首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the crowded intranuclear environment, entropic depletion forces between macromolecules are expected to be strong. A review of simulations of linear polymers leads to several predictions about probable conformations of a polynucleosome chain in these conditions. These include a globular conformation, variable compaction due to different local rigidity or curvature of the mosaic of isochores, satellite sequences, and nucleosomes containing different histone variants, and the possibility that chromosomes represent separate phases like those seen in heterogeneous particle mixtures by experiment and simulation. Experimental results which show that macromolecular crowding alone, in the absence of exogenous cations, can stabilise interphase chromosomes and cause self-association of polynucleosome chains are presented. Together, these considerations suggest that macromolecular crowding and entropic forces are major factors in packing polynucleosome chains in vivo.  相似文献   

3.
Unfolded states of ribonuclease A were used to investigate the effects of macromolecular crowding on macromolecular compactness and protein folding. The extent of protein folding and compactness were measured by circular dichroism spectroscopy, fluorescence correlation spectroscopy, and NMR spectroscopy in the presence of polyethylene glycol (PEG) or Ficoll as the crowding agent. The unfolded state of RNase A in a 2.4 M urea solution at pH 3.0 became native in conformation and compactness by the addition of 35% PEG 20000 or Ficoll 70. In addition, the effects of macromolecular crowding on inert macromolecule compactness were investigated by fluorescence correlation spectroscopy using Fluorescence-labeled PEG as a test macromolecule. The size of Fluorescence-labeled PEG decreased remarkably with an increase in the concentration of PEG 20000 or Ficoll 70. These results show that macromolecules are favored compact conformations in the presence of a high concentration of macromolecules and indicate the importance of a crowded environment for the folding and stabilization of globular proteins. Furthermore, the magnitude of the effects on macromolecular crowding by the different sizes of background molecules was investigated. RNase A and Fluorescence-labeled PEG did not become compact, and had folded conformation by the addition of PEG 200. The effect of the chemical potential on the compaction of a test molecule in relation to the relative sizes of the test and background molecules is also discussed.  相似文献   

4.
A study of ultrathin sections of normal Chinese hamster cells and cells treated with decreasing concentrations of bivalent cations (Ca2+ and Mg2+) in situ revealed several discrete levels of compaction of DNA-nucleoprotein (DNP) fibrils in mitotic chromosomes and the chromatin of interphase nuclei. At concentrations ranging from 3 mM CaCl2 and 1 mM MgCl2 to ten times less, the chromosomes are found to contain fibrous elements (chromonemata) about 100 nm in diameter. As Ca2+ concentration is gradually decreased to 0.2–0.1 mM, the chromosomes decondense into a number of discrete chromatin structures, the chromomeres. As decondensation proceeds, these chromomeres acquire a rosettelike structure with DNP fibrils radiating from an electron-dense core. Upon complete decondensation of chromosomes, individual chromomeres persist only in the centromeric regions. The following levels of DNP compaction in mitotic chromosomes are suggested: a 10-nm nucleosomal fibril, a 25-nm nucleomeric fibril, and the chromonema, a fibrous structure, about 100 nm in diameter, composed of chromomeres. Interphase nuclei also contain structures which are morphologically similar to the chromomeres of mitotic chromosomes.  相似文献   

5.
Self-association of polynucleosome chains by macromolecular crowding   总被引:1,自引:1,他引:0  
The crowding of macromolecules in the cell nucleus, where their concentration is in the range of 100 mg/ml, is predicted to result in strong entropic forces between them. Here the effects of crowding on polynucleosome chains in vitro were studied to evaluate if these forces could contribute to the packing of chromatin in the nucleus in vivo. Soluble polynucleosomes approximately 20 nucleosomes in length formed fast-sedimenting complexes in the presence of inert, volume-occupying agents poly(ethylene glycol) (PEG) or dextran. This self-association was reversible and consistent with the effect of macromolecular crowding. In the presence of these crowding agents, polynucleosomes formed large assemblies as seen by fluorescence microscopy after labelling DNA with the fluorescent stain DAPI, and formed rods and sheets at a higher concentration of crowding agent. Self-association caused by crowding does not require exogenous cations. Single, approximately 800 nucleosome-long chains prepared in 100 muM Hepes buffer with no added cations, labelled with the fluorescent DNA stain YOYO-1, and spread on a polylysine-coated surface formed compact 3-D clusters in the presence of PEG or dextran. This reversible packing of polynucleosome chains by crowding may help to understand their compact conformations in the nucleus. These results, together with the known collapse of linear polymers in crowded milieux, suggest that entropic forces due to crowding, which have not been considered previously, may be an important factor in the packing of nucleosome chains in the nucleus.  相似文献   

