首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carboxamide fungicides target succinate dehydrogenase (SDH). Recently published monitoring studies have shown that Corynespora cassiicola isolates are resistant to one or several SDH inhibitors (SDHIs) with amino acid substitutions in the SDH B and D subunits. We confirmed, by site-directed mutagenesis of the sdhB and sdhD genes, that each of the mutations identified in the field strains of C. cassiicola conferred resistance to boscalid and, in some cases, cross-resistance to other SDHIs (fluopyram, carboxin and penthiopyrad). Analyses of the enzyme activity and sdhB and sdhD gene expression show that modifications (SdhB_H278Y and SdhD_H105R) that result in a decline in SDH enzyme activity may be complemented by gene overexpression. The SdhB_H278Y, SdhB_I280V and SdhD_H105R mutants suffered large fitness penalties based on their biological properties, including conidia production and germination, mycelial growth, pathogenicity or survival abilities under environment stress. However, fitness cost was not found in the SdhB_H278R, SdhD_D95E and SdhD_G109V mutants. In the evaluation of resistance to boscalid in 2018 and 2019, the frequency of the SdhD_D95E and SdhD_G109V genotypes in the Liaoning and Shandong provinces changed dramatically compared with 2005–2017, from low resistance frequency (0.53% for D95E and 2.53% for G109V) to dominant resistance frequency (17.28% for D95E and 15.38% for G109V). Considering both the fitness and increased frequency of these genotypes, we may infer that the SdhD_D95E and SdhD_G109V mutants will be the dominant resistance mutants in field.  相似文献   

2.
The cytochrome bc1 complex resides in the inner membrane of mitochondria and transfers electrons from ubiquinol to cytochrome c. This electron transfer is coupled to the translocation of protons across the membrane by the protonmotive Q cycle mechanism. This mechanism topographically separates reduction of quinone and reoxidation of quinol at sites on opposite sites of the membrane, referred to as center N (Qn site) and center P (Qp site), respectively. Both are located on cytochrome b, a transmembrane protein of the bc1 complex that is encoded on the mitochondrial genome. To better understand the parameters that affect ligand binding at the Qn site, we applied the Qn site inhibitor ilicicolin H to select for mutations conferring resistance in Saccharomyces cerevisiae. The screen resulted in seven different single amino acid substitutions in cytochrome b rendering the yeast resistant to the inhibitor. Six of the seven mutations have not been previously linked to inhibitor resistance. Ubiquinol-cytochrome c reductase activities of mitochondrial membranes isolated from the mutants confirmed that the differences in sensitivity toward ilicicolin H originated in the cytochrome bc1 complex. Comparative in vivo studies using the known Qn site inhibitors antimycin and funiculosin showed little cross-resistance, indicating different modes of binding of these inhibitors at center N of the bc1 complex.  相似文献   

3.
Multiple nonnucleoside inhibitor binding sites have been identified within the hepatitis C virus (HCV) polymerase, including in the palm and thumb domains. After a single treatment with a thumb site inhibitor (thiophene-2-carboxylic acid NNI-1), resistant HCV replicon variants emerged that contained mutations at residues Leu419, Met423, and Ile482 in the polymerase thumb domain. Binding studies using wild-type (WT) and mutant enzymes and structure-based modeling showed that the mechanism of resistance is through the reduced binding of the inhibitor to the mutant enzymes. Combined treatment with a thumb- and a palm-binding polymerase inhibitor had a dramatic impact on the number of replicon colonies able to replicate in the presence of both inhibitors. A more exact characterization through molecular cloning showed that 97.7% of replicons contained amino acid substitutions that conferred resistance to either of the inhibitors. Of those, 65% contained simultaneously multiple amino acid substitutions that conferred resistance to both inhibitors. Double-mutant replicons Met414Leu and Met423Thr were predominantly selected, which showed reduced replication capacity compared to the WT replicon. These findings demonstrate the selection of replicon variants dually resistant to two NS5B polymerase inhibitors binding to different sites of the enzyme. Additionally, these findings provide initial insights into the in vitro mutational threshold of the HCV NS5B polymerase and the potential impact of viral fitness on the selection of multiple-resistant mutants.  相似文献   

