic T cells could overcome G(1) cell cycle block, drive T cell proliferation, and thus reverse clonal anergy. We show here that although antigenic stimulation fails to elicit G(1)-to-S transition, anti-CD3/CD28 mAbs allow proper cell cycle progression and proliferation of anergic T cells. However, CD3/CD28-mediated cell division does not restore Ag responsiveness. Our data instead indicate that reversal of clonal anergy specifically requires an IL-2-dependent, rapamycin-sensitive signal, which is delivered independently of cell proliferation. Thus, by tracing proliferation and Ag responsiveness of individual cells, we show that whereas both TCR/CD28 and IL-2-generated signals can drive T cell proliferation, only IL-2/IL-2R interaction regulates Ag responsiveness, indicating that proliferation and clonal anergy can be independently regulated.  相似文献   

4.
Costimulation by CD28 or lipid-raft-associated CD48 potentiate TCR-induced signals, cytoskeletal reorganization, and IL-2 production. We and others have proposed that costimulators function to construct a raft-based platform(s) especially suited for TCR engagement and sustained and processive signal transduction. Here, we characterize TCR/CD48 and TCR/CD28 costimulation in T cells expressing Lck Src homology 3 (SH3) mutants. We demonstrate that Lck SH3 functions after initiation of TCR-induced tyrosine phosphorylation and concentration of transducers within rafts, to regulate the costimulation-dependent migration of rafts to the TCR contact site. Expression of kinase-active/SH3-impaired Lck mutants disrupts costimulation-dependent raft recruitment, sustained TCR protein tyrosine phosphorylation, and IL-2 production. However, TCR-induced apoptosis, shown only to require "partial" TCR signals, is unaffected by expression of kinase-active/SH3-impaired Lck mutants. Therefore, two distinctly regulated raft reorganization events are required for processive and sustained "complete" TCR signal transduction and T cell activation. Together with recent characterization of CD28 and CD48 costimulatory activities, these findings provide a molecular framework for two signal models of T cell activation.  相似文献   

5.
6.
7.
An early event in T cell antigen receptor (TCR)-mediated signal transduction is the activation of a protein tyrosine kinase (PTK) pathway. An unidentified PTK activity and a kinase substrate termed ZAP-70 have previously been shown to associate with TCR zeta upon cross-linking of TCR beta. Here we report that TCR activation, by antibody cross-linking of either TCR beta or CD3 epsilon, results in the association of a PTK activity with both CD3 and TCR zeta. A number of in vitro PTK substrates are also associated with CD3 and TCR zeta, including CD3 epsilon, TCR zeta, p60fyn, p62yes, and a predominant 70-kDa protein (ZAP-70). The shared PTK activity and PTK substrates suggest that both CD3 and TCR zeta are involved in signal transduction via a shared pathway. We used [alpha-32P]gamma-azidoanilido ATP, a photoreactive analogue of ATP, to detect CD3-associated proteins that bound ATP upon TCR activation, reasoning that such proteins could represent PTKs. A 70-kDa protein bound [alpha-32P]gamma-azidoanilido ATP only upon TCR activation, and we propose that this protein and the 70-kDa PTK substrate are the same protein. Furthermore, we propose that this protein is responsible for the PTK activity observed to be associated with TCR zeta and CD3 upon TCR activation.  相似文献   

8.
CD28 provides a costimulatory signal that cooperates with the TCR/CD3 complex to induce T cell activation, cytokine production, and clonal expansion. We have recently shown that CD28 directly regulates progression of T lymphocytes through the cell cycle. Although a number of signaling pathways have been linked to the TCR/CD3 and to CD28, it is not known how these two receptors cooperate to induce cell cycle progression. Here, using cell-permeable pharmacologic inhibitors of phosphatidylinositol 3-hydroxykinase (PI3K) and mitogen-activated protein kinase kinase (MEK1/2), we show that cell cycle progression of primary T lymphocytes requires simultaneous activation of PI3K- and MEK1/2-dependent pathways. Decreased abundance of cyclin-dependent kinase inhibitor p27(kip1), which requires simultaneous TCR/CD3 and CD28 ligation, was dependent upon both MEK and PI3K activity. Ligation of TCR/CD3, but not CD28 alone, resulted in activation of MEK targets extracellular signal-related kinase 1/2, whereas ligation of CD28 alone was sufficient for activation of PI3K target protein kinase B (PKB; c-Akt). CD28 ligation alone was also sufficient to mediate inactivating phosphorylation of PKB target glycogen synthase kinase-3 (GSK-3). Moreover, direct inactivation of GSK-3 by LiCl in the presence of anti-CD3, but not in the presence of anti-CD28, resulted in down-regulation of p27(kip1), hyperphosphorylation of retinoblastoma tumor suppressor gene product, and cellular proliferation. Thus, inactivation of the PI3K-PKB target GSK-3 could substitute for CD28 but not for CD3 signals. These results show that the PI3K-PKB pathway links CD28 to cell cycle progression and suggest that p27(kip1) integrates mitogenic MEK- and PI3K-dependent signals from TCR and CD28 in primary T lymphocytes.  相似文献   

