首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are reports showing interactive effect of environmental factors with the toxic outcome of chemicals. We studied the interactive effect of elevated temperature as an abiotic stressor on deltamethrin-induced biochemical stress responses in a freshwater fish, Channa punctata Bloch. Heat stress (∼12 °C above ambient temperature for 3 h) and pesticide exposure (deltamethrin 0.75 ppb for 48 h) showed significant induction of heat shock protein-70 (HSP70) in liver, kidney and gills of fishes. Elevated temperature when followed by deltamethrin exposure showed synergistic effect showing a high level of HSP70 in liver and gills whereas response in the kidney was opposite. On the contrary, when deltamethrin exposure followed the heat stress, no significant difference was observed. Protein carbonylation was found to be more pronounced in heat-stressed group compared with control fish group. A significant increase in lipid peroxidation (LPO) was observed in different tissues of fish exposed to either of the stressors. In the kidney of fish exposed to heat stress followed by deltamethrin, LPO was relatively lower as compared to other treatments. Thiols content such as reduced glutathione (GSH), total thiols (T-SH), non-protein thiols (NP-SH) and protein thiols (P-SH) showed no consistent pattern in different tissues. In deltamethrin-exposed group that was subsequently exposed to heat stress, the GSH content was higher in liver and lower in both kidney and gills when compared with other groups. Alteration in the activities of antioxidant enzymes such as catalase (CAT), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx) was also observed when fish were exposed to heat stress and/or deltamethrin. Our study demonstrated that heat stress modulated biochemical stress responses in fish showing a tissue specific pattern. This implies that fish has the capacity to elicit differential response to exposure to abiotic stressors in order to reduce the systemic magnitude of stress which may otherwise lead to severe dysfunction of vital tissues.  相似文献   

2.
Starvation effects for five weeks on energy reserves, oxidative stress and hematological indices in Nile catfish Clarias gariepinus was studied. The low protein level in starved fish may result from the lowering effect of prolonged starvation on protein synthesis rather than due to its degenerating protein. Moreover, the elevated level of serum amino acids may promote gluconeogenesis in liver. In addition, the lipid depletion in starved fish may be related to the preferential uses of lipids as an energy to starve fish. Also, unchanged glycemic level may introduce a potent evidence for the presence of active gluconeogenesis, depending on both amino and fatty acids precursors. Also, kidney and liver showed disturbances in metabolites associated with oxidative damage such as elevations in total peroxide, carbonyl protein and DNA fragmentation; these may cause dysfunction to these organs after five weeks of starvation. Total peroxide, carbonyl protein and DNA fragmentation were significantly increased in gills, liver and kidney by 29.9, 30.9 and 30.5; 83.6, 84.6 and 53.7; 82.4, 43.3 and 75.7%, respectively. Starvation induced severe anemia and loss of body weight in the fish. However, white muscle did not show any oxidative damage after five weeks of starvation.  相似文献   

3.
Enzymatic and non-enzymatic antioxidants serve as an important biological defense against environmental oxidative stress. Information on antioxidant defense in fish is meager despite that fish are constantly exposed to a myriad of environmental stress including the oxidants. This study, therefore, assesses the activities of antioxidant enzymes viz., glutathione peroxidase, catalase and glutathione S-transferase and the non-enzymatic antioxidants viz., glutathione and metallothionein in various tissues of freshwater fish Channa punctatus (Bloch), in response to short-term and long-term exposures to paper mill effluent. The fish were exposed to the effluent at a concentration of 1.0% (v/v) for 15, 30, 60 and 90 days. The exposure caused a time-dependent increase in glutathione level (P < 0.001), activities of glutathione peroxidase (P < 0.05 to P < 0.001), glutathione S-transferase (P < 0.001) and a marginal initial decrease in catalase activity in the liver (P < 0.01 to P < 0.001). Metallothionein was induced in liver after 60 days of exposure. Two isoforms of metallothionein were detected. Catalase activity also increased 60 days afterwards. Antioxidant pattern was different in gill and kidney showing that liver was more resistant to oxidative damage as compared to gills and kidney. Our results demonstrate a pollutant-induced adaptive response in fish. In addition, levels of enzymatic and non-enzymatic tissue antioxidants may serve as surrogate markers of exposure to oxidant pollutants in fish.  相似文献   

