首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Deletions encompassing the X-linked STS gene (encoding steroid sulfatase) have been observed in subjects with neurodevelopmental disorders, including attention deficit hyperactivity disorder (ADHD). Recently, two single nucleotide polymorphisms (SNPs) within STS (rs12861247 and rs17268988) have been reported to be associated with ADHD risk and inattentive symptoms in ADHD, respectively. Using a UK sample of ADHD subjects (aged 5-18 years), we tested the hypothesis that rs12861247 is associated with ADHD risk using a case-control approach (comparing 327 ADHD cases with 358 male controls from the Wellcome Trust Case Control Consortium). Using a subset of males from the ADHD sample, we also examined whether variation within STS is associated with symptomatology/cognitive function in ADHD. We then tested whether SNPs associated with cognitive function in ADHD were also associated with cognitive function in healthy male subjects using a German sample (n = 143, aged 18-30 years), and whether STS was expressed in brain regions pertinent to ADHD pathology during development. We did not replicate the previously identified association with rs12861247. However, in ADHD males, variation at rs17268988 was associated with inattentive symptoms, while variation within STS was significantly associated with performance on three cognitive measures. Three SNPs associated with cognitive function in ADHD males were not associated with cognitive function in healthy males. STS was highly expressed in the developing cerebellar neuroepithelium, basal ganglia, thalamus, pituitary gland, hypothalamus and choroid plexus. These data suggest that genetic variants affecting STS expression and/or activity could influence the function of brain regions perturbed in ADHD.  相似文献   

3.
Attention deficit hyperactivity disorder (ADHD) is a common neurobehavioural disorder which has been associated with sleep and circadian rhythm disturbances. Numerous studies have linked evening circadian typology with traits and behaviours associated with the disorder, although a precise reason for this relationship has not been clarified. The current study examines ADHD symptoms, impulsivity, cognitive failures, sleep quality and chronotype in a cohort of healthy young adults (N = 396). Results show significant, small magnitude associations between mid-point of sleep on free days, social jetlag (SJL) and ADHD symptoms and impulsivity, although not with cognitive failures. Similarly, sleep quality is also associated with ADHD symptoms and impulsivity. Group-wise approaches show that higher SJL is associated with significantly more ADHD symptoms and impulsivity, and later mid-sleep on free days is also associated with more ADHD symptoms. Stepwise multiple linear regression reveals that, when controlling for age and sex, SJL but not mid-sleep on free days is a significant predictor of ADHD symptoms and impulsivity. These results indicate that SJL may be an important factor to consider when exploring circadian rhythm associations with ADHD symptoms.  相似文献   

4.
Atypical fatty acid metabolism has been reported in attention deficit hyperactivity disorder (ADHD), however, its relationship with temperament in this population is unclear. The current study investigated the association between blood levels of fatty acids implicated in brain structure and function (omega-3, omega-6, omega-9) and personality traits of stability (neuroticism, conscientiousness and agreeableness) and plasticity (extraversion and openness). Twenty right-handed adolescent boys with ADHD completed a self-report NEO-FFI personality questionnaire, and had fatty acid content assessed from red blood using gas chromatography. Pearson's correlations showed no significant associations between omega-3 levels and personality. After correction for multiple comparisons, Adrenic Acid (C22:4n6) was inversely associated with stability. Oleic acid (C18:1n9) was positively associated with plasticity. Results are in line with a role of fatty acids in brain function. They suggest that those fatty acids that are involved in myelination (Adrenic, Oleic) have the strongest associations with temperament in adolescents with ADHD.  相似文献   