6.
The megabase-sized length of chromatin is highly relevant to the state of chromatin in vivo, where it is subject to a highly crowded environment and is organized in topologically associating domains of similar dimension. We developed an in vitro experimental chromatin model system reconstituted from T4 DNA (approximately 166 kbp) and histone octamers and studied the monomolecular compaction of this megabase-sized chromatin fiber under the influence of macromolecular crowding. We used single-molecule fluorescence microscopy and observed compaction in aqueous solutions containing poly(ethylene glycol) in the presence of monovalent (Na+ and K+) and divalent (Mg2+) cations. Both DNA and chromatin demonstrated compaction under comparable conditions in the presence of poly(ethylene glycol) and Na+ or Mg2+ salt. However, the mechanism of the compaction changed from a first-order phase transition for DNA to a continuous folding for megabase-sized chromatin fibers. A more efficient and pronounced chromatin compaction was observed in the presence of Na+ compared to K+. A flow-stretching technique to unfold DNA and chromatin coils was used to gain further insight into the morphology of partially folded chromatin fibers. The results revealed a distribution of partially folded chromatin fibers. This variability is likely the result of the heterogeneous distribution of nucleosomes on the DNA chain. The packaging of DNA in the form of chromatin in the crowded nuclear environment appears essential to ensure gradual conformational changes of DNA.  相似文献   

7.
Molecular crowding effects on structure and stability of DNA   总被引:2,自引:1,他引:1  
Miyoshi D  Sugimoto N 《Biochimie》2008,90(7):1040-1051
Living cells contain a variety of biomolecules including nucleic acids, proteins, polysaccharides, and metabolites as well as other soluble and insoluble components. These biomolecules occupy a significant fraction (20-40%) of the cellular volume. The total concentration of biomolecules reaches 400gL(-1), leading to a crowded intracellular environment referred to as molecular crowding. Therefore, an understanding of the effects of molecular crowding conditions on biomolecules is important to broad research fields such as biochemical, medical, and pharmaceutical sciences. In this review, we describe molecular conditions in the cytoplasm and nucleus, which are totally different from in vitro conditions, and then show the biochemical and biophysical consequences of molecular crowding. Finally, we discuss the effect of molecular crowding on the structure, stability, and function of nucleic acids and the significance of molecular crowding in biotechnology and nanotechnology.  相似文献   

8.
Diffraction of x-rays from living cells, isolated nuclei, and metaphase chromosomes gives rise to several major low angle reflections characteristic of a highly conserved pattern of nucleosome packing within the chromatin fibers. We answer three questions about the x-ray data: Which reflections are characteristic of chromosomes in vivo? How can these reflections be preserved in vitro? What chromosome structures give rise to the reflections? Our consistent observation of diffraction peaks at 11.0, 6.0, 3.8, 2.7 and 2.1 nm from a variety of living cells, isolated nuclei, and metaphase chromosomes establishes these periodicities as characteristic of eukaryotic chromosomes in vivo. In addition, a 30-40- nm peak is observed from all somatic cells that have substantial amounts of condensed chromatin, and a weak 18-nm reflection is observed from nucleated erythrocytes. These observations provide a standard for judging the structural integrity of isolated nuclei, chromosomes, and chromatin, and thus resolve long standing controversy about the “tru” nature of chromosome diffraction. All of the reflection seen in vivo can be preserved in vitro provided that the proper ionic conditions are maintained. Our results show clearly that the 30-40-nm maximum is a packing reflection. The packing we observe in vivo is directly correlated to the side-by-side arrangement of 20- 30-nm fibers observed in thin sections of fixed and dehydrated cells and isolated chromosomes. This confirms that such packing is present in living cells and is not merely an artifact of electron microscopy. As expected, the packing reflection is shifted to longer spacings when the fibers are spread apart by reducing the concentration of divalent cations in vitro. Because the 18-, 11.0-, 6.0-, 3.8-, 2.7-, and 2.1-nm reflections are not affected by the decondensation caused by removal of divalent cations, these periodicities must reflect the internal structure of the chromaticn fibers.  相似文献   

