首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variations of the intracellular localization of the individual protein kinase C (PKC) isoforms are related with their different biological functions. In this study, we have investigated the precise intracellular translocation of endogenous PKCα and PKCε in PMA-stimulated normal and tumoral lactotroph cells by using confocal and immunogold electron microscopy, which was correlated with the rate of cell proliferation of both pituitary cell phenotypes. The present results showed that the short phorbol ester incubation stimulated the proliferation of normal and tumoral lactotroph cells, as determined by the measurement of the BrdU-labelling index. The translocation of PKCα to plasma and nuclear membranes induced by PMA was more marked than that observed for PKCε in normal and tumoral lactotroph cells. Our results showed that PKCs translocation to the plasma and nuclear membranes varied from isozyme to isozyme emphasizing that PKCα could be related with the mitogenic stimulus exerted by phorbol ester. These data support the notion that specific PKC isozymes may exert spatially defined effects by virtue of their directed translocation to distinct intracellular sites.  相似文献   

2.

Background

Protein kinase C (PKC) serves as the receptor for tumor-promoting phorbol esters, which are potent activators of conventional (c) and novel (n) PKCs. We recently showed that these activators induced selective upregulation of PKCη in breast cancer cells. The objective of this study is to understand unique regulation of PKCη and its importance in breast cancer.

Methods

The levels of PKC isozymes were monitored in breast cancer cells following treatment with inhibitors of kinases, proteasome and proteases by Western blotting. PKCε was introduced by adenoviral delivery. PKCη and PDK1 were depleted by siRNA silencing. Cell growth was determined by the MTT or clonal assay.

Results

The general PKC inhibitors Gö 6983 and bisindolylmaleimide but not cPKC inhibitor Gö 6976 led to substantial PKCη downregulation, which was partly rescued by the introduction of nPKCε. Inhibition of phosphoinositide-dependent kinase-1 (PDK1) by Ly294002 or knockdown of PDK1 also led to downregulation of basal PKCη but had no effect on PKC activator-induced upregulation of PKCη. Proteasome inhibitors blocked PKCη downregulation triggered by PDK1 inhibition/depletion but not by Gö 6983. PKCη level increased in malignant but not in non-tumorigenic or pre-malignant cells in the progressive MCF-10A series associated with activated PDK1, and knockdown of PKCη inhibited breast cancer cell growth and clonogenic survival.

Conclusion

Upregulation of PKCη contributes to breast cancer cell growth and targeting either PKCε or PDK1 triggers PKCη downregulation but involves two distinct mechanisms.

General significance

The status of PKCη may serve as a potential biomarker for breast cancer malignancy.  相似文献   

3.
The C1 domains of novel PKCs mediate the diacylglycerol-dependent translocation of these enzymes. The four different C1B domains of novel PKCs (δ, ε, θ and η) were studied, together with different lipid mixtures containing acidic phospholipids and diacylglycerol or phorbol ester. The results show that either in the presence or in the absence of diacylglycerol, C1Bε and C1Bη exhibit a substantially higher propensity to bind to vesicles containing negatively charged phospholipids than C1Bδ and C1Bθ. The observed differences between the C1B domains of novel PKCs (in two groups of two each) were also evident in RBL-2H3 cells and it was found that, as with model membranes, in which C1Bε and C1Bη could be translocated to membranes by the addition of a soluble phosphatidic acid without diacylglycerol or phorbol ester, C1Bδ and C1Bθ were not translocated when soluble phosphatidic acid was added, and diacylglycerol was required to achieve a detectable binding to cell membranes. It is concluded that two different subfamilies of novel PKCs can be established with respect to their propensity to bind to the cell membrane and that these peculiarities in recognizing lipids may explain why these isoenzymes are specialized in responding to different triggering signals and bind to different cell membranes.  相似文献   