5.
Association of dopaminergic genes, mainly receptors and transporters, with Attention Deficit Hyperactivity Disorder (ADHD) has been investigated throughout the world due to the importance of dopamine (DA) in various physiological functions including attention, cognition and motor activity, traits. However, till date, etiology of ADHD remains unknown. We explored association of functional variants in the DA receptor 2 (rs1799732 and rs6278), receptor 4 (exon 3 VNTR and rs914655), and transporter (rs28363170 and rs3836790) with hyperactivity, cognitive deficit, and co-morbid disorders in eastern Indian probands. Diagnostic and Statistical Manual for Mental Disorders-IV was followed for recruitment of nuclear families with ADHD probands (N = 160) and ethnically matched controls (N = 160). Cognitive deficit and hyperactive traits were measured using Conner’s parents/teachers rating scale. Peripheral blood was collected after obtaining informed written consent and used for genomic DNA isolation. Genetic polymorphisms were analyzed by PCR-based methods followed by population- as well as family-based statistical analyses. Association between genotypes and cognitive/hyperactivity traits and co-morbidities was analyzed by the Multifactor dimensionality reduction (MDR) software. Case–control analysis showed statistically significant difference for rs6278 and rs28363170 (P = 0.004 and 1.332e?007 respectively) while family-based analysis exhibited preferential paternal transmission of rs28363170 ‘9R’ allele (P = 0.04). MDR analyses revealed independent effects of rs1799732, rs6278, rs914655, and rs3836790 in ADHD. Significant independent effects of different sites on cognitive/hyperactivity traits and co-morbid disorders were also noticed. It can be summarized from the present investigation that these gene variants may influence cognitive/hyperactive traits, thereby affecting the disease etiology and associated co-morbid features.  相似文献   

6.
Impairment of cognitive functions including hippocampus-dependent spatial learning and memory affects nearly half of the aged population. Age-related cognitive decline is associated with synaptic dysfunction that occurs in the absence of neuronal cell loss, suggesting that impaired neuronal signaling and plasticity may underlie age-related deficits of cognitive function. Expression of myelin-associated inhibitors (MAIs) of synaptic plasticity, including the ligands myelin-associated glycoprotein, neurite outgrowth inhibitor A, and oligodendrocyte myelin glycoprotein, and their common receptor, Nogo-66 receptor, was examined in hippocampal synaptosomes and Cornu ammonis area (CA)1, CA3 and dentate gyrus subregions derived from adult (12-13 months) and aged (26-28 months) Fischer 344 × Brown Norway rats. Rats were behaviorally phenotyped by Morris water maze testing and classified as aged cognitively intact (n = 7-8) or aged cognitively impaired (n = 7-10) relative to adults (n = 5-7). MAI protein expression was induced in cognitively impaired, but not cognitively intact, aged rats and correlated with cognitive performance in individual rats. Immunohistochemical experiments demonstrated that up-regulation of MAIs occurs, in part, in hippocampal neuronal axons and somata. While a number of pathways and processes are altered with brain aging, we report a coordinated induction of myelin-associated inhibitors of functional and structural plasticity only in cognitively impaired aged rats. Induction of MAIs may decrease stimulus-induced synaptic strengthening and structural remodeling, ultimately impairing synaptic mechanisms of spatial learning and memory and resulting in cognitive decline.  相似文献   

7.
8.
Reelin and its complex involvement in brain development and function   总被引:1,自引:0,他引:1  
Reelin is a neuroprotein with crucial role during neurodevelopment and also in postnatal period. It regulates neuronal migration and positioning in developing neocortex and cerebellar cortex. Postnatally it participates in regulation of dendritic and axonal growth, synaptogenesis, neurotransmission and it contribute to synaptic plasticity necessary for learning and memory functions. Role of Reelin seems to be rather complex, profound research gradually uncovers its further functions. Deficits of Reelin were detected in neuropsychiatric disorders such as schizophrenia, bipolar disorder and autism. Pathogenesis of these disorders is far from being clearly understood. Reelin contribution to these diseases seems to be vital, since genetic variants of Reelin were associated with these diseases and often influence symptom severity. Reelin is a promising candidate molecule with potential future use in diagnostics and therapy, however further detailed research is essential.  相似文献   

9.
Phenotypic information about several pig meat quality traits on 334 Large White × Meishan F2 pigs was collected. Effects of the association of the FokI variants in the seventh intron of the skeletal muscle glycogen synthase (GYS1) gene and the PstI variants in the ninth intron of the palmitoyl acyl-CoA oxidase 1 (ACOX1) gene on the meat quality traits were examined on all pigs. The FokI variants of the GYS1 gene showed significant effects on pH of m. semipinalis capitis (P < 0.05). Linkage analysis indicated that the peak of the quantitative trait loci (QTL) curve was located around this marker for pH, but it did not reach significance (P > 0.05). The results may be due to several reasons such as linkage disequilibrium to the causal mutations, the limited number of animals or balance of another QTL or marker with negative effects. Significant effects of PstI variants of ACOX1 gene were also found on meat colour value and meat marbling score of both m. longissimus dorsi and m. biceps femoris (P < 0.05). Dominant effects for the affected traits at those two loci were significant except for meat marbling score of m. biceps femoris (P < 0.05). The results of this study give us some evidence for the potential of those dominant markers used in the marker-assisted selection of crossbreeding of the Large White pig sire lines and Meishan-derived synthetic dam lines.  相似文献   

10.