9.
10.
CD4+ T cells require two signals to produce maximal amounts of IL-2, i.e., TCR occupancy and an unidentified APC-derived costimulus. Here we show that this costimulatory signal can be delivered by the T cell molecule CD28. An agonistic anti-CD28 mAb, but not IL-1 and/or IL-6, stimulated T cell proliferation by tetanus toxoid-specific T cells cultured with Ag-pulsed, costimulation-deficient APC. Furthermore, the ability of B cell tumor lines to provide costimulatory signals to purified T cells correlated well with expression of the CD28 ligand B7/BB-1. Finally, like anti-CD28 mAb, autologous human APC appeared to stimulate a cyclosporine A-resistant pathway of T cell activation. Together, these results suggest that the two signals required for IL-2 production by CD4+ T cells can be transduced by the TCR and CD28.  相似文献   

11.
We have shown previously that T cells activated by optimal TCR and CD28 ligation exhibit marked proliferative heterogeneity, and approximately 40% of these activated cells fail entirely to participate in clonal expansion. To address how prior cell division influences the subsequent function of primary T cells at the single cell level, primary CD4+ T cells were subjected to polyclonal stimulation, sorted based on the number of cell divisions they had undergone, and restimulated by ligation of TCR/CD28. We find that individual CD4+ T cells exhibit distinct secondary response patterns that depend upon their prior division history, such that cells that undergo more rounds of division show incrementally greater IL-2 production and proliferation in response to restimulation. CD4+ T cells that fail to divide after activation exist in a profoundly hyporesponsive state that is refractory to both TCR/CD28-mediated and IL-2R-mediated proliferative signals. We find that this anergic state is associated with defects in both TCR-coupled activation of the p42/44 mitogen-activated protein kinase (extracellular signal-related kinase 1/2) and IL-2-mediated down-regulation of the cell cycle inhibitor p27kip1. However, these defects are selective, as TCR-mediated intracellular calcium flux and IL-2R-coupled STAT5 activation remain intact in these cells. Therefore, the process of cell division or cell cycle progression plays an integral role in anergy avoidance in primary T cells, and may represent a driving force in the formation of the effector/memory T cell pool.  相似文献   

12.
T cell activation requires co-engagement of the TCR with accessory and costimulatory molecules. However, the exact mechanism of costimulatory function is unknown. Mice lacking CD2 or CD28 show only mild deficits, demonstrating that neither protein is essential for T cell activation. In this paper we have generated mice lacking both CD2 and CD28. T cells from the double-deficient mice have a profound defect in activation by soluble anti-CD3 Ab and Ag, yet remain responsive to immobilized anti-CD3. This suggests that CD2 and CD28 may function together to facilitate interactions of the T cell and APC, allowing for efficient signal transduction through the TCR.  相似文献   

13.
High avidity ligation of the TCR induces negative selection in the thymus and can also induce apoptosis of peripheral T cells. Costimulation through CD28 enhances T cell activation and facilitates negative selection in the thymus, but the role of CD28 in peripheral T cell deletional tolerance has not been investigated. We used 2C CD28 wild-type and 2C CD28-deficient strains to assess the effects of CD28 and TCR avidity on peripheral T cell expansion and apoptosis. We compared the activation, division, expansion, and apoptosis of CD28(+/+) and CD28(-/-) 2C cells in response to self-Ag (K(b)), alloantigens with intermediate (K(bm3)), high (L(d)), or very high (L(d) + QL9 peptide) avidity. With intermediate avidity alloantigen, the CD28 signal enhanced T cell activation and expansion. However, when T cells encountered high avidity alloantigen, the CD28 signal reduced T cell expansion and increased apoptosis. These results indicate that the CD28 signal can down-regulate peripheral T cell responses by increasing apoptosis when TCR ligation exceeds a critical threshold.  相似文献   

