首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerebellar deficient folia (cdf) is a recently identified mouse mutation causing ataxia and cerebellar abnormalities including lobulation defects and abnormal placement of a specific subset of Purkinje cells. To understand the etiology of the cerebellar defects in cdf mutant mice, we examined postnatal development of the cdf/cdf cerebellum. Our results demonstrate that Purkinje cell ectopia and foliation defects are apparent at birth, suggesting the cdf mutation disrupts the positioning of many, but not all, Purkinje cells during development. In addition to cerebellar abnormalities, we observed lamination defects in the hippocampus of cdf mutant mice, although neocortical defects were not seen. Furthermore, ectopic Purkinje cells in cdf/cdf mice express an increased level of Dab1 protein, as previously observed in mice with mutations in genes in the reelin signaling pathway. Lastly, analysis of cdf <-->ROSA26 chimeric mice demonstrated that the cdf mutation is intrinsic to Purkinje cells. We suggest that the cdf gene product is required in a subset of Purkinje cells, possibly to respond to Reelin signals.  相似文献   

2.
The membrane lipids were examined in the cerebellum from five patients who died with Rett syndrome (RS). The major lipids of cerebellar folia and white matter did not show any difference compared with age-matched controls. There were slightly low values for cerebrosides, a biochemical marker for myelin, in cerebellar folia but high values in white matter of corpus medullare. The ganglioside concentration was reduced in one case which had shown marked astrocytosis at histological examination. Astrocyte associated gangliosides were significantly increased in this case, but their proportion was also increased in the four other patients. Lacto series acidic glycosphingolipids, 3′-LM1 and LK1, closely associated with Purkinje cells were reduced in the Rett cases which fits well with neuropathological examination demonstrating the loss of Purkinje cells. The most prominent finding was a decreased proportion of gangliosides GD1a and GT1b in cerebellar folia and white matter. The decreased proportion of GD1a might reflect an abnormality of synaptogenesis in RS and would be compatible with the clinical profile of this disease.  相似文献   

3.
Summary The effects of microelectrophoretically applied melatonin (aMT), 5-methoxytryptophol (ML), 5-hydroxytryptophol (HL) and noradrenaline (NA) on the electrical activity of cerebellar Purkinje and other cells during both day- and nighttime were studied in urethane-anesthetized intact and pinealectomized homing pigeons and guinea pigs.In the intact pigeon, equal numbers of Purkinje cells were excited and inhibited by aMT and ML, whilst the responses to HL were predominantly inhibitory. The responses varied significantly depending on whether the cells were tested during the day or at night (P<0.001). Pinealectomy abolished the observed day/night differences. In intact pigeons most of the other cerebellar units were inhibited by aMT and ML, whilst HL elicited an excitation in about 50% of the units.In the guinea pig most of the Purkinje cells were inhibited by aMT and ML, whereas HL caused no response in most of the units. No significant 24-h rhythmicity in response to the indoles could be observed. The responses of the other cerebellar units were more complicated. aMT caused an excitation in most of the units, whilst the predominant response caused by ML was inhibition. Only 30% of these units responded to HL; the remainder showed no measurable responses.It is apparent from these studies that pineal indoleamines may play a modulatory role in the cerebellum.Abbreviations ECG electrocardiogram - GABA gamma-aminobutyric acid  相似文献   

4.
The cerebellar cortex and its sole output, the Purkinje cell, have been implicated in motor coordination, learning and cognitive functions. Therefore, the ability to generate Purkinje cell-specific mutations in physiologically relevant genes is of particular neurobiological interest. A suitable approach is the Cre/loxP strategy that allows temporally and spatially controlled gene inactivation. Here, we present the characterization of transgenic mouse strains expressing Cre recombinase controlled by the L7/pcp-2 gene. Endogenous L7/pcp-2 protein is expressed exclusively in Purkinje cells and retinal bipolar neurones. Recombination was detected by beta-galactosidase histochemistry in tissues from crosses of the L7/pcp-2:Cre transgenic lines with two different indicator strains, GtROSA26 and ACZL. Purkinje cells in all folia of the cerebellum displayed intense beta-galactosidase staining, whereas only few blue cells were observed in the retina and other parts of the CNS. Thus, these transgenic lines are potentially of great importance for genetic manipulations in cerebellar Purkinje cells.  相似文献   