4.
For a quantitative understanding of the process of adaptation, we need to understand its "raw material," that is, the frequency and fitness effects of beneficial mutations. At present, most empirical evidence suggests an exponential distribution of fitness effects of beneficial mutations, as predicted for Gumbel-domain distributions by extreme value theory. Here, we study the distribution of mutation effects on cefotaxime (Ctx) resistance and fitness of 48 unique beneficial mutations in the bacterial enzyme TEM-1 β-lactamase, which were obtained by screening the products of random mutagenesis for increased Ctx resistance. Our contributions are threefold. First, based on the frequency of unique mutations among more than 300 sequenced isolates and correcting for mutation bias, we conservatively estimate that the total number of first-step mutations that increase Ctx resistance in this enzyme is 87 [95% CI 75-189], or 3.4% of all 2,583 possible base-pair substitutions. Of the 48 mutations, 10 are synonymous and the majority of the 38 non-synonymous mutations occur in the pocket surrounding the catalytic site. Second, we estimate the effects of the mutations on Ctx resistance by determining survival at various Ctx concentrations, and we derive their fitness effects by modeling reproduction and survival as a branching process. Third, we find that the distribution of both measures follows a Fréchet-type distribution characterized by a broad tail of a few exceptionally fit mutants. Such distributions have fundamental evolutionary implications, including an increased predictability of evolution, and may provide a partial explanation for recent observations of striking parallel evolution of antibiotic resistance.  相似文献   

5.
We have studied the phenotypic impact of adaptative Gag cleavage site mutations in patient-derived human immunodeficiency virus type 1 (HIV-1) variants having developed resistance to the protease inhibitor ritonavir or saquinavir. We found that Gag mutations occurred in a minority of resistant viruses, regardless of the duration of the treatment and of the protease mutation profile. Gag mutations exerted only a partial corrective effect on resistance-associated loss of viral fitness. Reconstructed viruses with resistant proteases displayed multiple Gag cleavage defects, and in spite of Gag adaptation, several of these defects remained, explaining the limited corrective effect of cleavage site mutations on fitness. Our data provide clear evidence of the interplay between resistance and fitness in HIV-1 evolution in patients treated with protease inhibitors.  相似文献   

6.
Inhibitors of the mitochondrial respiratory chain enzyme cytochrome bc1 (respiratory complex III) have been developed as antimicrobial agents. They are used in agriculture to control plant pathogenic fungi and in medicine against human pathogens, such as the malaria parasite Plasmodium falciparum, or Pneumocystis jiroveci (an opportunistic pathogenic fungus life-threatening in immuno-compromised patients). These respiratory inhibitors are thus effective against a broad range of important pathogens. Unfortunately, the problem of acquired resistance has rapidly emerged. A growing number of pathogen isolates resistant to inhibitor treatment have been reported, and this resistance is often linked to mutation within cytochrome b, one of the essential catalytic subunits of the complex. Saccharomyces cerevisiae is an invaluable model in order to assess the impact of the mutations on the sensitivity to the drugs, on the respiratory capacity and the fitness of cells. In this minireview, the inhibitors, their mode of action, and the mutations implicated in resistance and studied in yeast are briefly reviewed. Four mutations that are of particular importance in medicine and in agriculture are briefly reviewed and described in more detail and the molecular basis of resistance and of evolution of the mutations is discussed succinctly.  相似文献   

7.
Inhibitors of the mitochondrial respiratory chain enzyme cytochrome bc 1 (respiratory complex III) have been developed as antimicrobial agents. They are used in agriculture to control plant pathogenic fungi and in medicine against human pathogens, such as the malaria parasite Plasmodium falciparum , or Pneumocystis jiroveci (an opportunistic pathogenic fungus life-threatening in immuno-compromised patients). These respiratory inhibitors are thus effective against a broad range of important pathogens. Unfortunately, the problem of acquired resistance has rapidly emerged. A growing number of pathogen isolates resistant to inhibitor treatment have been reported, and this resistance is often linked to mutation within cytochrome b , one of the essential catalytic subunits of the complex. Saccharomyces cerevisiae is an invaluable model in order to assess the impact of the mutations on the sensitivity to the drugs, on the respiratory capacity and the fitness of cells. In this minireview, the inhibitors, their mode of action, and the mutations implicated in resistance and studied in yeast are briefly reviewed. Four mutations that are of particular importance in medicine and in agriculture are briefly reviewed and described in more detail and the molecular basis of resistance and of evolution of the mutations is discussed succinctly.  相似文献   