4.
In this study, the protective effects of diphenyl diselenide [(PhSe)2] on quinclorac- induced toxicity were investigated in silver catfish (Rhamdia quelen). The fish were fed for 60 days with a diet in the absence or in the presence of 3.0 mg/Kg (PhSe)2. Animals were further exposed to 1 mg/L quinclorac for 8 days. At the end of experimental period, fish were euthanized and biopsies from liver and gills, as well as blood samples, were collected. The cortisol and metabolic parameters were determined in plasma, and those enzyme activities related to osmoregulation were assayed in the gills. In liver, some important enzyme activities of the intermediary metabolism and oxidative stress-related parameters, such as thiobarbituric acid-reactive substance (TBARS), protein carbonyl, catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), nonprotein thiols (NPSH) and ascorbic acid contents were also evaluated. Compared to the control group, quinclorac exposure significantly decreased hepatosomatic index and increased cortisol and lactate values in plasma. Moreover, the activities of fructose biphosphatase (FBPase), glucose-6-phosphate dehydrogenase (G6Pase), glycogen phosphorilase (GPase) and aspartate aminotransferase (AST) were significantly increased in liver. Quinclorac also induced lipid peroxidation while the activity of SOD, NPSH and ascorbic acid levels decreased in the liver. However, dietary (PhSe)2 reduced the herbicide-induced effects on the studied parameters. In conclusion, (PhSe)2 has beneficial properties based on its ability to attenuate toxicity induced by quinclorac by regulating energy metabolism and oxidative stress-related parameters.  相似文献   

5.
A novel, cost effective and time saving technique for primary cell culture from gills and kidney using fish serum has been developed. Single cell suspension of gills and kidney of Clarias gariepinus was obtained by trypsinization. Minimum essential medium supplemented with 10% fish serum in place of 10% foetal calf serum and 20% fish muscle extract, yielded confluent monolayer on 6th and 8th day in gill and kidney tissue respectively at 28 degrees C. Fish serum can be successfully used as media supplement for cultivation and maintenance of primary cell culture from fishes.  相似文献   

6.
Acute and subacute toxicity of the nonylphenol (NP) on fish was investigated in laboratory toxicity tests with rosy barb (Puntius conchonious). The acute toxicity of NP to rosy barb was determined in semi-static bioassays. Median lethal concentration (LC50) for 96 h was 1.72 microM. The effects of sublethal concentrations of NP (0.17, 0.34 and 0.68 microM) on the structures and biochemical parameters [alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanin aminotransferase (ALT)] in gills, liver and kidney of rosy barb were studied after 14 days. The results showed that NP caused alteration of the structure in organs, as evidenced by the hyperplasia of epithelium and the fusion of secondary lamellae in the gills, the disappearance of the cell membrane and the cell necrosis in the liver as well as haemorrhages in the kidney. In addition, the functional enzyme activities were also changed. The increase trend in ALP activity in organs of fish treated with NP was recorded. The levels of AST and ALT in gills, liver and kidney were stimulated to rise at the lower concentration and fall at the higher concentration NP treatment compared to controls. This study suggests that NP can alter of the structures and biochemical parameters within non-endocrine tissue of fish and these changes may be mediated via destroying membrane structure and inducing cell necrosis.  相似文献   

7.
Extensive application of pesticide in agricultural field affects the enzymatic activity of non-target animals, including fishes. In this study, the impact of sublethal concentration of fenvalerate on marker enzymes of freshwater Zebra fish was evaluated. Pesticide-induced stress can specifically affect non target fishes, through elevated level of reactive oxygen species which is responsible for biochemical, cell metabolism and physiological activities. The oxidative stress mediated by fenvalerate at sub lethal concentrations after 28 days of exposure of Zebra fish. Following 28 days of exposure of pesticide, catalase, superoxide dismutase, aspartate amino transferases, alanine amino transferase, alkaline phosphatase and acid phosphatase were assessed. Results revealed reduction of superoxide dismutase activity after 28 days of exposure in sub lethal concentration of fenvalerate in liver and gills. In liver, catalase activity was found to be less in fenvalerate exposed fish than control fish. In liver, increase of 75.75% aspartate amino transferase and 38% increase in alanine amino transferase in gills. SGPT activity was relatively higher than SGOT suggests more contribution of phyruvalate than oxaloacetate formation. Fenvalerate induced changes in acid phosphatase and alkaline phosphatase activity in the liver and gills of Zebra fish after four weeks of exposure. Fenvalerate induced expression of various stress proteins in gill, liver, followed by muscle. Some proteins lost its intensity due to fenvalerate toxicity. Result revealed that enzyme assays and SDS-PAGE analysis for protein subunits determination is relevant tool to monitor stress in freshwater ecosystem. The findings suggest that in monitoring fenvalerate toxicity programme, enzyme activities can be potent diagnostic tool for fenvalerate induced toxicity.  相似文献   