5.
In experiments on guinea pigs (from newborn to adults), studies have been made on the extensor, support and lift reactions, as well as on the activity of cerebellar Purkinje cells in the same animals. First signs of immature lift, extensor and support reactions were observed already 12th after birth. At this period, mean discharge frequency in Purkinje cells was significantly lower than in the adult animals, reaching 11.5 +/- 1.2 imp/s for simple spikes and 0.45 +/- 0.05 imp/s for complex ones. Complete maturation of lift, extensor and support reactions takes place to the beginning of the 2nd week (8-9 days) of postnatal life. Within this period, significant changes in the activity of Purkinje cells were observed: mean discharge frequency of simple and complex spikes increased correspondingly up to 17.9 +/- 2.3 and 1.48 +/- 0.25 imp/s. At the same time, the mean discharge frequency in Purkinje cells, the average duration of inhibition pause, and the response latency became more stable.  相似文献   

6.
The Lugaro cell is a feedback interneuron of the cerebellar cortex, recognizable by its characteristic morphology. Postnatal neuronal migration to the cortex has been described for several cerebellar interneurons. Since in our previous studies we observed Lugaro-like cells (LCs) in the white matter (WM) and internal granular layer (IGL) of the cerebellum of young cats, we assumed that a proportion of these cells migrate also postnatally to their destination. In the present study using and immunostaining for the metabotropic glutamate receptor mGluR1α and neurofilament protein SMI 311 the number and spatial distribution of LCs at different postnatal days were investigated. We found that the number and distribution of both mGluR1a-immunoreactive (ir) and of SMI 311-ir LCs changed with age in the developing cerebellar cortex of kittens: developing LCs express mGluR1α already in the newborn, while expression of SMI 311-ir in LCs appears only about a week later. At postnatal day 1 (P1) relatively few mGluR1-ir LCs were detected in the WM and at the border of WM and IGL. Later, their number increased sharply until P15 (6–7 fold) and decreased continuously between P15 and P135. SMI 311-ir LCs were not present at P1 and even at P8 only a few were observed in the WM or in infraganglionic positions. Their number increased gradually (12–14 fold) until adulthood when their number was stabilized at 8.000–10.000/cerebellum. At the same time the number of probably ectopic SMI 311-ir LCs decreased with age: at P22 about one third of them was found in “ectopic” position, whereas in the adult cat only about 10–12% of LCs's was either in the WM or scattered in the whole depth of the granular layer. These results suggest that: (1) most LCs appear in the cerebellar cortex postnatally; and (2) postnatal migration and incorporation of LCs to the cortex is a much longer process than previously expected, occurring even after the cytoarchitectonic built-up (about P65–P70 in cat) of the cerebellum.  相似文献   

7.
Several metabotropic glutamate receptor (mGluR) subtypes have been identified in the cerebellar cortex that are targeted to different compartments in cerebellar cells. In this study, preembedding immunocytochemical methods for electron microscopy were used to investigate the subcellular distribution of the mGluR1b splice variant in the rat cerebellar cortex. Dendritic spines of Purkinje cells receiving parallel fiber synaptic terminals were immunoreactive for mGluR1b. With a preembedding immunogold method, approximately 25% of the mGluR1b immunolabeling was observed perisynaptically within 60 nm from the edge of the postsynaptic densities. Values of extrasynaptic gold particles beyond the first 60 nm were maintained at between 10 and 18% along the whole intracellular surface of the dendritic spine membranes of Purkinje cells. For comparison, the distribution of mGluR1a was studied. A predominant (approximately 37%) perisynaptic localization of mGluR1a was seen in dendritic spines of Purkinje cells, dropping the extrasynaptic labeling to 15% in the 60-120-nm bin from the edge of the postsynaptic specialization. Our results reveal that mGluR1b and mGluR1a are localized to the same subcellular compartments in Purkinje cells but that the densities of the perisynaptic and extrasynaptic pools were different for both isoforms. The compartmentalization of mGluR1b and mGluR1a might serve distinct requirements in cerebellar neurotransmission.  相似文献   

8.
A sporadic outbreak of congential cerebellar ataxia (CCA) was seen in calves. The abnormality of this disorder of the central nervous system characteristic was cerebellar hypoplasia, which was observed in eight calves. The cerebellum was almost completely absent in some of these calves and approximately one-fifth of the normal size in some others. Six of the eight calves were also affected with hydrocephaly. The significant changes of the cerebellum were complete or partial destruction of the cortex, deficiency of granules and/or Purkinje cells, clumping of the remaining granule cells, and an irregular cavity formation in the terminal portion of the folium. The clinicopathological changes of CCA quite closely resembled those of the bovine viral diarrhea-mucosal disease virus infection.  相似文献   