8.
9.
Paris M  Roux F  Bérard A  Reboud X 《Heredity》2008,101(6):499-506
The advantage of the resistance conferred by a mutation can sometimes be offset by a high fitness-cost penalty. This balance will affect possible fate of the resistance allele. Few studies have explored the impact of the genetic background on the expression of the resistance fitness cost and none has attempted to measure the variation in fitness-cost dominance. However, both the fitness penalty and its dominance may modify evolutionary trajectory and outcome. Here the impact of Arabidopsis thaliana intraspecific genetic diversity on fitness cost and its associated dominance was investigated by analysing 12 quantitative traits in crosses between a mutant conferring resistance to the herbicide 2,4-D and nine different natural genetic backgrounds. Fitness cost values were found to be more affected by intraspecific genetic diversity than fitness cost dominance, even though this effect depends on the quantitative trait measured. This observation has implications for the choice of the best strategy for preventing herbicide resistance development. In addition, our results pinpoint a potential compensatory improvement of the resistance fitness cost and its associated dominance by the genetic diversity locally present within a species.  相似文献   

10.
The introduction of extended-spectrum cephalosporins and β-lactamase inhibitors has driven the evolution of extended-spectrum β-lactamases (ESBLs) that possess the ability to hydrolyze these drugs. The evolved TEM ESBLs from clinical isolates of bacteria often contain substitutions that occur in the active site and alter the catalytic properties of the enzyme to provide an increased hydrolysis of extended-spectrum cephalosporins or an increased resistance to inhibitors. These active-site substitutions often result in a cost in the form of reduced enzyme stability. The evolution of TEM ESBLs is facilitated by mutations that act as global suppressors of protein stability defects in that they allow the enzyme to absorb multiple amino acid changes despite incremental losses in stability associated with the substitutions. The best-studied example is the M182T substitution, which corrects protein stability defects and is commonly found in TEM ESBLs or inhibitor-resistant variants from clinical isolates. In this study, a genetic selection for second-site mutations that could partially restore function to a severely destabilized primary mutant enabled the identification of A184V, T265M, R275Q, and N276D, which are known to occur in TEM ESBLs from clinical isolates, as suppressors of TEM-1 protein stability defects. Further characterization demonstrated that these substitutions increased the thermal stability of TEM-1 and were able to correct the stability defects of two different sets of destabilizing mutations. The acquisition of compensatory global suppressors of stability costs associated with active-site mutations may be a common mechanism for the evolution of novel protein function.  相似文献   

11.
One hope to maintain the benefits of antiviral therapy against the human immunodeficiency virus type 1 (HIV-1), despite the development of resistance, is the possibility that resistant variants will show decreased viral fitness. To study this possibility, HIV-1 variants showing high-level resistance (up to 1,500-fold) to the substrate analog protease inhibitors BILA 1906 BS and BILA 2185 BS have been characterized. Active-site mutations V32I and I84V/A were consistently observed in the protease of highly resistant viruses, along with up to six other mutations. In vitro studies with recombinant mutant proteases demonstrated that these mutations resulted in up to 10(4)-fold increases in the Ki values toward BILA 1906 BS and BILA 2185 BS and a concomitant 2,200-fold decrease in catalytic efficiency of the enzymes toward a synthetic substrate. When introduced into viral molecular clones, the protease mutations impaired polyprotein processing, consistent with a decrease in enzyme activity in virions. Despite these observations, however, most mutations had little effect on viral replication except when the active-site mutations V32I and I84V/A were coexpressed in the protease. The latter combinations not only conferred a significant growth reduction of viral clones on peripheral blood mononuclear cells but also caused the complete disappearance of mutated clones when cocultured with wild-type virus on T-cell lines. Furthermore, the double nucleotide mutation I84A rapidly reverted to I84V upon drug removal, confirming its impact on viral fitness. Therefore, high-level resistance to protease inhibitors can be associated with impaired viral fitness, suggesting that antiviral therapies with such inhibitors may maintain some clinical benefits.  相似文献   

