共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fujishiro H Yano Y Takada Y Tanihara M Himeno S 《Metallomics : integrated biometal science》2012,4(7):700-708
Chronic exposure to cadmium causes preferential accumulation of cadmium in the kidney, leading to nephrotoxicity. In the process of renal cadmium accumulation, the cadmium bound to a low-molecular-weight metal-binding protein, metallothionein, has been considered to play an important role in reabsorption by epithelial cells of proximal tubules in the kidney. However, the role and mechanism of the transport of Cd(2+) ions in proximal tubule cells remain unclear. Zinc transporters such as Zrt, Irt-related protein 8 (ZIP8) and ZIP14, and divalent metal transporter 1 (DMT1) have been reported to have affinities for Cd(2+) and Mn(2+). To examine the roles of these metal transporters in the absorption of luminal Cd(2+) and Mn(2+) into proximal tubule cells, we utilized a cell culture system, in which apical and basolateral transport of metals can be separately examined. The uptake of Cd(2+) and Mn(2+) from the apical side of proximal tubule cells was inhibited by simultaneous addition of Mn(2+) and Cd(2+), respectively. The knockdown of ZIP8, ZIP14 or DMT1 by siRNA transfection significantly reduced the uptake of Cd(2+) and Mn(2+) from the apical membrane. The excretion of Cd(2+) and Mn(2+) was detected predominantly in the apical side of the proximal tubule cells. In situ hybridization of these transporters revealed that ZIP8 and ZIP14 are highly expressed in the proximal tubules of the outer stripe of the outer medulla. These results suggest that ZIP8 and ZIP14 expressed in the S3 segment of proximal tubules play significant roles in the absorption of Cd(2+) and Mn(2+) in the kidney. 相似文献
3.
Liu Z Li H Soleimani M Girijashanker K Reed JM He L Dalton TP Nebert DW 《Biochemical and biophysical research communications》2008,365(4):814-820
The mouse Slc39a8 gene encodes the ZIP8 transporter, which has been shown to be a divalent cation/HCO3- symporter. Using ZIP8 cRNA-injected Xenopus oocyte cultures, we show herein that: [a] ZIP8-mediated cadmium (Cd(2+)) and zinc (Zn(2+)) uptake have V(max) values of 1.8+/-0.08 and 1.0+/-0.08 pmol/oocyte/h, and K(m) values of 0.48+/-0.08 and 0.26+/-0.09 microM, respectively; [b] ZIP8-mediated Cd(2+) uptake is most inhibited by Zn(2+), second-best inhibited by Cu(2+), Pb(2+) and Hg(2+), and not inhibited by Mn(2+) or Fe(2+); and [c] electrogenicity studies demonstrate an influx of two HCO3- anions per one Cd(2+) (or one Zn(2+)) cation, i.e. electroneutral complexes. Using Madin-Darby canine kidney (MDCK) polarized epithelial cells retrovirally infected with ZIP8 cDNA and tagged with hemagglutinin at the C-terminus, we show that-similar to ZIP4-the ZIP8 eight-transmembrane protein is largely internalized during Zn(2+) homeostasis, but moves predominantly to the cell surface membrane (trafficking) under conditions of Zn(2+) depletion. 相似文献
4.
5.
Calmodulin and Ca2+ in normal and transformed cells 总被引:4,自引:0,他引:4
Numerous lines of evidence implicate calcium and calmodulin (CaM) as regulators of cell growth and functional differentiation. In light of this evidence, several studies of the possible involvement of the CaM system in cellular transformation by RNA and DNA tumor viruses have been carried out. This paper summarizes the evidence linking calcium and CaM to the regulation of cell growth and critically examines the evidence that increases in CaM levels occur in transformed versus normal cells. A nontraumatic method for synchronizing both normal and transformed chick fibroblasts is presented. This method is utilized in a comparison of CaM level throughout the cell cycle of Rous sarcoma virus transformed and normal chick embryo fibroblasts. These studies best support the hypothesis that the observed differences in CaM levels between transformed and normal cultures under optimal growth conditions may largely reflect differences in the proportion of cells in a dividing versus a nondividing state. 相似文献
6.