9.
We investigated the enzymes involved in the NADPH-diaphorase (d) reaction in the rat and pig bladder urothelium. The urothelial cell layer displayed intense and uniform NADPH-d activity. Preincubation with the flavoprotein inhibitor diphenyleneiodionium chloride (DPI) and the alkaline phosphatase inhibitor levamisole concentration-dependently decreased the urothelial NADPH-d activity. Immunoreactivities to neuronal (n), endothelial (e), or inducible (i) nitric oxide synthase (NOS) were not detected in rat or pig urothelial cells. In rats, the urothelium was uniformly immunoreactive for NADPH cytochrome P450 reductase, whereas the pig urothelium displayed inconsistent labeling. In lipopolysaccharide (LPS)-treated rats, the bladder urothelium showed positive iNOS immunoreactivity. The iNOS labeling was found predominantly in cells located in the basal layer of the urothelium. In the pig bladder mucosa, a Ca2+-dependent NOS activity was evident in cytosolic and particulate fractions that was quantitatively comparable to the NOS activity found in the smooth muscle. In ultrastructural studies of urothelial cells, NADPH-d reaction products were found predominantly on membranes of the nuclear envelope, endoplasmatic reticulum and mitochondria. In conclusion, NADPH-d staining of the urothelium cannot be taken as an indicator for the presence of constitutively expressed NOS. Activity of alkaline phosphatase and cytochrome P450 reductase may account for part of the NADPH-d reaction in urothelial cells. However, LPS treatment of rats caused expression of iNOS in urothelial cells.  相似文献   

10.
One aspect of integration of implanted neurons into the neuronal circuitry of a defective host brain is the re-establishment of a host-to-graft afferent innervation. We addressed this issue by using the adult cerebellum of Purkinje cell degeneration (pcd) mutant mice, which lack virtually all Purkinje cells after postnatal day (P) 45. Purkinje cells constitute one of the cerebellar cell types being innervated by axons of raphé serotonin (5-HT) neurons. In normal mice, 5-HT-immunoreactive fibers are distributed to all cerebellar folia. Following Purkinje cell loss inpcd mice, cerebellar 5-HT-immunoreactive fibers persist. Cerebellar cell suspensions were prepared from embryonic day (E) 11–13 normal mouse embryos and were intraparenchymally grafted into the cerebellum ofpcd mutants either directly or after pre-treatment with 5, 7-dihydroxytryptamine (5,7-DHT) to selectively remove 5-HT cells of donor origin. The state of Purkinje cells and 5-HT axons was monitored in alternate sections by 28-kDa Ca2+-binding protein (CaBP) and 5-HT immunocytochemistry, respectively. Serotonin-immunoreactive axons were seen in the grafts from 5 to 32 days after transplantation. In some of the grafts which had not been pre-treated with 5,7-DHT, a small number of 5-HT-immunoreactive cell bodies was found, indicating that part of the 5-HT fiber innervation of the graft could actually derive from donor cells. On the other hand, in grafts pre-treated with 5,7-DHT, no 5-HT cell bodies were seen in the grafted cerebellum; 5-HT fibre innervation of the grafts occurred, but it appeared to be slightly less robust compared to situations of co-grafted 5-HT cell bodies. These findings suggest that host 5-HT fibers are able to provide afferent innervation to donor cerebellar tissue; the presence of co-grafted 5-HT cells may augment such an innervation.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

11.
Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We have evaluated the effects of high dose and long-term EPO treatment in hypoxic-ischemic (HI) injury in 3 days old (P3) rat pups using histopathology, magnetic resonance imaging (MRI) and spectroscopy (MRS) as well as functional assessment with somatosensory-evoked potentials (SEP). After HI, rat pups were assessed by MRI for initial damage and were randomized to receive EPO or vehicle. At the end of treatment period (P25) the size of resulting cortical damage and white matter (WM) microstructure integrity were assessed by MRI and cortical metabolism by MRS. Whisker elicited SEP were recorded to evaluate somatosensory function. Brains were collected for neuropathological assessment. The EPO treated animals did not show significant decrease of the HI induced cortical loss at P25. WM microstructure measured by diffusion tensor imaging was improved and SEP response in the injured cortex was recovered in the EPO treated animals compared to vehicle treated animals. In addition, the metabolic profile was less altered in the EPO group. Long-term treatment with high dose EPO after HI injury in the very immature rat brain induced recovery of WM microstructure and connectivity as well as somatosensory cortical function despite no effects on volume of cortical damage. This indicates that long-term high-dose EPO induces recovery of structural and functional connectivity despite persisting gross anatomical cortical alteration resulting from HI.  相似文献   