8.
All animals face the possibility of limitations in food resources that could ultimately lead to mortality caused by starvation. The primary goal of this study was to characterize the various physiological strategies that allow fish to survive starvation. A multiparametric approach, including morphological biomarkers, blood plasma metabolites, oxidative stress and energy reserves, was used to assess starvation effects on the fish Hoplosternum littorale. Adult specimens were maintained at four experimental groups: control (fed ad libitum), and starved (not fed) fish for 7 and 28 days. Significant changes were observed not only after 28 days, but also after 7 days of starvation. In the shorter period, the hepatosomatic index as well as plasma triglycerides and glucose were significantly lower in starved fish than in the control ones. These results were accompanied by reduced lipid, glycogen and protein reserves in liver and diminished glycogen content in muscle, suggesting the need of these macromolecules as fuel sources. In addition, increased antioxidant enzyme activities were observed in gills, without evidence of oxidative stress in any of the evaluated tissues. Most significant differences were found in 28-days starved fish: total body weight together with the hepatosomatic index was lower when compared to control fish. The plasmatic metabolites tested (glucose, triglyceride, cholesterol and protein), all energy reserves in liver and glycogen content in muscle decreased in 28-days starved fish. Lipid oxidative damage was reported in liver, kidney and brain, and antioxidant enzymes (GST, GR, GPx and CAT) were activated in gills. According to the multivariate analysis, oxidative stress markers and metabolic parameters were key biomarkers that contributed in separating starved from fed fish. Our study allowed an integrated assessment of the fish response to this particular condition.  相似文献   

9.
The effect of elevated temperature on the antioxidants in the freshwater fish Channa punctata was investigated. Fish stressed with an elevated temperature of 12° C, range ± 1° C over the ambient temperature for 3 h showed a significant ( P  < 0·05–0·01) reduction in the levels of antioxidants: reduced glutathione (GSH) and non‐protein thiols. Activity of glutathione reductase was also reduced in all the tissues (liver, kidney and gills) after 3 h of heat stress and 24 h recovery. Catalase (CAT) showed enhanced activity in liver in both the conditions while gills and kidney showed a decreased CAT activity. Glutathione S‐transferase (GST) activity in kidney and liver decreased significantly ( P  < 0·05–0·01) after 3 h of heat stress. At 24 h GST activity showed a tendency to normalize in all the tissues along with a concomitant increase in the GSH level in the kidney. Total and protein thiols in heat stressed fish when matched with controls, showed significant ( P  < 0·05) reduction in the kidney only with a transient increase in liver and gills. Heat shock also induced lipid peroxidation in 3 h heat‐treated and recovery groups when compared with controls. Elevated temperature therefore resulted in tissue specific and time‐dependent alterations of antioxidants in the fish. It also induced lipid peroxidation in various tissues.  相似文献   