Background

Gamma (γ) oscillations (30–50 Hz) have been shown to be excessive in patients with schizophrenia (SCZ) during working memory (WM). WM is a cognitive process that involves the online maintenance and manipulation of information that is mediated largely by the dorsolateral prefrontal cortex (DLPFC). Repetitive transcranial magnetic stimulation (rTMS) represents a non-invasive method to stimulate the cortex that has been shown to enhance cognition and γ oscillatory activity during WM.

Methodology and Principal Findings

We examined the effect of 20 Hz rTMS over the DLPFC on γ oscillatory activity elicited during the N-back task in 24 patients with SCZ compared to 22 healthy subjects. Prior to rTMS, patients with SCZ elicited excessive γ oscillatory activity compared to healthy subjects across WM load. Active rTMS resulted in the reduction of frontal γ oscillatory activity in patients with SCZ, while potentiating activity in healthy subjects in the 3-back, the most difficult condition. Further, these effects on γ oscillatory activity were found to be specific to the frontal brain region and were absent in the parieto-occipital brain region.

Conclusions and Significance

We suggest that this opposing effect of rTMS on γ oscillatory activity in patients with SCZ versus healthy subjects may be related to homeostatic plasticity leading to differential effects of rTMS on γ oscillatory activity depending on baseline differences. These findings provide important insights into the neurophysiological mechanisms underlying WM deficits in SCZ and demonstrated that rTMS can modulate γ oscillatory activity that may be a possible avenue for cognitive potentiation in this disorder.  相似文献   

11.
Attention deficit hyperactivity disorder (ADHD) is the most frequently diagnosed behavioral disorder in children with a high frequency of co-morbid conditions like conduct disorder (CD) and oppositional defiant disorder (ODD). These traits are controlled by neurotransmitters like dopamine, serotonin and norepinephrine. Monoamine oxidase A (MAOA), a mitochondrial enzyme involved in the degradation of amines, has been reported to be associated with aggression, impulsivity, depression, and mood changes. We hypothesized that MAOA can have a potential role in ADHD associated CD/ODD and analyzed 24 markers in a group of Indo-Caucasoid subjects. ADHD probands and controls (N = 150 each) matched for ethnicity and gender were recruited following the Diagnostic and Statistical Manual for Mental Disorders-IV. Appropriate scales were used for measuring CD and ODD traits. Markers were genotyped by PCR-based methods and data obtained analyzed using the Cocaphase program under UNPHASED. Only eight markers were found to be polymorphic. rs6323 “G” allele showed higher frequencies in ADHD (P = 0.0023), ADHD + CD (P = 0.03) and ADHD + ODD (P = 0.01) as compared to controls. Haplotype analysis revealed statistically significant difference for three haplotypes in ADHD cases (P < 0.02). Statistically significant differences were also noticed for haplotypes in ADHD + CD and ADHD + ODD cases (P < 0.01). LD analysis showed significant variation in different groups. Multidimensionality reduction analysis showed independent as well as interactive effects of markers. Genotypes showed correlation with behavioral problems in ADHD and ADHD + CD. We interpret that MAOA gene variants may contribute to the etiology of ADHD as well as associated co-morbid CD and ODD in this ethnic group.  相似文献   