12.
The adult cerebellar cortex is comprised of reproducible arrays of transverse zones and parasagittal stripes of Purkinje cells. Adult stripes are created through the perinatal rostrocaudal dispersion of embryonic Purkinje cell clusters, triggered by signaling through the Reelin pathway. Reelin is secreted by neurons in the external granular layer and deep cerebellar nuclei and binds to two high affinity extracellular receptors on Purkinje cells-the Very low density lipoprotein receptor (Vldlr) and apolipoprotein E receptor 2 (Apoer2). In mice null for either Reelin or double null for Vldlr and Apoer2, Purkinje cell clusters fail to disperse. Here we report that animals null for either Vldlr or Apoer2 individually, exhibit specific and parasagittally-restricted Purkinje cell ectopias. For example, in mice lacking Apoer2 function immunostaining reveals ectopic Purkinje cells that are largely restricted to the zebrin II-immunonegative population of the anterior vermis. In contrast, mice null for Vldlr have a much larger population of ectopic Purkinje cells that includes members from both the zebrin II-immunonegative and -immunopositive phenotypes. HSP25 immunoreactivity reveals that in Vldlr null animals a large portion of zebrin II-immunopositive ectopic cells are probably destined to become stripes in the central zone (lobules VI-VII). A small population of ectopic zebrin II-immunonegative Purkinje cells is also observed in animals heterozygous for both receptors (Apoer2(+/-): Vldlr(+/-)), but no ectopia is present in mice heterozygous for either receptor alone. These results indicate that Apoer2 and Vldlr coordinate the dispersal of distinct, but overlapping subsets of Purkinje cells in the developing cerebellum.  相似文献   

13.
NM23 (NDP kinase) modulates the gating of muscarinic K+ channels by agonists through a mechanism distinct from GTP regeneration. To better define the function of NM23 in this pathway and to identify sites in NM23 that are important for its role in muscarinic K+ channel function, we utilized MDA-MB-435 human breast carcinoma cells that express low levels of NM23-H1. M2 muscarinic receptors and GIRK1/GIRK4 channel subunits were co-expressed in cells stably transfected with vector only (control), wild-type NM23-H1, or several NM23-H1 mutants. Lysates from all cell lines tested exhibit comparable nucleoside diphosphate (NDP) kinase activity. Whole cell patch clamp recordings revealed a substantial reduction of the acute desensitization of muscarinic K+ currents in cells overexpressing NM23-H1. The mutants NM23-H1P96S and NM23-H1S44A resembled wild-type NM23-H1 in their ability to reduce desensitization. In contrast, mutants NM23-H1S120G and NM23-H1S120A completely abolished the effect of NM23-H1 on desensitization of muscarinic K+ currents. Furthermore, NM23-H1S120G potentiated acute desensitization, indicating that this mutant retains the ability to interact with the muscarinic pathway, but has properties antithetical to those of the wild-type protein. We conclude that NM23 acts as a suppressor of the processes leading to the desensitization of muscarinic K+ currents, and that Ser-120 is essential for its actions.  相似文献   

14.
Ischemia-induced excitotoxicity at cerebellar Purkinje cells is presumably due to a persistent glutamate action. To the fact that they are more vulnerable to ischemia than other glutamate-innervated neurons, we studied whether additional mechanisms are present and whether cytoplasm Ca2+ plays a key role in their ischemic excitotoxicity. Ischemic changes in the excitability of Purkinje cells were measured by whole-cell recording in cerebellar slices of rats with less glutamate action. The role of cytoplasm Ca2+ was examined by two-photon cellular imaging and BAPTA infusion in Purkinje cells. Lowering perfusion rate to cerebellar slices deteriorated spike timing and raised spike capacity of Purkinje cells. These changes were associated with the reduction of spike refractory periods and threshold potentials, as well as the loss of their control to spike encoding. Ischemia-induced functional deterioration at Purkinje neurons was accompanied by cytoplasm Ca2+ rise and prevented by BAPTA infusion. Therefore, the ischemia destabilizes the spike encoding of Purkinje cells via raising cytoplasm Ca2+ without a need for glutamate, which subsequently causes their excitotoxic death.  相似文献   