4.
5.
Protein kinase C (PKC) is a family of at least 10 isozymes involved in the activation of different signal transduction pathways. The exact function of these isozymes is not known at present. Isozyme-selective inhibitors would be important to explain the function of the different PKCs and are anticipated to have pharmaceutical potential. Here we report that the small organic molecule BAS 02104951 [5-(1,3-benzodioxol-5-ylmethylene)-1-(phenylmethyl)-2,4,6(1H,3H,5H)-pyrimidinetrion], a barbituric acid derivative, inhibited PKCη and PKCε in vitro (IC(50) 18 and 36 μM, respectively). BAS 02104951 also inhibited the interaction of PKCε with its adaptor protein receptor for activated C-kinase 2 (RACK2) (IC(50) 28.5 μM). BAS 02104951 also inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Elk-1 phosphorylation in HeLa cells, translocation of PKCε and PKCη to the membrane following treatment of PC3 cells with TPA. The compound did not inhibit the proliferation of PC3 and HeLa cells. BAS 02104951 can be used as selective inhibitor of PKCε in cells not expressing PKCη and may serve as a basis for the rational development of a selective inhibitor of PKCε or PKCη, or for an inhibitor of the PKCε/RACK2 interaction.  相似文献   

6.
Protein kinase C ε (PKCε) is a transforming oncogene and plays a pivotal role in numerous cellular processes including proliferation, invasion and differentiation. Recently, we described a function of PKCε as a scaffold protein linking PLCγ1 to the EGFR module. Here, in the head and neck squamous carcinoma cell line (HNSCC) FaDu we demonstrate that over-expressed PKCε may be associated with the EGFR. This is linked with the consecutive inhibition of the recruitment of PLCγ1 to the EGFR, of the catalytical activation of PLCγ1 by EGF, and of the PLCγ1-mediated effect of EGF on cell proliferation. These effects are independent of the catalytical as well as the scaffold activity of PKCε but are a function of the cellular expression level of PKCε. In contrast to FaDu cells where the PLCγ1 pathway was selectively affected, in three other HNSCC cell lines investigated over-expression of PKCε resulted in association with EGFR and, subsequently, in either partial (ERK and Akt or PLCγ1 and Akt) or complete (ERK, PLCγ1 and Akt) inhibition of the main EGFR signalling pathways. Together, our data suggest that in particular carcinoma cells highly expressed PKCε may act as negative allosteric modulator of EGFR signalling. This novel function of PKCε provides also the first indication that the EGFR may be a target for allosteric modulation by accessory proteins.  相似文献   

7.
PKCε is central to cardioprotection. Sub-proteome analysis demonstrated co-localization of activated cardiac PKCε (aPKCε) with metabolic, mitochondrial, and cardioprotective modulators like hypoxia-inducible factor 1α (HIF-1α). aPKCε relocates to the mitochondrion, inactivating glycogen synthase kinase 3β (GSK3β) to modulate glycogen metabolism, hypertrophy and HIF-1α. However, there is no established mechanistic link between PKCε, p-GSK3β and HIF1-α. Here we hypothesized that cardiac-restricted aPKCε improves mitochondrial response to hypobaric hypoxia by altered substrate fuel selection via a GSK3β/HIF-1α-dependent mechanism. aPKCε and wild-type (WT) mice were exposed to 14 days of hypobaric hypoxia (45 kPa, 11% O(2)) and cardiac metabolism, functional parameters, p-GSK3β/HIF-1α expression, mitochondrial function and ultrastructure analyzed versus normoxic controls. Mitochondrial ADP-dependent respiration, ATP production and membrane potential were attenuated in hypoxic WT but maintained in hypoxic aPKCε mitochondria (P < 0.005, n = 8). Electron microscopy revealed a hypoxia-associated increase in mitochondrial number with ultrastructural disarray in WT versus aPKCε hearts. Concordantly, left ventricular work was diminished in hypoxic WT but not aPKCε mice (glucose only perfusions). However, addition of palmitate abrogated this (P < 0.05 vs. WT). aPKCε hearts displayed increased glucose utilization at baseline and with hypoxia. In parallel, p-GSK3β and HIF1-α peptide levels were increased in hypoxic aPKCε hearts versus WT. Our study demonstrates that modest, sustained PKCε activation blunts cardiac pathophysiologic responses usually observed in response to chronic hypoxia. Moreover, we propose that preferential glucose utilization by PKCε hearts is orchestrated by a p-GSK3β/HIF-1α-mediated mechanism, playing a crucial role to sustain contractile function in response to chronic hypobaric hypoxia.  相似文献   