12.
Cell-adhesion molecules of the immunoglobulin superfamily play critical roles in brain development, as well as in maintaining synaptic plasticity, the dysfunction of which is known to cause cognitive impairment. Recently dysfunction of KIRREL3, a synaptic molecule of the immunoglobulin superfamily, has been implicated in several neurodevelopmental conditions including intellectual disability, autism spectrum disorder, and in the neurocognitive delay associated with Jacobsen syndrome. However, the molecular mechanisms of its physiological actions remain largely unknown. Using a yeast two-hybrid screen, we found that the KIRREL3 extracellular domain interacts with brain expressed proteins MAP1B and MYO16 and its intracellular domain can potentially interact with ATP1B1, UFC1, and SHMT2. The interactions were confirmed by co-immunoprecipitation and colocalization analyses of proteins expressed in human embryonic kidney cells, mouse neuronal cells, and rat primary neuronal cells. Furthermore, we show KIRREL3 colocalization with the marker for the Golgi apparatus and synaptic vesicles. Previously, we have shown that KIRREL3 interacts with the X-linked intellectual disability associated synaptic scaffolding protein CASK through its cytoplasmic domain. In addition, we found a genomic deletion encompassing MAP1B in one patient with intellectual disability, microcephaly and seizures and deletions encompassing MYO16 in two unrelated patients with intellectual disability, autism and microcephaly. MAP1B has been previously implicated in synaptogenesis and is involved in the development of the actin-based membrane skeleton. MYO16 is expressed in hippocampal neurons and also indirectly affects actin cytoskeleton through its interaction with WAVE1 complex. We speculate KIRREL3 interacting proteins are potential candidates for intellectual disability and autism spectrum disorder. Moreover, our findings provide further insight into understanding the molecular mechanisms underlying the physiological action of KIRREL3 and its role in neurodevelopment.  相似文献   

13.
Age‐related cognitive decline in neurodegenerative diseases, such as Alzheimer''s disease (AD), is associated with the deficits of synaptic plasticity. Therefore, exploring promising targets to enhance synaptic plasticity in neurodegenerative disorders is crucial. It has been demonstrated that methyl‐CpG binding protein 2 (MeCP2) plays a vital role in neuronal development and MeCP2 malfunction causes various neurodevelopmental disorders. However, the role of MeCP2 in neurodegenerative diseases has been less reported. In the study, we found that MeCP2 expression in the hippocampus was reduced in the hippocampus of senescence‐accelerated mice P8 (SAMP8) mice. Overexpression of hippocampal MeCP2 could elevate synaptic plasticity and cognitive function in SAMP8 mice, while knockdown of MeCP2 impaired synaptic plasticity and cognitive function in senescence accelerated‐resistant 1 (SAMR1) mice. MeCP2‐mediated regulation of synaptic plasticity may be associated with CREB1 pathway. These results suggest that MeCP2 plays a vital role in age‐related cognitive decline by regulating synaptic plasticity and indicate that MeCP2 may be promising targets for the treatment of age‐related cognitive decline in neurodegenerative diseases.  相似文献   

14.
The glutamatergic signaling pathway represents an ideal candidate susceptibility system for attention-deficit/hyperactivity disorder (ADHD). Disruption of specific N-methyl-D-aspartate-type glutamate receptor subunit genes (GRIN1, 2A-D) in mice leads to significant alterations in cognitive and/or locomotor behavior including impairments in latent learning, spatial memory tasks and hyperactivity. Here, we tested for association of GRIN2B variants with ADHD, by genotyping nine single nucleotide polymorphisms (SNPs) in 205 nuclear families identified through probands with ADHD. Transmission of alleles from heterozygous parents to affected offspring was examined using the transmission/disequilibrium test. Quantitative trait analyses for the ADHD symptom dimensions [inattentive (IA) and hyperactive/impulsive (HI)] and cognitive measures of verbal working memory and verbal short-term memory were performed using the fbat program. Three SNPs showed significantly biased transmission (P < 0.05), with the strongest evidence of association found for rs2,284,411 (chi(2)= 7.903, 1 degree of freedom, P= 0.005). Quantitative trait analyses showed associations of these markers with both the IA and the HI symptom dimensions of ADHD but not with the cognitive measures of verbal short-term memory or verbal working memory. Our data suggest an association between variations in the GRIN2B subunit gene and ADHD as measured categorically or as a quantitatively distributed trait.  相似文献   