Erfurt C Roussa E Thévenod F 《American journal of physiology. Cell physiology》2003,285(6):C1367-C1376
The mechanisms of cadmium-metallothionein (CdMT) uptake and toxicity in proximal tubule (PT) cells are not well understood. The effects of 10 microM CdCl2 or Cd7MT-1 (MT-1 saturated with 10 microM CdCl2) on 109Cd2+ uptake, viability, and MT levels of cultured rat PT cells were investigated. Apical 109Cd2+ uptake was measured in confluent monolayers, apoptosis was assessed with Hoechst 33342, and intracellular MT levels were monitored by immunofluorescence and quantitative morphometry. 109Cd2+ uptake into PTC increased over time and plateaued at 24 h. 109Cd7MT-1 uptake was delayed but reached a similar magnitude after 40 h. With Cd2+, apoptosis occurred within 4 h, peaked at 24 h, and declined at 48-72 h. Cd7MT-1 induced apoptosis after 24-36 h, reaching similar levels as with Cd2+ after 48 h. Cd2+ and Cd7MT-1 significantly increased intracellular MT immunoreactivity after 20 and 4 h, respectively. The weak base chloroquine and the inhibitor of phosphatidylinositol 3-kinases, LY-294002, selectively inhibited the effects of Cd7MT-1 on MT immunoreactivity and apoptosis. PT cells accumulated 109Cd7MT-1 in membrane vesicles associated with the late endo/lysosomal marker LAMP1 but less with the early endosomal marker Rab5a, which was abolished by chloroquine or LY-294002. Thus development of apoptosis followed the uptake kinetics of Cd2+ and Cd7MT-1. Endo/lysosomal inhibitors prevented uptake of Cd7MT-1 into endo/lysosomes and apoptosis but had no effect on these parameters with Cd2+, suggesting that apoptosis of PT cells is triggered by free cytosolic Cd2+, either by direct apical transport or by translocation of free Cd2+ from endo/lysosomes after endocytosis of Cd7MT-1. 相似文献
7.
8.
Karina Drumm Theresia R Kress Birgit Gassner Alexander W Krug Michael Gekle 《Cellular physiology and biochemistry》2006,17(1-2):21-28
The steroid hormone aldosterone is a major regulator of extracellular volume and blood pressure. Aldosterone effectors are for example the epithelial Na(+) channel (ENaC), the Na(+)-K(+)-ATPase and the proximal tubule Na(+)/H(+) exchanger isoform 3 (NHE3). The aim of this study was to investigate whether aldosterone acts directly on proximal tubule cells to stimulate NHE3 and if so whether the EGF-receptor (EGFR) is involved. For this purpose, primary human renal proximal tubule cells were exposed to aldosterone. NHE3 activity was determined from Na(+)- dependent pH-recovery, NHE3 surface expression was determined by biotinylation and immunoblotting. EGFR-expression was assessed by ELISA. pH(i)- measurements revealed an aldosterone-induced increase in NHE3 activity, which was inhibited by the mineralocorticoid receptor blocker spironolactone and by the EGFR-kinase inhibitor AG1478. Immunoprecipitation and immunoblot analysis showed an aldosterone-induced increase in NHE3 surface expression, which was also inhibited by spironolactone and AG1478. Furthermore, aldosterone enhanced EGFR-expression. In conclusion, aldosterone stimulates NHE3 in human proximal tubule cells. The underlying mechanisms include AG1478 inhibitable kinase and are paralleled by enhanced EGFR expression, which could be compatible with EGF-receptor-pathway-dependent surface expression and activity of NHE3 in human primary renal proximal tubule epithelial cells. 相似文献
9.
10.