8.
In a previous report we have demonstrated that PLCγ1 is involved in the differentiation process of C2C12 myoblasts, induced by insulin administration. In order to identify the downstream targets of PLCγ1-dependent signalling, we have analyzed the expression of DAG-dependent PKC isoforms during muscle differentiation. We show that during myotube formation, there is a marked increase of PKCε and η expression, and that PKCε is able to form a complex with PLCγ1. The increase in PKCε amount during myogenic differentiation is associated to an increase in PKCε activity as well. Immunofluorescence analysis indicated that in growing C2C12 cells both PLCγ1 and PKCε localize in the cytoplasm with a distinct perinuclear accumulation. In insulin-treated cells, the expression of PLCγ1 and PKCε increases and the two proteins are still distributed mainly in the perinuclear region of the myotubes. We show that PLCγ1–PKCε complex co-localizes with protein 58 K, a specific Golgi marker. Moreover, our results indicate that the Golgi-associated PKCε form, i.e. PKCε phosphorylated at Ser 729, is increased in differentiated myoblasts. Since it has been previously demonstrated that in C2C12 cells after insulin administration cyclin D3 levels could be modulated by PLCγ1, we analyzed the effect on cyclin D3 expression of either PKCε overexpression or silencing, in order to investigate whether PKCε could also affect cyclin D3 expression. The results showed that either a modification of PKCε expression or a change in its catalytic activity determines a variation of cyclin D3 levels and muscle differentiation in terms of myogenin expression. These data support a role for PKCε in regulating insulin inositide-dependent PLCγ1 signalling in skeletal muscle differentiation.  相似文献   

9.
Non-small cell lung cancer (NSCLC) is one of the most common causes for lung cancer and cancer-related death. The imbalance between cell proliferation and apoptosis was suggested to play an important role in cancer pathogenesis and PKCε is one of the widely recognized targets. Here, we demonstrate that miR-143 is aberrantly downregulated in NSCLC tissue and negatively correlates with expression of PKCε. We show that miR-143 specifically targets the 3′-UTR of PKCε and regulates its expression. Treatment with miR-143 inhibitor mimics cell proliferation and apoptosis imbalance in NSCLC, while inhibition of PKCε can reverse it. Our findings suggest that targeting PKCε overexpression in NSCLC should be beneficial for lung cancer therapy.  相似文献   

10.
It is well established that protein kinase C (PKC) isozymes play distinctive roles in mitogenic and survival signaling as well as in cancer progression. PKCε, the product of the PRKCE gene, is upregulated in various types of cancers including prostate, lung and breast cancer. To address a potential role for PKCs in prostate cancer progression we generated three mouse transgenic lines expressing PKCα, PKCδ or PKCε in the prostate epithelium under the control of the rat probasin (PB) promoter. Whereas PB-PKCα and PB-PKCδ mice did not show any evident phenotype, PB-PKCε mice developed prostate hyperplasia as well as prostate intraepithelial neoplasia (PIN) that displayed enhanced phospho-Akt, phospho-S6 and phospho-Stat3 levels, as well as enhanced resistance to apoptotic stimuli. PKCε overexpression was insufficient to drive neoplastic changes in the mouse prostate. Notably, overexpression of PKCε by adenoviral means in normal immortalized RWPE-1 prostate cells confers a growth advantage and hyperactivation of Erk and Akt. Our results argue for a causal link between PKCε overexpression and prostate cancer development.Key words: PKCε, transgenic mice, prostate, preneoplastic lesions, cell survival, Akt  相似文献   