10.
The purpose of this study was to determine the effects of dietary fat, vitamin E, and iron on oxidative damage and antioxidant status in kidneys of mice. Sixty 1-month-old male Swiss-Webster mice were fed a basal vitamin E-deficient diet that contained either 8% fish oil + 2% corn oil or 10% lard with or without 1 g all-rac-alpha-tocopherol acetate or 0.74 g ferric citrate per kilogram of diet for 4 weeks. Significantly (P < 0.05) higher levels of lipid peroxidation products, thiobarbituric acid reactants (TBAR), and conjugated dienes were found in the kidneys of mice fed with fish oil compared with mice fed lard irrespective of vitamin E status. Mice maintained on a vitamin E-deficient diet had significantly higher renal levels of TBAR, but not conjugated dienes, than the supplemented group. Fish oil fed mice receiving vitamin E supplementation had lower levels of alpha-tocopherol than did mice in the lard fed group. Significantly higher levels of ascorbic acid were also found in the kidneys of mice fed with fish oil than were found in mice fed lard. The levels of protein carbonyls and glutathione (GSH), and activities of catalase, superoxide dismutase, selenium (Se)-GSH peroxidase, and non-Se-GSH peroxidase were not significantly altered by dietary fat or vitamin E. Dietary iron had no significant effect on any of the oxidative stress and antioxidant indices measured. The results obtained provide experimental evidence for the pro-oxidant effect of high fish oil intake in mouse kidney and suggest that dietary lipids play a key role in determining cellular susceptibility to oxidative stress.  相似文献   

11.
Liver ischemia/reperfusion (IR) injury is a complex phenomenon that may cause local as well as remote organ injuries. Reactive oxygen species (ROS) along with many pro- and anti- inflammatory cytokines are implicated in the development of organ injury. The renal functional, histological, oxidative stress and inflammatory indices were studied during a short and a longer period of liver IR. Rats were subjected to either sham operation or 90 min partial liver ischemia followed by 4 or 24 h of reperfusion. Serum ALT, AST, ALK and LDH levels, BUN and creatinine, renal MDA level, SOD and catalase activities were evaluated as well as serum IL-6 and IL-10 concentrations along with renal histological evaluation. Ninety minutes liver ischemia /4 h reperfusion caused an increase in BUN and renal MDA levels and a decrease in SOD and catalase activities. It also caused an increase in serum IL-6 and IL-10 levels. 24 h liver reperfusion resulted in a reduction in BUN levels and lower oxidative damages demonstrated by a decrease in renal MDA levels and an increase in renal SOD and catalase activities comparing to 4 h reperfusion group. Evaluations indicated improvement in histology such as less cytoplasmic vacuolation and lower tubular debris. Serum inflammatory indices (IL-6 and IL-10 levels) were also reduced. This study showed that liver IR damage causes renal injury including functional, inflammatory and oxidative status changes. The remote kidney damage was then improved by continuing reperfusion from 4 to 24 h.  相似文献   

12.
The 8-oxodG content has been measured in chromosomal DNA of gilthead seabream (Sparus aurata) by HPLC-EC. Susceptibility of different tissues to oxidative DNA damage was studied by exposing fish to model pollutants. Cu(II), paraquat (PQ) and malathion failed to promote DNA oxidation in liver, while dieldrin significantly increased the 8-oxodG content in this organ, but not in gills or blood. After PQ exposure, fish liver showed high levels of glucose-6-P dehydrogenase (G-6PDH) and GSSG reductase activities. The increased antioxidant status and the lack of a specific transport system could explain the lack of susceptibility of liver to DNA oxidative damage induced by PQ. Increased levels of 8-oxodG were detected in the gills of PQ-exposed fish after 8 and 24 h. In contrast, after 48 h exposed fish contained lower 8-oxodG levels than controls. The existence of a PQ transport system in this O2-rich organ and the lack of a significant increase in antioxidant defenses would explain the sensitivity of gills to DNA damage promoted by PQ. Elimination of this soluble chemical and the putative induction of DNA-repair enzymes specific for oxidative damages could explain the drop of 8-oxodG levels at longer times. Fish exposed to moderate levels of urban and industrial pollution showed significantly high 8-oxodG content in hepatic DNA. We conclude that 8-oxodG determination in chromosomal DNA by HPLC-EC is a potentially useful biomarker of environmental pollution, although its response is still somewhat lower than that of other well-established biomarkers of oxidative stress.  相似文献   