9.
Experimental conditions that simulate the crowded bacterial cytoplasmic environment have been used to study the assembly of the essential cell division protein FtsZ from Escherichia coli. In solutions containing a suitable concentration of physiological osmolytes, macromolecular crowding promotes the GTP-dependent assembly of FtsZ into dynamic two-dimensional polymers that disassemble upon GTP depletion. Atomic force microscopy reveals that these FtsZ polymers adopt the shape of ribbons that are one subunit thick. When compared with the FtsZ filaments observed in vitro in the absence of crowding, the ribbons show a lag in the GTPase activity and a decrease in the GTPase rate and in the rate of GTP exchange within the polymer. We propose that, in the crowded bacterial cytoplasm under assembly-promoting conditions, the FtsZ filaments tend to align forming dynamic ribbon polymers. In vivo these ribbons would fit into the Z-ring even in the absence of other interactions. Therefore, the presence of mechanisms to prevent the spontaneous assembly of the Z-ring in non-dividing cells must be invoked.  相似文献   

10.
Physiological medium constitutes a crowded environment that serves as the field of action for protein-protein interaction in vivo. Measuring protein-protein interaction in crowded solutions can mimic this environment. Here we report the application of fluorescence spectroscopy and resonant mirror biosensor to investigate the interactions of bovine milk xanthine oxidase and bovine erythrocyte copper, zinc-superoxide dismutase in crowded solutions. Four nonspecific high molecular mass crowding agents, poly(ethylene glycol) 2000 and 20,000, Ficoll 70, and dextran 70, and one low molecular mass compound, glycerol, are used. Superoxide dismutase shows a strong and macromolecular crowding agent concentration-dependent binding affinity to xanthine oxidase. Addition of high concentrations of such high molecular mass crowding agents increases the binding constant remarkably and thus stabilizes superoxide dismutase activity, compared to those in the absence of crowding agents. In contrast, glycerol has little effect on the binding constant and decreases superoxide dismutase activity over the same concentration range. Such a pattern suggests that the enhancing effects of polymers and polysaccharides on the binding are due to macromolecular crowding. Taken together, these results indicate that macromolecular crowding enhances the binding of superoxide dismutase to xanthine oxidase and is favorable to the function of superoxide dismutase.  相似文献   

11.
The intracellular milieu is complex, heterogeneous and crowded—an environment vastly different from dilute solutions in which most biophysical studies are performed. The crowded cytoplasm excludes about a third of the volume available to macromolecules in dilute solution. This excluded volume is the sum of two parts: steric repulsions and chemical interactions, also called soft interactions. Until recently, most efforts to understand crowding have focused on steric repulsions. Here, we summarize the results and conclusions from recent studies on macromolecular crowding, emphasizing the contribution of soft interactions to the equilibrium thermodynamics of protein stability. Despite their non-specific and weak nature, the large number of soft interactions present under many crowded conditions can sometimes overcome the stabilizing steric, excluded volume effect.  相似文献   