14.
15.
CTLA-4 (CD152) engagement can down-regulate T cell activation and promote the induction of immune tolerance. However, the strategy of attenuating T cell activation by engaging CTLA-4 has been limited by sharing of its natural ligands with the costimulatory protein CD28. In the present study, a CTLA-4-specific single-chain Ab (scFv) was developed and expressed on the cell surface to promote selective engagement of this regulatory molecule. Transfectants expressing anti-CTLA-4 scFv at their surface bound soluble CTLA-4 but not soluble CD28. Coexpression of anti-CTLA-4 scFv with anti-CD3epsilon and anti-CD28 scFvs on artificial APCs reduced the proliferation and IL-2 production by resting and preactivated bulk T cells as well as CD4+ and CD8+ T cell subsets. Importantly, expression of anti-CTLA-4 scFv on the same cell surface as the TCR ligand was essential for the inhibitory effects of CTLA-4-specific ligation. CTLA-4-mediated inhibition of tyrosine phosphorylation of components of the proximal TCR signaling apparatus was similarly dependent on coexpression of TCR and CTLA-4 ligands on the same surface. These findings support a predominant role for CTLA-4 function in the modification of the proximal TCR signal. Using T cells from DO11.10 and 2C TCR transgenic mice, negative regulatory effects of selective CTLA-4 ligation were also demonstrated during the stimulation of Ag-specific CD4+ and CD8+ T cells by MHC/peptide complexes. Together these studies demonstrate that selective ligation of CTLA-4 using a membrane-bound scFv results in attenuated T cell responses only when coengaged with the TCR during T cell/APC interaction and define an approach to harnessing the immunomodulatory potential of CTLA-4-specific ligation.  相似文献   

16.
17.
18.
19.
Ligation of the TCR along with the coreceptor CD28 is necessary to elicit T cell activation in vivo, whereas TCR triggering alone does not allow a full T cell response. Upon T cell activation of human peripheral blood T cells, we found that the majority of cAMP was generated in T cell lipid rafts followed by activation of protein kinase A. However, upon TCR and CD28 coligation, beta-arrestin in complex with cAMP-specific phosphodiesterase 4 (PDE4) was recruited to lipid rafts which down-regulated cAMP levels. Whereas inhibition of protein kinase A increased TCR-induced immune responses, inhibition of PDE4 blunted T cell cytokine production. Conversely, overexpression of either PDE4 or beta-arrestin augmented TCR/CD28-stimulated cytokine production. We show here for the first time that the T cell immune response is potentiated by TCR/CD28-mediated recruitment of PDE4 to lipid rafts, which counteracts the local, TCR-induced production of cAMP. The specific recruitment of PDE4 thus serves to abrogate the negative feedback by cAMP which is elicited in the absence of a coreceptor stimulus.  相似文献   

20.
T cell activation via Leu-23 (CD69)   总被引:28,自引:0,他引:28  
The CD69 (Leu-23) activation Ag is a phosphorylated 28 to 32-kDa disulfide-linked homodimer that is rapidly induced after lymphocyte activation. CD69 is not present on the surface of peripheral blood resting T cells, but is constitutively expressed by CD3bright thymocytes. Activation of protein kinase C (PKC) by stimulation of the TCR/CD3 or by phorbol esters directly induces CD69 expression on T cells. In the attempt to elucidate the function of CD69 we investigated the ability of the CD69 glycoprotein to transmit an activation signal. Cross-linking of CD69 by mAb induced a prolonged elevation of intracellular [Ca2+], mostly due to an influx of extracellular Ca2+. This signal alone was unable to effectively activate PKC. When PKC was simultaneously activated by PMA, stimulation of CD69 induced IL-2 and IFN-gamma gene expression, enhancement of CD25 expression, and ultimately IL-2-dependent T cell proliferation. Both CD4+ and CD8+ peripheral T cells responded to CD69-mediated activation. Stimulation of CD69 induced proliferation of thymocytes as well as peripheral T cells, but both required independent PKC activation by PMA. Cyclosporin A, which does not prevent PKC-induced CD69 expression, completely suppressed CD69-induced IL-2 and IFN-gamma gene expression. Although the signal delivered by the CD69 initiates T cell proliferation, it is unable to trigger cytotoxicity programs in CD69+-activated T cells or T cell clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号