15.
The developing cerebellum is highly sensitive to ethanol during discrete neonatal periods. This sensitivity has been linked to ethanol-induced alterations in molecules of the Bcl-2 survival-regulatory gene family. Ethanol exposure during peak periods of cerebellar sensitivity, for example, results in increased expression of proapoptotic proteins of this family, while overexpression of the antiapoptotic Bcl-2 protein in the nervous system protects against ethanol neurotoxicity. For the present study, neonatal mice with a targeted deletion of the proapoptotic bax gene were used to determine whether elimination of this protein would mitigate ethanol toxicity. bax knock-out and wild-type mice pups were exposed to ethanol via vapor inhalation during the maximal period of neonatal cerebellar ethanol sensitivity and cerebellar tissue was subsequently assessed for Purkinje and granule cell number and ethanol-mediated generation of reactive oxygen species (ROS). The results revealed that: (1) ethanol exposure during the peak period of cerebellar vulnerability resulted in substantial loss of Purkinje cells in wild-type animals, but not in bax knock-outs; (2) granule cells in the bax gene-deleted animals were not similarly protected from ethanol effects; and (3) levels of ROS following acute ethanol exposure were appreciably enhanced in the wild-type animals but not in the bax knock-outs. These results imply that Bax is important to ethanol-induced Purkinje cell death during critical neonatal periods, but that ethanol effects on granule cells may function at least partially independent of this apoptosis agonist. Amelioration of ethanol-mediated increases in ROS production in the knock-outs may contribute to the observed effects.  相似文献   

16.
Transgenic mice overexpressing NGF in the central nervous system under the control of the glial fibrillary acidic protein (GFAP) promoter were exposed to ethanol via vapor inhalation on postnatal days 4 and 5 (P4-5), the period of maximal cerebellar Purkinje cell sensitivity to ethanol. Wild-type controls were exposed in a similar manner. There were no differences in body weight or size following these procedures, but the transgenic brain weights at this age were significantly greater than wild-type controls. In the wild-type animals, a significant 33.3% ethanol-mediated loss of Purkinje cells in lobule I was detected via unbiased three-dimensional stereological counting on P5. In the GFAP-NGF transgenic animals, however, the 17.6% difference in Purkinje cell number in control and ethanol-exposed animals was not significant. There was a similar difference in Purkinje cell density in both groups, which did reach statistical significance (-32.7% in wild-type ethanol-treated animals, -17% in transgenic ethanol-exposed animals). These results suggest that endogenous overexpression of neurotrophic factors, which have previously been shown to protect against ethanol neurotoxicity in culture, can serve a similar protective function in the intact animal.  相似文献   

17.
The molecular layer of the cerebellar cortex is populated by glial progenitors that express ionotropic glutamate receptors and extend numerous processes among Purkinje cell dendrites. Here, we show that release of glutamate from climbing fiber (CF) axons produces AMPA receptor currents with rapid kinetics in these NG2-immunoreactive glial cells (NG2+ cells) in cerebellar slices. NG2+ cells may receive up to 70 discrete inputs from one CF and, unlike mature Purkinje cells, are often innervated by multiple CFs. Paired Purkinje cell-NG2+ cell recordings show that one CF can innervate both cell types. CF boutons make direct synaptic junctions with NG2+ cell processes, indicating that this rapid neuron-glia signaling occurs at discrete sites rather than through ectopic release at CF-Purkinje cell synapses. This robust activation of Ca2+-permeable AMPA receptors in NG2+ cells expands the influence of the olivocerebellar projection to this abundant class of glial progenitors.  相似文献   

18.
The acid-sensing ion channels (ASICs) are members of the DEG/ENaC superfamily of Na+ channels. Acid-gated cation currents have been detected in neurons from multiple regions of the brain including the cerebellum, but little is known about their molecular identity and function. Recently, one of ASICs (ASIC1a) was implicated in synaptic plasticity. In this study we examined the subcellular distribution of ASIC2a in rat cerebellum by immunostaining and confocal microscopy. Monoclonal antibodies for labeling of defined brain structures, for example, astroglia, Purkinje cell dendrites, nuclei, and presynaptic terminals were used for colocalization analyses. In the gray matter, the anti-ASIC2a antibody intensively stained dendrite branches of Purkinje cells evenly distributed throughout the entire molecular layer (ML). In the granule cell layer (GL), anti-ASIC2a antibody stained synaptic glomeruli. Neuronal localization of ASIC2a was confirmed by lack of co-staining with glial fibrillary acidic protein. Anti-ASIC2a staining in the ML colocalized with metabotropic glutamate receptor 1alpha (mGluR1alpha) in Purkinje cell dendrites and dendritic spines. Both proteins, mGluR1alpha and ASIC2a, were enriched in a crude synaptic membrane fraction prepared from cerebellum, suggesting synaptic expression of these proteins. Dual staining with anti-syntaxin 1A and anti-ASIC2a antibodies demonstrates characteristic complementary distribution of two proteins in both ML and GL. Because syntaxin 1A localized in presynaptic membranes and synaptic vesicles, complementary distribution with ASIC2a suggests postsynaptic localization of ASIC2a in these structures. This study shows specific localization of ASIC2a in both Purkinje and granule cell dendrites of the cerebellum and enrichment of ASIC2a in a crude cerebellar synaptic membrane fraction. The study is the first report of synaptic localization of ASIC2a in the CNS. The synaptic localization of ASIC2a in the cerebellum makes this channel a candidate for a role in motor coordination and learning.  相似文献   