Aquaporin-1 expression in proximal tubule epithelial cells of human kidney is regulated by hyperosmolarity and contrast agents 总被引:4,自引:0,他引:4
Jenq W Cooper DR Bittle P Ramirez G 《Biochemical and biophysical research communications》1999,256(1):240-248
Primary cells of renal proximal tubule epithelium (S1 segment) of human kidney (HRPTE cells) up-regulate aquaporin-1 (AQP-1) expression in response to hyperosmolarity. NaCl and D(+)-raffinose increased (2-2.5 fold) AQP-1 expression when medium osmolarity was 400 and 500 mOsm/kg.H2O. Urea did not have this effect. Unlike our previous findings with mIMCD-3 cells, vasopressin (10(-8)M) did not affect AQP-1 expression in HRPTE cells in isosmolar or NaCl-enriched hyperosmolar conditions. Furthermore, HRPTE cells increased (3-4 fold) AQP-1 expression when exposed to hyperosmolar Reno-60 and Hypaque-76 (diatrizoates, ionic) contrast agents at 400 and 500 mOsm/kg.H2O. Isosmolar (290 mOsm/kg H2O) Visipaque (iodixanol, non-ionic) at 10% (v/v) concentrations also increased AQP-1 expression, and 25% v/v of Visipaque rendered morphological alterations of HRPTE cells and a 3-fold increase in AQP-1 expression after 24h exposure. Finally, semi-quantitative RT-PCR of HRPTE cells subjected to various isosmolar or hyperosmolar conditions demonstrated up-regulation of AQP-1 mRNA and protein levels. Our results suggest AQP-1 up-regulation in HRPTE cells exposed to environmental stresses such as hyperosmolarity and high doses of isosmolar contrast agents. 相似文献
11.
Somji S Cao L Mehus A Zhou XD Sens MA Dunlevy JR Garrett SH Zheng Y Larson JL Sens DA 《Cell biology and toxicology》2011,27(6):381-396
This laboratory has generated a series of seven cadmium (Cd(+2))- and six arsenite (As(+3))-transformed urothelial cancer cell lines by exposure of parental UROtsa cells to each agent under similar conditions of exposure. In this study, the seven Cd(+2)-transformed cell lines were characterized for the expression of keratin 6, 16, and 17 while the six As(+3) cell lines were assessed for the expression of keratin 7 and 19. The results showed that the series of Cd(+2)-transformed cell lines and their respective transplants all had expression of keratin 6, 16, and 17 mRNA and protein. The expression of keratin 6, 16, and 17 was also correlated with areas of the urothelial tumor cells that had undergone squamous differentiation. The results also showed that four of the six As(+3)-transformed cell lines had expression of keratin 7 and 19 mRNA and protein and produced subcutaneous tumors with intense focal staining for keratin 7 and 19. The other two As(+3)-transformed cell lines had very low expression of keratin 7 mRNA and protein and produced subcutaneous tumors having no immunoreactivity for keratin 7; although keratin 19 expression was still present. The peritoneal tumors produced by one of these two cell lines regained expression of keratin 7 protein. The present results, coupled with previous studies, indicate that malignant transformation of UROtsa cells by Cd(+2) or As(+3) produce similar patterns of keratin 6, 7, 16, 17, and 19 in the resulting series of cell lines and their respective tumors. 相似文献
12.
Rodrigo Gatica Romina Bertinat Pamela Silva Daniel Carpio María José Ramírez Juan Carlos Slebe Rody San Martín Francisco Nualart Jose María Campistol Carme Caelles Alejandro J. Yáñez 《Journal of cellular biochemistry》2013,114(3):639-649
Diabetes is the major cause of end stage renal disease, and tubular alterations are now considered to participate in the development and progression of diabetic nephropathy (DN). Here, we report for the first time that expression of the insulin receptor (IR) in human kidney is altered during diabetes. We detected a strong expression in proximal and distal tubules from human renal cortex, and a significant reduction in type 2 diabetic patients. Moreover, isolated proximal tubules from type 1 diabetic rat kidney showed a similar response, supporting its use as an excellent model for in vitro study of human DN. IR protein down‐regulation was paralleled in proximal and distal tubules from diabetic rats, but prominent in proximal tubules from diabetic patients. A target of renal insulin signaling, the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK), showed increased expression and activity, and localization in compartments near the apical membrane of proximal tubules, which was correlated with activation of the GSK3β kinase in this specific renal structure in the diabetic condition. Thus, expression of IR protein in proximal tubules from type 1 and type 2 diabetic kidney indicates that this is a common regulatory mechanism which is altered in DN, triggering enhanced gluconeogenesis regardless the etiology of the disease. J. Cell. Biochem. 114: 639–649, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
13.