15.
Attention Deficit/Hyperactivity Disorder (ADHD) is a common neuropsychiatric disorder that has not been well studied in older adults. In this study we examined relationships between ADHD symptoms and cognitive ability and compared them between middle-age (MA; 48–52 years) and older-age (OA; 68–74 years) adults sampled from the same population. ADHD, mood disorder symptoms and cognitive abilities were assessed in a large population-based sample (n = 3443; 50% male). We measured current ADHD symptoms using the adult ADHD Self-Report Scale (ASRS), which we found to have the same underlying structure in both cohorts. Older adults reported significantly lower levels of ADHD symptoms and 2.2% of the OA cohort scored equal or above the ASRS cut-off score of 14 (which has been previously associated with ADHD diagnosis) compared with 6.2% of MA adults. Symptom levels were not significantly different between males and females. Using multi-group structural equation modelling we compared ADHD symptom–cognitive performance relationships between the two age groups. Generally higher ADHD symptoms were associated with poorer cognitive performance in the MA cohort. However, higher levels of inattention symptoms were associated with better verbal ability in both cohorts. Surprisingly, greater hyperactivity was associated with better task-switching abilities in older adults. In the OA cohort ADHD symptom–cognition relationships are indirect, mediated largely through the strong association between depression symptoms and cognition. Our results suggest that ADHD symptoms decrease with age and that their relationships with co-occurring mood disorders and cognitive performance also change. Although symptoms of depression are lower in older adults, they are much stronger predictors of cognitive performance and likely mediate the effect of ADHD symptoms on cognition in this age group. These results highlight the need for age-appropriate diagnosis and treatment of comorbid ADHD and mood disorders.  相似文献   

16.
Genetic susceptibility to substance use disorders (SUDs) is partially shared between substances. Heritability of any substance dependence, estimated as 54%, is partly explained by additive effects of common variants. Comorbidity between SUDs and other psychiatric disorders is frequent. The present study aims to analyze the additive role of common variants in this comorbidity using polygenic scores (PGSs) based on genome‐wide association study discovery samples of schizophrenia (SCZ), bipolar disorder, attention‐deficit/hyperactivity disorder, autism spectrum disorder, major depressive disorder and anxiety disorders, available from large consortia. PGSs were calculated for 534 patients meeting DSM‐IV criteria for dependence of a substance and abuse/dependence of another substance between alcohol, tobacco, cannabis, cocaine, opiates, hypnotics, stimulants, hallucinogens and solvents; and 587 blood donors from the same population, Iberians from Galicia, as controls. Significance of the PGS and percentage of variance explained were calculated by logistic regression. Using discovery samples of similar size, significant associations with SUDs were detected for SCZ PGS. SCZ PGS explained more variance in SUDs than in most psychiatric disorders. Cross‐disorder PGS based on five psychiatric disorders was significant after adjustment for the effect of SCZ PGS. SCZ PGS was significantly higher in women than in men abusing alcohol. Our findings indicate that SUDs share genetic susceptibility with SCZ to a greater extent than with other psychiatric disorders, including externalizing disorders such as attention‐deficit/hyperactivity disorder. Women have lower probability to develop substance abuse/dependence than men at similar PGS probably because of a higher social pressure against excessive drug use in women.  相似文献   

17.
Insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is involved in the Hedgehog pathway and has been shown to regulate the RNA stability of several growth-related target genes. It is located in a quantitative trait locus showing a strong association with traits related to body size in ducks. Fibroblast growth factor receptor 1 (FGFR1) also participates in Hedgehog signaling pathways and has been reported to be associated with organic growth and development. FGFR1-knockout mice have been shown to have severe postnatal growth defects, including an approximately 50% reduction in body weight and bone mass. Meanwhile, nonsense-mediated mRNA decay factor (SMG6) can maintain genomic stability, which is associated with organic growth and development. Therefore, we hypothesized that IGF2BP1, FGFR1 and SMG6 genes may play important roles in the growth traits of goats. In this study, the existence of two insertion/deletion (InDel) variants within IGF2BP1, one InDel within FGFR1 and two InDels within SMG6 was verified and their correlation with growth traits was analyzed in 2429 female Shaanbei white cashmere goats. Results showed both the 15 bp InDel in intron 2 and the 5 bp InDel in the 3′ regulatory region within IGF2BP1 were significantly associated with growth traits (< 0.05) and goats with the combinatorial homozygous insertion genotypes of these two loci had the highest body weight (= 0.046). The other InDels within FGFR1 and SMG6 were not obviously associated with growth traits (> 0.05). Therefore, the two InDels in IGF2BP1 were vital mutations affecting goat growth traits.  相似文献   