19.
The effect of partially obstructing the urethra on the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity in neurons of the intramural ganglia of the monkey (Macaca fascicularis) bladder was examined by light and electron microscopy. Partial urethral ligation was done in adult male monkeys. The animals were sacrificed 2, 4 weeks after partial urethral obstruction. This was compared to controls (normal and sham operated). Urethral obstructed animals were observed to have increased urinary frequency and decreased urinary flow rate. Two weeks after urethral obstruction, the overall NADPH-d activity in the intramural ganglia of the bladder base was enhanced compared to control animals. The frequency of intensely stained NADPH-d positive neurons was increased compared to the control animals. About one-third of intensely stained NADPH-d positive neurons appeared to undergo degenerative changes. At 4 weeks after urethral obstruction, a wide occurrence of NADPH-d positive neurons in advanced stages of degeneration in the bladder base was observed. Cellular debris was strewn among normal looking ganglion cells and along the nerve processes. The proportion of intensely stained NADPH-d positive neurons was relatively lower than the controls. The total number of NADPH-d positive neurons and the nerve fibres in the entire bladder was significantly reduced when compared to control animals. Electron microscopy showed some NADPH-d activity in intramural ganglion cells in 2 weeks after partial urethral obstruction. NADPH-d reaction product (formazan) was deposited on the membranes of the rough endoplasmic reticulum, and the outer membranes of some mitochondria in the intramural neuron. At 4 weeks after urethral obstruction, NADPH-d was present in the membrane of the mitochondria and some mitochondria appeared swollen with disrupted cristae. Present results show that NADPH-d activity in neurons of the intramural ganglia of the monkey (Macaca fascicularis) urinary bladder was increased after two weeks and reduced after 4 weeks of partial urethral obstruction. It is speculated that the increased NADPH-d activity associated with partial urethral obstruction would lead to neuronal damage and death, which may contribute to detrusor overactivity. However, it warrants further investigation to understand the mechanism of neuronal cell death after partial urethral obstruction.  相似文献   

20.
宋海燕  刘再群  郑磊 《四川动物》2012,31(2):232-235,239,337
采用普通染色及免疫组化SABC染色法研究皖西白鹅小脑皮质的发育和多巴胺受体1(DRD1)阳性细胞在其发育中的表达.结果表明,小脑皮质在胚龄13 d(E13)由外向内分为外颗粒层(EGL)、浦肯野细胞层(PCL)和内颗粒层(IGL),E19由外向内分为EGL、分子层(ML)、PCL和IGL.随发育天数的增加,EGL的厚度和细胞层次呈先升后降的变化趋势,细胞密度逐渐下降;ML厚度逐渐增大,在E24到E28时增值最大;浦肯野细胞(PC)在E13、E19、E24和E28时随胚龄增大逐渐增大,在E28后趋于稳定,细胞密度随着发育天数的增加逐渐下降,在小脑皮质发育中还发现有一部分PC呈多层排列,且细胞层次逐渐变少;IGL厚度呈先升后降的变化趋势,细胞密度呈上升趋势.外颗粒层和内颗粒层在E13、E19、E24和E28时有DRD1阳性细胞表达,分子层在E24、E28、日龄7 d(P7)和15d(P15)有阳性细胞表达,PC在所检测的6个时段均有阳性表达.研究表明,小脑皮质的发育主要与细胞增殖、迁移和凋亡有关,外颗粒层的逐渐消失是以细胞迁移和凋亡为主,多层PC逐渐退化成单层是与细胞凋亡和正常突触联系的建立有关;DRD1在皖西白鹅小脑皮质发育中对外颗粒层细胞和PC起着重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号