John H. Todd Mary Ann Sens Debra J. Hazen-Martin John E. Bylander Brendan J. Smyth Donald A. Sens 《In vitro cellular & developmental biology. Animal》1993,29(5):371-378
Summary Monolayers of human proximal tubule (HPT) cells, when grown on permeable supports and mounted in Ussing chambers, spontaneously
display a transepithelial potential difference (PD), short-circuit current (Isc), and transepithelial specific resistance
(RT). These electrical parameters were used to determine the degree of heterogeneity among independent isolates of human proximal
tubule cell cultures. Seventeen independent isolates of cells were assessed, totaling 260 individual determinations of spontaneous
electrical properties. On average, these cell monolayers displayed an apicalnegative PD of 1.5 ± 0.1 mV, an Isc of 2.7 ± 0.2
μA/cm2, and an RT of 480 ± 19 ohms × cm2. Each independent cell isolate, however, displayed electrical values within a narrow range, in some cases allowing isolates
to be distinguished from one another. The individual isolates were also assessed for Na-coupled glucose transport, Na+,K+-ATPase activity, cAMP stimulation by parathyroid hormone (PTH), forskolin stimulation of Isc, and ouabain inhibition. With
the exception of a strong correlation between Na+,K+-ATPase activity and Isc, these parameters, in contrast to electrical properties, were found to be consistent and did not
reveal distinctions among the isolates. HPT cell cultures seem to consistently retain important features of proximal tubule
differentiation while maintaining the variability, as demonstrated by electrical properties, that might be expected of cells
isolated from a random population. 相似文献
14.
Kalland ME Solheim SA Skånland SS Taskén K Berge T 《Experimental cell research》2012,318(14):1611-1619
The transmembrane protein Cbp/PAG (Csk binding protein/phospho-protein associated with glycosphingolipid-enriched microdomains) has a negative regulatory role in T cell activation as an adapter for C-terminal Src kinase, Csk. In T cells, membrane docking of Csk is promoted by binding to FynT-phosphorylated Cbp/PAG (pTyr317) to allow targeting of substrates residing in lipid rafts. Here, we investigate a potential parallel position for Cbp/PAG and the Src kinase Lyn in early B cell receptor signaling. Using normal and transformed B cells, we have compared signal profiles of BCR-triggered responses created by phospho-specific flow cytometry. In human normal B cells, our data show that reduced Cbp/PAG levels leads to enhanced and prolonged activation of proximal signaling mediators, while over-expression of the adapter in normal, EBV-transformed cells results in reduced calcium flux. Taken together, our findings support a negative regulatory function for Cbp/PAG in proximal BCR signaling in these cells. 相似文献
15.
We have examined the effect of dopamine on Ca(2+) uptake and its related signaling pathways in primary renal proximal tubule cells (PTCs). Dopamine increased Ca(2+) uptake in a concentration (>10(-10) M) and time- (>8 h) dependent manner. Dopamine-induced increase in Ca(2+) uptake was prevented by SCH 23390 (a DA(1) antagonist) rather than spiperone (a DA(2) antagonist). SKF 38393 (a DA(1) agonist) increased Ca(2+) uptake unlike the case with quinpirole (a DA(2) agonist). Dopamine-induced increase in Ca(2+) uptake was blocked by nifedipine and methoxyverapamil (L-type Ca(2+) channel blockers). Moreover, dopamine-induced increase in Ca(2+) uptake was blocked by pertussis toxin (a G(i) protein inhibitor), protein kinase A (PKA) inhibitor amide 14/22 (a PKA inhibitor), and SQ 22536 (an adenylate cyclase inhibitor). Subsequently, dopamine increased cAMP level. The PLC inhibitors (U 73122 and neomycin), the PKC inhibitors (staurosporine and bisindolylmaleimide I) suppressed the dopamine-induced increase of Ca(2+) uptake. SB 203580 (a p38 MAPK inhibitor) and PD 98059 (a MAPKK inhibitor) also inhibited the dopamine-induced increase of Ca(2+) uptake. Dopamine-induced p38 and p42/44 MAPK phosphorylation was blocked by SQ 22536, neomycin, and staurosporine. The stimulatory effect of dopamine on Ca(2+) uptake was significantly inhibited by the NF-kappaB inhibitors SN50, TLCK, and Bay 11-7082. In addition, dopamine significantly increased the level of NF-kappaB p65, which was prevented by either SQ 22536, neomycin, staurosporine, PD 98059, or SB 203580. Thus, dopamine stimulates Ca(2+) uptake in PTCs, initially through by G(s) coupled dopamine receptors, PLC/PKC, followed by MAPK, and ultimately by NF-kappaB activation. 相似文献
16.