12.
Condensation of chromatin: role of multivalent cations   总被引:4,自引:0,他引:4  
D Sen  D M Crothers 《Biochemistry》1986,25(7):1495-1503
We have used electric dichroism to investigate the influence of multivalent cations upon the compaction of chicken erythrocyte chromatin from the unfolded, 10-nm fiber to the 30-nm solenoid and subsequent aggregation. The pattern of condensation, which consists of compaction plus aggregation, is found to be strikingly similar for a variety of cations of differing charge, including the physiologically important polyamines spermine and spermidine. With a few exceptions such as Cu2+ and Gd3+, an optimally compacted fiber with reproducible hydrodynamic properties is produced prior to the onset of aggregation. We report the concentrations of di-, tri-, and tetravalent cations required for optimal condensation; in addition, for tri- and tetravalent cations, we were able to estimate the extent of charge neutralization produced by their binding to the optimally compacted fiber. The results show that the multivalent ion concentration required for optimal compaction decreases as cationic charge increases. In addition, the effect of a mixture of dilute mono- and multivalent cations on chromatin condensation is synergistic, rather than competitive as has been found for the multivalent cation induced condensation of DNA or the B----Z conformational transition. A simple calculation indicates that the entropy of ion uptake in chromatin condensation is surprisingly constant for a range of ionic conditions; this factor may be a dominant one in determining the folding equilibrium.  相似文献   

13.
Macromolecular crowding dramatically affects cellular processes such as protein folding and assembly, regulation of metabolic pathways, and condensation of DNA. Despite increased attention, we still lack a definition for how crowded a heterogeneous environment is at the molecular scale and how this manifests in basic physical phenomena like diffusion. Here, we show by means of fluorescence correlation spectroscopy and computer simulations that crowding manifests itself through the emergence of anomalous subdiffusion of cytoplasmic macromolecules. In other words, the mean square displacement of a protein will grow less than linear in time and the degree of this anomality depends on the size and conformation of the traced particle and on the total protein concentration of the solution. We therefore propose that the anomality of the diffusion can be used as a quantifiable measure for the crowdedness of the cytoplasm at the molecular scale.  相似文献   

14.
15.
To understand how proteins fold in vivo, it is important to investigate the effects of macromolecular crowding on protein folding. Here, the influence of crowding on in vitro apoflavodoxin folding, which involves a relatively stable off-pathway intermediate with molten globule characteristics, is reported. To mimic crowded conditions in cells, dextran 20 at 30% (w/v) is used, and its effects are measured by a diverse combination of optical spectroscopic techniques. Fluorescence correlation spectroscopy shows that unfolded apoflavodoxin has a hydrodynamic radius of 37+/-3 A at 3 M guanidine hydrochloride. F?rster resonance energy transfer measurements reveal that subsequent addition of dextran 20 leads to a decrease in protein volume of about 29%, which corresponds to an increase in protein stability of maximally 1.1 kcal mol(-1). The compaction observed is accompanied by increased secondary structure, as far-UV CD spectroscopy shows. Due to the addition of crowding agent, the midpoint of thermal unfolding of native apoflavodoxin rises by 2.9 degrees C. Although the stabilization observed is rather limited, concomitant compaction of unfolded apoflavodoxin restricts the conformational space sampled by the unfolded state, and this could affect kinetic folding of apoflavodoxin. Most importantly, crowding causes severe aggregation of the off-pathway folding intermediate during apoflavodoxin folding in vitro. However, apoflavodoxin can be over expressed in the cytoplasm of Escherichia coli, where it efficiently folds to its functional native form at high yield without noticeable problems. Apparently, in the cell, apoflavodoxin requires the help of chaperones like Trigger Factor and the DnaK system for efficient folding.  相似文献   

16.
17.
Intracellular environment is crowded with biomolecules that occupy a significant fraction (up to 40%) of the cellular volume, with a total concentration in the range 300-400mg/ml. Recently, the effect of crowding/dehydrating agents on the DNA G-quadruplexes has become a subject of an increasing interest. Crowding and/or dehydrating agents have been used to simulate how G-quadruplexes behave under cell-mimicking conditions characterized by a large excluded volume and a lower water activity. Indeed, the presence of both steric crowding and a lower water activity can affect G-quadruplex stability, their folding/unfolding kinetics, as well as their binding processes with proteins or small ligands. Many of these effects can be explored experimentally by measuring the dependence of the conformational stability, isomerisation kinetics and equilibria on the concentration of cosolutes which do not interact with the molecules (G-quadruplexes) under investigation. Spectroscopic methodologies, like circular dichroism, UV and fluorescence, have been widely employed to study G-quadruplexes in dilute solution. Here we focus on some aspects that need to be taken into account when employing such techniques in the presence of large amount of a cosolute. Additionally, we discuss possible problems/artifacts that arise in setting experiments in presence of these commonly employed cosolutes and in interpreting the results.  相似文献   