11.
Recruitment of the protein kinase C (PKC) family of isozymes is an integral component of the signaling events that direct cardiac phenotype expressed during postnatal development and in response to pathologic stimuli. Hyperglycemia is a potent activating signal for cardiac PKC isozymes and induces the apoptosis program in cardiac muscle cells. To determine whether cardiac PKC isozymes modulate transmission of the hyperglycemia apoptosis signal, we have employed isozyme-specific peptide modulators to selectively inhibit (PKC I/II, and ) or activate (PKC). PKC peptides were delivered to primary cultures of serum starved adult rat ventricular myocytes (ARVM), by conjugation to the homeodomain of drosophila antennapedia. As expected, hyperglycemia induced a 35% increase in ARVM apoptosis. Peptide inhibitors of PKC I/II and blocked transmission of the hyperglycemia apoptosis signal, whereas the isozyme specific inhibitor of PKC (V1-2) did not alter the magnitude of glucose-induced ARVM apoptosis. Alternatively, the PKC translocation activator (RACK) abolished hyperglycemia-induced apoptosis, strongly suggesting a cardioprotective role for PKC in this system. Therefore, we conclude that cardiac PKC isozymes modulate hyperglycemia-induced apoptosis and activation of cardiac PKC protects ARVM from the hyperglycemia-induced death signal. (Mol Cell Biochem 268: 169–173, 2005)  相似文献   

12.
Adenosine A(1) receptor (A(1)R)-induced translocation of PKCε to transverse (t) tubular membranes in isolated rat cardiomyocytes is associated with a reduction in β(1)-adrenergic-stimulated contractile function. The PKCε-mediated activation of protein kinase D (PKD) by endothelin-1 is inhibited by β(1)-adrenergic stimulated protein kinase A (PKA) suggesting a similar mechanism of A(1)R signal transduction modulation by adrenergic agonists may exist in the heart. We have investigated the influence of β(1)-adrenergic stimulation on PKCε translocation elicited by A(1)R. Immunofluorescence imaging and Western blotting with PKCε and β-COP antibodies were used to quantify the co-localization of PKCε and t-tubular structures in isolated rat cardiomyocytes. The A(1)R agonist CCPA increased the co-localization of PKCε and t-tubules as detected by imaging. The β(1)-adrenergic receptor agonist isoproterenol (ISO) inhibited this effect of CCPA. Forskolin, a potent activator of PKA, mimicked, and H89, a pharmacological PKA inhibitor, and PKI, a membrane-permeable PKA peptide PKA inhibitor, attenuated the negative effect of ISO on the A(1)R-mediated PKCε translocation. Western blotting with isolated intact hearts revealed an increase in PKCε/β-COP co-localization induced by A(1)R. This increase was attenuated by the A(1)R antagonist DPCPX and ISO. The ISO-induced attenuation was reversed by H89. It is concluded that adrenergic stimulation inhibits A(1)R-induced PKCε translocation to the PKCε anchor site RACK2 constituent of a coatomer containing β-COP and associated with the t-tubular structures of the heart. In that this translocation has been previously associated with the antiadrenergic property of A(1)R, it is apparent that the interactive effects of adenosine and β(1)-adrenergic agonists on function are complex in the heart.  相似文献   

13.
14.
15.
16.

Background

Increasing evidence suggests that individual isoforms of protein kinase C (PKC) play distinct roles in regulating platelet activation.