12.
The fitness effects of antibiotic resistance mutations in antibiotic‐free conditions play a key role in determining the long‐term maintenance of resistance. Although resistance is usually associated with a cost, the impact of environmental variation on the cost of resistance is poorly understood. Here, we test the impact of heterogeneity in temperature and resource availability on the fitness effects of antibiotic resistance using strains of the pathogenic bacterium Pseudomonas aeruginosa carrying clinically important rifampicin resistance mutations. Although the rank order of fitness was generally maintained across environments, fitness effects relative to the wild type differed significantly. Changes in temperature had a profound impact on the fitness effects of resistance, whereas changes in carbon substrate had only a weak impact. This suggests that environmental heterogeneity may influence whether the costs of resistance are likely to be ameliorated by second‐site compensatory mutations or by reversion to wild‐type rpoB. Our results highlight the need to consider environmental heterogeneity and genotype‐by‐environment interactions for fitness in models of resistance evolution.  相似文献   

13.
Whether evolution is erratic due to random historical details, or is repeatedly directed along similar paths by certain constraints, remains unclear. Epistasis (i.e. non-additive interaction between mutations that affect fitness) is a mechanism that can contribute to both scenarios. Epistasis can constrain the type and order of selected mutations, but it can also make adaptive trajectories contingent upon the first random substitution. This effect is particularly strong under sign epistasis, when the sign of the fitness effects of a mutation depends on its genetic background. In the current study, we examine how epistatic interactions between mutations determine alternative evolutionary pathways, using in vitro evolution of the antibiotic resistance enzyme TEM-1 β-lactamase. First, we describe the diversity of adaptive pathways among replicate lines during evolution for resistance to a novel antibiotic (cefotaxime). Consistent with the prediction of epistatic constraints, most lines increased resistance by acquiring three mutations in a fixed order. However, a few lines deviated from this pattern. Next, to test whether negative interactions between alternative initial substitutions drive this divergence, alleles containing initial substitutions from the deviating lines were evolved under identical conditions. Indeed, these alternative initial substitutions consistently led to lower adaptive peaks, involving more and other substitutions than those observed in the common pathway. We found that a combination of decreased enzymatic activity and lower folding cooperativity underlies negative sign epistasis in the clash between key mutations in the common and deviating lines (Gly238Ser and Arg164Ser, respectively). Our results demonstrate that epistasis contributes to contingency in protein evolution by amplifying the selective consequences of random mutations.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) resistance to protease inhibitors (PI) is a major obstacle to the full success of combined antiretroviral therapy. High-level resistance to these compounds is the consequence of stepwise accumulation of amino acid substitutions in the HIV-1 protease (PR), following pathways that usually differ from one inhibitor to another. The selective advantage conferred by resistance mutations may depend upon several parameters: the impact of the mutation on virus infectivity in the presence or absence of drug, the nature of the drug, and its local concentration. Because drug concentrations in vivo are subject to extensive variation over time and display a markedly uneven tissue distribution, the parameters of selection for HIV-1 resistance to PI in treated patients are complex and poorly understood. In this study, we have reconstructed a large series of HIV-1 mutants that carry single or combined mutations in the PR, retracing the accumulation pathways observed in ritonavir-, indinavir-, and saquinavir-treated patients. We have then measured the phenotypic resistance and the drug-free infectivity of these mutant viruses. A deeper insight into the evolutionary value of HIV-1 PR mutants came from a novel assay system designed to measure the replicative advantage of mutant viruses as a function of drug concentration. By tracing the resultant fitness profiles, we determined the range of drug concentrations for which mutant viruses displayed a replicative advantage over the wild type and the extent of this advantage. Fitness profiles were fully consistent with the order of accumulation of resistance mutations observed in treated patients and further emphasise the key importance of local drug concentration in the patterns of selection of drug-resistant HIV-1 mutants.  相似文献   