17.
Pi depletion of proximal tubule cells isolated from mouse kidney results in a decrease in the cell content of fructose-2,6-bisphosphate and an increase in the rate of gluconeogenesis from pyruvate, malate and succinate. Gluconeogenesis from glycerol is unaffected by Pi depletion. Introduction of fructose-2,6-bisphosphate into the cytosol of ATP-permeabilized cells is accompanied by a fall in gluconeogenesis. The presence of external Ca2+ stimulates gluconeogenesis. When cytosolic Ca2+ is raised to 1.8 microM by permeabilization, the resealed cells still require 2.5 mM Ca2+ in the bathing medium in order to perform gluconeogenesis at the maximum rate. Cells permeabilized in the presence of cAMP show a decreased rate of glucose production. Phorbol ester stimulates gluconeogenesis provided that the phorbol treatment is performed in the absence of Ca2+ ions. It is suggested that Pi depletion may stimulate pyruvate carboxylase activity and facilitate the entry of certain gluconeogenic substrates into mitochondria. It is also proposed that important aspects of the control of renal gluconeogenesis by parathyroid hormone are mediated by protein kinase C. 相似文献
18.
19.
20.
Santa Spaggiare Michael J. Wallach Joseph T. Tupper 《Journal of cellular physiology》1976,89(3):403-416
The components of unidirectional K influx and efflux have been investigated in the 3T3 cell and the SV40 transformed 3T3 cell in exponential and stationary growth phase. Over the cell densities used for transport experiments the 3T3 cell goes from exponential growth to density dependent inhibition of growth (4 × 104 to 4 × 105 cell cm?2) whereas the SV40 3T3 maintains exponential or near exponential growth (4 × 104 to 1 × 106 cell cm?2). In agreement with previous observations, volume per cell and mg protein per cell decrease with increasing cell density. Thus, transport measurements have been expressed on a per volume basis. Total unidirectional K influx and efflux in the 3T3 cell is approximately double that of the SV40 3T3 cell at all cell densities investigated. Both cell types have similar volumes initially and show similar decreases with increasing cell density. Thus, in this clone of the 3T3 cell SV40 transformation specifically decreases unidirectional K flux. The magnitude of the total K flux does not change substantially for either cell line during transition from sparse to dense cultures. However, the components of the K transport undergo distinct changes. Both cell lines possess a ouabain sensitive component of K influx, presumably representing the active inward K pump. Both also possess components of K influx and efflux sensitive to furosemide. The data suggest this component represents a one-for-one K exchange mechanism. The fraction of K influx mediated by the ouabain sensitive component is reduced to one half its value when exponential versus density inhibited 3T3 cells are compared (63% versus 31% of total influx). No comparable drop occurs in the SV40 3T3 cell at equivalent cell densities (64% versus 56% of total influx). Thus, the pump mediated component of K influx would appear to be correlated with growth. In contrast, the furosemide sensitive component represents approximately 20% of the total unidirectional K influx and efflux in both cell lines in sparse culture. At high cell densities, where growth inhibition occurs in the 3T3 cell but not the SV40 3T3, the furosemide sensitive component doubles in both cell lines. Thus, the apparent K-K exchange mechanism is density dependent rather than growth dependent. 相似文献