Methodology/Principal Findings

In this study, we focus on the role of two novel PKC isoforms, PKCδ and PKCε, in both mouse and human platelets. PKCδ is robustly expressed in human platelets and undergoes transient tyrosine phosphorylation upon stimulation by thrombin or the collagen receptor, GPVI, which becomes sustained in the presence of the pan-PKC inhibitor, Ro 31-8220. In mouse platelets, however, PKCδ undergoes sustained tyrosine phosphorylation upon activation. In contrast the related isoform, PKCε, is expressed at high levels in mouse but not human platelets. There is a marked inhibition in aggregation and dense granule secretion to low concentrations of GPVI agonists in mouse platelets lacking PKCε in contrast to a minor inhibition in response to G protein-coupled receptor agonists. This reduction is mediated by inhibition of tyrosine phosphorylation of the FcRγ-chain and downstream proteins, an effect also observed in wild-type mouse platelets in the presence of a PKC inhibitor.

Conclusions

These results demonstrate a reciprocal relationship in levels of the novel PKC isoforms δ and ε in human and mouse platelets and a selective role for PKCε in signalling through GPVI.  相似文献   

17.
Our earlier work showed that mammalian target of rapamycin (mTOR) is essential to the development of various hypertrophic responses, including cardiomyocyte survival. mTOR forms two independent complexes, mTORC1 and mTORC2, by associating with common and distinct cellular proteins. Both complexes are sensitive to a pharmacological inhibitor, torin1, although only mTORC1 is inhibited by rapamycin. Since mTORC2 is known to mediate the activation of a prosurvival kinase, Akt, we analyzed whether mTORC2 directly mediates Akt activation or whether it requires the participation of another prosurvival kinase, PKCε (epsilon isoform of protein kinase-C). Our studies reveal that treatment of adult feline cardiomyocytes in vitro with insulin results in Akt phosphorylation at S473 for its activation which could be augmented with rapamycin but blocked by torin1. Silencing the expression of Rictor (rapamycin-insensitive companion of mTOR), an mTORC2 component, with a sh-RNA in cardiomyocytes lowers both insulin-stimulated Akt and PKCε phosphorylation. Furthermore, phosphorylation of PKCε and Akt at the critical S729 and S473 sites respectively was blocked by torin1 or Rictor knockdown but not by rapamycin, indicating that the phosphorylation at these specific sites occurs downstream of mTORC2. Additionally, expression of DN-PKCε significantly lowered the insulin-stimulated Akt S473 phosphorylation, indicating an upstream role for PKCε in the Akt activation. Biochemical analyses also revealed that PKCε was part of Rictor but not Raptor (a binding partner and component of mTORC1). Together, these studies demonstrate that mTORC2 mediates prosurvival signaling in adult cardiomyocytes where PKCε functions downstream of mTORC2 leading to Akt activation.  相似文献   

18.
19.
20.
Ayurveda is an Indian system of medicine. Despite clinical efficacy, lack of scientific validation has limited the effective use of Ayurvedic drugs. Cardoguard is an Ayurvedic antihypertensive drug formulated by Nagarjuna Herbal Concentrates Ltd., Kerala, India. Left ventricular hypertrophy (LVH) is a modifiable risk factor, and regression of LVH reduces the propensity for adverse cardiovascular events. This study was taken up with the objective of evaluating the efficacy of Cardoguard in the prevention of cardiac remodeling. Cardoguard was administered orally to 2-month-old spontaneously hypertensive rats for 4 months at a dose of 5 mg·day(-1). The dose corresponds to the therapeutic dose calculated on the basis of body surface area. Lower hypertrophy index, decrease in cardiomyocyte area, and reduction of interstitial fibrosis in treated spontaneously hypertensive rats indicate amelioration of cardiac hypertrophy by Cardoguard. Cardiac output increased in response to treatment. Immunostaining for the phosphorylated components of major signaling pathways associated with hypertrophy suggests that prevention of LVH by Cardoguard is possibly mediated through inhibition of extracellular signal-regulated kinases and protein kinase C-ε signaling pathways. Reduced expression of 3-nitrotyrosine in response to the treatment suggests that prevention of cardiac remodeling by Cardoguard is mediated by reduction of oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号