18.
Whereas many physicochemical investigations have shown that among monovalent cations Na(+) ion possesses minimal potential for DNA binding, biological assays have shown that Na(+) ion (in contrast to K(+) ion) plays a primary role in chromatin compaction and related processes. It is difficult to explain this inverse relationship between the compaction potentials of Na(+) and K(+) and their binding abilities. In this study we sought to resolve this contradiction and emphasize the phenomenological distinction between DNA compaction and DNA binding processes in the case of DNA compaction by monocations. Using polyethylene glycol solutions as a model of a crowded cell environment, we studied DNA compaction by alkali metal salts LiCl, NaCl, KCl, RbCl, and CsCl, and found that all of these monocations promote DNA compaction. Among these monovalent cations Na(+) produces the greatest compaction and the ratio of K(+) cand Na(+) oncentrations for DNA compaction is approximately 1.5-2. A comparative analysis of recent experimental results indicates that a higher binding activity of monocation generally corresponds to a low compaction potential of the corresponding monovalent ion. This inverse relation is explained as a result of partial dehydration of monocations in the compact state.  相似文献   

19.
Analysis of the macromolecular crowding effects in polymer solutions show that the excluded volume effect is not the only factor affecting the behavior of biomolecules in a crowded environment. The observed inconsistencies are commonly explained by the so-called soft interactions, such as electrostatic, hydrophobic, and van der Waals interactions, between the crowding agent and the protein, in addition to the hard nonspecific steric interactions. We suggest that the changes in the solvent properties of aqueous media induced by the crowding agents may be the root of these “soft” interactions. To check this hypothesis, the solvatochromic comparison method was used to determine the solvent dipolarity/polarizability, hydrogen-bond donor acidity, and hydrogen-bond acceptor basicity of aqueous solutions of different polymers (dextran, poly(ethylene glycol), Ficoll, Ucon, and polyvinylpyrrolidone) with the polymer concentration up to 40% typically used as crowding agents. Polymer-induced changes in these features were found to be polymer type and concentration specific, and, in case of polyethylene glycol (PEG), molecular mass specific. Similarly sized polymers PEG and Ucon producing different changes in the solvent properties of water in their solutions induced morphologically different α-synuclein aggregates. It is shown that the crowding effects of some polymers on protein refolding and stability reported in the literature can be quantitatively described in terms of the established solvent features of the media in these polymers solutions. These results indicate that the crowding agents do induce changes in solvent properties of aqueous media in crowded environment. Therefore, these changes should be taken into account for crowding effect analysis.  相似文献   

20.
EJ Cho  JS Kim 《Biophysical journal》2012,103(3):424-433
The physics of structure formation and maintenance of nuclear bodies (NBs), such as nucleoli, Cajal bodies, promyelocytic leukemia bodies, and speckles, in a crowded nuclear environment remains largely unknown. We investigate the role of macromolecular crowding in the formation and maintenance of NBs using computer simulations of a simple spherical model, called Lennard-Jones (LJ) particles. LJ particles form a one-phase, dilute fluid when the intermolecular interaction is weaker than a critical value, above which they phase separate and form a condensed domain. We find that when volume-exclusive crowders exist in significant concentrations, domain formation is induced even for weaker intermolecular interactions, and the effect is more pronounced with increasing crowder concentration. Simulation results show that a previous experimental finding that promyelocytic leukemia bodies disappear in the less-crowded condition and reassemble in the normal crowded condition can be interpreted as a consequence of the increased intermolecular interactions between NB proteins due to crowding. Based on further analysis of the simulation results, we discuss the acceleration of macromolecular associations that occur within NBs, and the delay of diffusive transport of macromolecules within and out of NBs when the crowder concentration increases. This study suggests that in a polydisperse nuclear environment that is enriched with a variety of macromolecules, macromolecular crowding not only plays an important role in the formation and maintenance of NBs, but also may perform some regulatory functions in response to alterations in the crowding conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号