15.
Little is known about the fitness and virulence consequences of single-nucleotide substitutions in RNA viral genomes, and most information comes from the analysis of nonrandom sets of mutations with strong phenotypic effect or which have been assessed in vitro, with their relevance in vivo being unclear. Here we used site-directed mutagenesis to create a collection of 66 clones of Tobacco etch potyvirus, each carrying a different, randomly chosen, single-nucleotide substitution. Competition experiments between each mutant and the ancestral nonmutated clone were performed in planta to quantitatively assess the relative fitness of each mutant genotype. Among all mutations, 40.9% were lethal, and among the viable ones, 36.4% were significantly deleterious and 22.7% neutral. Not a single case of beneficial effects was observed within the level of resolution of our measures. On average, the fitness of a genotype carrying a deleterious but viable mutation was 49% smaller than that for its unmutated progenitor. Deleterious mutational effects conformed to a beta probability distribution. The virulence of a subset of viable mutants was assessed as the reduction in the number of viable seeds produced by infected plants. Mutational effects on virulence ranged between 17% reductions and 24.4% increases. Interestingly, the only mutations showing a significant effect on virulence were hypervirulent. Competitive fitness and virulence were uncorrelated traits.  相似文献   

16.
Integrase (IN), an essential enzyme of human immunodeficiency virus (HIV), is an attractive antiretroviral drug target. The antiviral activity and resistance profile in vitro of a novel IN inhibitor, elvitegravir (EVG) (also known as JTK-303/GS-9137), currently being developed for the treatment of HIV-1 infection are described. EVG blocked the integration of HIV-1 cDNA through the inhibition of DNA strand transfer. EVG inhibited the replication of HIV-1, including various subtypes and multiple-drug-resistant clinical isolates, and HIV-2 strains with a 50% effective concentration in the subnanomolar to nanomolar range. EVG-resistant variants were selected in two independent inductions, and a total of 8 amino acid substitutions in the catalytic core domain of IN were observed. Among the observed IN mutations, T66I and E92Q substitutions mainly contributed to EVG resistance. These two primary resistance mutations are located in the active site, and other secondary mutations identified are proximal to these primary mutations. The EVG-selected IN mutations, some of which represent novel IN inhibitor resistance mutations, conferred reduced susceptibility to other IN inhibitors, suggesting that a common mechanism is involved in resistance and potential cross-resistance. The replication capacity of EVG-resistant variants was significantly reduced relative to both wild-type virus and other IN inhibitor-resistant variants selected by L-870,810. EVG and L-870,810 both inhibited the replication of murine leukemia virus and simian immunodeficiency virus, suggesting that IN inhibitors bind to a conformationally conserved region of various retroviral IN enzymes and are an ideal drug for a range of retroviral infections.  相似文献   

17.
Cherwa JE  Fane BA 《Journal of virology》2011,85(13):6589-6593
By acquiring resistance to an inhibitor, viruses can become dependent on that inhibitor for optimal fitness. However, inhibitors rarely, if ever, stimulate resistant strain fitness to values that equal or exceed the uninhibited wild-type level. This would require an adaptive mechanism that converts the inhibitor into a beneficial replication factor. Using a plasmid-encoded inhibitory external scaffolding protein that blocks φX174 assembly, we previously demonstrated that such mechanisms are possible. The resistant strain, referred to as the evolved strain, contains four mutations contributing to the resistance phenotype. Three mutations confer substitutions in the coat protein, whereas the fourth mutation alters the virus-encoded external scaffolding protein. To determine whether stimulation by the inhibitory protein coevolved with resistance or whether it was acquired after resistance was firmly established, the strain temporally preceding the previously characterized mutant, referred to as the intermediary strain, was isolated and characterized. The results of the analysis indicated that the mutation in the virus-encoded external scaffolding protein was primarily responsible for stimulating strain fitness. When the mutation was placed in a wild-type background, it did not confer resistance. The mutation was also placed in cis with the plasmid-encoded dominant lethal mutation. In this configuration, the stimulating mutation exhibited no activity, regardless of the genotype (wild type, evolved, or intermediary) of the infecting virus. Thus, along with the coat protein mutations, stimulation required two external scaffolding protein genes: the once inhibitory gene and the mutant gene acquired during evolution.  相似文献   