18.
Immunotherapy has recently become a promising cancer therapy with extensive applications of immune checkpoint inhibitors (ICIs). However, pancreatic ductal adenocarcinoma (PDAC) appears to be unresponsive to immunotherapy due to the immunosuppressive microenvironment. Recent studies showed that cancer stem cell marker DCLK1 promoted the initiation and development of PDAC. Nevertheless, the mechanism driving this process remains unclear. Here, by performing gain-of-function investigations in PDAC cell lines, we demonstrate that both DCLK1 long (DCLK1-iso1, DCLK1-AS) and short (DCLK1-iso4, DCLK1-BL) isoforms can efficiently activate EMT leading to tumor migration and invasion. Consistent with experiments in vitro, bioinformatic analysis demonstrates that DCLK1 may act as a driver of EMT activation in PDAC. Further analysis showed that EMT was associated with an immunosuppressive microenvironment, which includes more immunosuppressive cells and chemokines, and patients with a higher EMT score were less sensitive to immune checkpoint inhibitors according to the TIDE (Tumor Immune Dysfunction and Exclusion) algorithm. Multiplexed immunofluorescence results demonstrated the close correlation between DCLK1, EMT and immunosuppression in PDAC patients. The findings were further confirmed in vivo reflected by decreased CD4+, CD8+ T cells and increased M2 macrophages as well as E-cad loss in DCLK1-overexpressing subcutaneous tumors. Importantly, the highly-specific DCLK1 inhibitor (DCLK1-IN-1) was able to effectively block EMT process and restore T-cell activity. Altogether, our data demonstrate that DCLK1 is strongly associated with tumor immune escape in PDAC and inhibiting DCLK1 kinase activity may be a promising therapeutic modality.  相似文献   

19.
Large rare copy number variants (CNVs) have been recognized as significant genetic risk factors for the development of schizophrenia (SCZ). However, due to their low frequency (1∶150 to 1∶1000) among patients, large sample sizes are needed to detect an association between specific CNVs and SCZ. So far, the majority of genome-wide CNV analyses have focused on reporting only CNVs that reached a significant P-value within the study cohort and merely confirmed the frequency of already-established risk-carrying CNVs. As a result, CNVs with a very low frequency that might be relevant for SCZ susceptibility are lost for secondary analyses. In this study, we provide a concise collection of high-quality CNVs in a large German sample consisting of 1,637 patients with SCZ or schizoaffective disorder and 1,627 controls. All individuals were genotyped on Illumina''s BeadChips and putative CNVs were identified using QuantiSNP and PennCNV. Only those CNVs that were detected by both programs and spanned ≥30 consecutive SNPs were included in the data collection and downstream analyses (2,366 CNVs, 0.73 CNVs per individual). The genome-wide analysis did not reveal a specific association between a previously unknown CNV and SCZ. However, the group of CNVs previously reported to be associated with SCZ was more frequent in our patients than in the controls. The publication of our dataset will serve as a unique, easily accessible, high-quality CNV data collection for other research groups. The dataset could be useful for the identification of new disease-relevant CNVs that are currently overlooked due to their very low frequency and lack of power for their detection in individual studies.  相似文献   

20.
Fragile X syndrome (FXS) is a developmental disorder caused by the loss of Fragile X Mental Retardation 1 (FMR1) gene function because of a CGG repeat expansion (> 200 repeats) in the gene. The molecular mechanism(s) linking loss of FMR1 function to the molecular pathology and cognitive/behavioral disability remain unclear. Given the critical role of extracellular signal-regulated kinase (ERK) in synaptic plasticity and neurodevelopment, a number of recent studies have investigated ERK phosphorylation under basal conditions or upon mGluR-induction using neuronal and peripheral tissues from Fmr1 knockout mice and peripheral tissues from FXS patients. However, these reports have presented conflicting results. The current study is the first to focus on the levels of ERK phosphorylation in brain tissue from human FXS patients. In both human brain tissue and brain tissue from Fmr1 knockout mice there was significantly increased phosphorylation of MEK1/2 and ERK. Indeed, treating Fmr1 knockout mice with the MEK1/2 inhibitor SL327 abrogated audiogenic seizure activity, a feature of the Fmr1 knockout mice that replicates the symptom in patients with FXS. These findings suggest that activation of the ERK pathway results in some cardinal cognitive and clinical features in FXS patients and likely have profound translational implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号