18.
Enfuvirtide (ENF/T-20/Fuzeon), the first human immunodeficiency virus (HIV) entry inhibitor to be licensed, targets a structural intermediate of the entry process. ENF binds the HR1 domain in gp41 after Env has bound CD4, preventing conformational changes needed for membrane fusion. Mutations in HR1 that confer ENF resistance can arise following ENF therapy. ENF resistance mutations were introduced into an R5- and X4-tropic Env to examine their impact on fusion, infection, and sensitivity to different classes of entry inhibitors and neutralizing antibodies. HR1 mutations could reduce infection and fusion efficiency and also delay fusion kinetics, likely accounting for their negative impact on viral fitness. HR1 mutations had minimal effect on virus sensitivity to other classes of entry inhibitors, including those targeting CD4 binding (BMS-806 and a CD4-specific monoclonal antibody [MAb]), coreceptor binding (CXCR4 inhibitor AMD3100 and CCR5 inhibitor TAK-779), or fusion (T-1249), indicating that ENF-resistant viruses can remain sensitive to other entry inhibitors in vivo. Some HR1 mutations conferred increased sensitivity to a subset of neutralizing MAbs that likely target fusion intermediates or with epitopes preferentially exposed following receptor interactions (17b, 48D, 2F5, 4E10, and IgGb12), as well as sera from some HIV-positive individuals. Mechanistically, enhanced neutralization correlated with reduced fusion kinetics, indicating that, in addition to steric constraints, kinetics may also limit virus neutralization by some antibodies. Therefore, escape from ENF comes at a cost to viral fitness and may confer enhanced sensitivity to humoral immunity due to prolonged exposure of epitopes that are not readily accessible in the native Env trimer. Resistance to other entry inhibitors was not observed.  相似文献   

19.
Wichmann G  Bergelson J 《Genetics》2004,166(2):693-706
Establishing durable disease resistance in agricultural crops, where much of the plant defense is provided through effector-R gene interactions, is complicated by the ability of pathogens to overcome R gene resistance by losing the corresponding effector gene. Many proposed methods to maintain disease resistance in the field depend on the idea that effector gene loss results in a fitness cost to the pathogen. In this article we test for fitness costs of effector gene function loss. We created directed knockouts of up to four effector genes from the bacterial plant pathogen Xanthomonas axonopodis pv. vesicatoria (Xav) and examined the effect of the loss of a functional gene product on several important fitness parameters in the field. These traits included transmission, lesion development, and epiphytic survival. We found that the products of all four effector genes had significant and often additive effects on fitness traits. Additional greenhouse tests revealed costs of effector gene loss on in planta growth and further showed that the effects on lesion development were separable from the effects on growth. Observable fitness effects of the three plasmid-borne effector genes were dependent upon the loss of functional avrBs2, indicating that complex functional interactions exist among effector genes with Xav.  相似文献   

20.
Epistatic interactions between resistance mutations in antibiotic-free environments potentially play a crucial role in the spread of resistance in pathogen populations by determining the fitness cost associated with resistance. We used an experimental evolution approach to test for epistatic interactions between 14 different pairs of rifampicin mutations in the pathogenic bacterium Pseudomonas aeruginosa in 42 different rifampicin-free environments. First, we show that epistasis between rifampicin-resistance mutations tends to be antagonistic: the fitness effect of having two mutations is generally smaller than that predicted from the effects of individual mutations on the wild-type. Second, we show that sign epistasis between resistance mutations is both common and strong; most notably, pairs of deleterious resistance mutations often partially or completely compensate for each others' costs, revealing a novel mechanism for compensatory adaptation. These results suggest that antagonistic epistasis between intragenic resistance mutations may be a key determinant of the cost of antibiotic resistance and compensatory adaptation in pathogen populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号