13.
In a study aimed to determine the histopathology, component parasite communities and level of selected heavy metals, African catfish Clarias gariepinus from three rivers in Zimbabwe (Gwebi, Manyame and Mukuvisi) were analysed for heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) in the gills, liver, kidney and muscles. The histopathology of these tissues was assessed by microscopic examination of stained thin sections. Metazoan parasite diversity and species composition in fish along different sites of the rivers were determined and compared. Levels of Cd, Fe, Pb and Zn were lowest in the Gwebi, Cr and Cu in the Manyame, and Ni in the Mukuvisi River. There were significant differences (P < 0.5) in concentration of iron and nickel in the gill and liver tissues of fish among the three rivers while significant differences in concentration of iron and lead were observed in muscle tissue. Gill chronic inflammation and ossification were significantly different (P < 0.5) in fish from among the three rivers. Chronic inflammation, hemosiderin deposits and bile accumulation in the liver were also significantly different (P < 0.5) among the three rivers and so was the extent of chronic inflammation in the kidney tissue. Lamellar fusion was slightly more present in gills of catfish from the Mukuvisi than the Gwebi River. The parasite community of C. gariepinus comprised three monogenean, two cestode and three nematode species. The least polluted Gwebi River had the highest parasite community diversity while the most polluted Mukuvisi River had the lowest diversity. Fish parasite community structure is thus a potential indicator of river pollution, while heavy metal pollution is a potential threat to fish and human health in the system.  相似文献   

14.
This study examined the effects of waterborne silver nanoparticles (AgNPs) on juvenile fish Piaractus mesopotamicus (“pacú”), and analyzed toxicological endpoints such as metal burdens, oxidative stress and genotoxicity in a short-term assay. Fish were individually exposed to 0 (control), 2.5, 10, and 25 μg AgNPs/L. After 24 h, silver accumulation was greater in the brain than the liver and gills at all silver concentrations. Fish exposed to higher AgNPs concentrations showed major alterations in oxidative stress markers. An increase in lipid peroxidation (LPO) levels was observed in the liver of fish exposed to 10 μg AgNPs/L with no changes in the antioxidant enzymes activities. In the case of the 25 μg AgNPs/L treatment, a hepatic activation of the enzymatic antioxidant defense occurred, and LPO levels resulted unaltered. On the other hand, the brain presented the highest LPO levels at both 10 and 25 μg AgNPs/L exposures. The AgNPs toxicity was also evidenced by the DNA damage in fish erythrocytes at higher concentrations. Summarizing, a short exposure to sublethal concentrations of AgNPs is enough to generate deleterious effects on fish, including DNA damage.  相似文献   

15.
Monosodium glutamate (MSG), administered to rats (by gavage) at a dose of 0.6 mg/g body weight for 10 days, significantly (P<0.05) induced lipid peroxidation (LPO), decreased reduced glutathione (GSH) level and increased the activities of glutathione-s-transferase (GST), catalase and superoxide dismutase (SOD) in the liver of the animals; these were observed 24 hr after 10 days of administration. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) were also significantly increased in the serum, on MSG administration. Vitamin E (0.2 mg/g body wt) co-administered with MSG, significantly reduced the LPO, increased the GSH level and decreased the hepatic activities of GST, catalase and SOD. The activities of ALT, AST and GGT in the serum were also significantly reduced. The results showed that MSG at a dose of 0.6 mg/g body wt induced the oxidative stress and hepatotoxicity in rats and vitamin E ameliorated MSG-induced oxidative stress and hepatotoxicity.  相似文献   

16.
The specific contribution of each antioxidant enzyme to protection against the reoxygenation-associated oxidative stress after periods of hypoxia is not well understood. We assessed the physiological role of catalase during posthypoxic reoxygenation by the combination of two approaches. First, catalase activity of Nile tilapias (Oreochromis niloticus) was 90% suppressed by intraperitoneal injection of 3-amino-1,2,4-triazole (ATZ, 1g/kg). In ATZ-injected fish, liver GSH levels, oxidative stress markers, and activities of other antioxidant enzymes remained unchanged. Second, animals with depleted catalase activity (or those saline-injected) were subjected to a cycle of severe hypoxia (dissolved O(2) = 0.28 mg/l for 3 h) followed by reoxygenation (0.5 to 24 h). Hypoxia did not induce changes in the above-mentioned parameters, either in saline- or in ATZ-injected animals. Reoxygenation increased superoxide dismutase activity in saline-injected fish, whose levels were similar to ATZ-injected animals. The activities of glutathione S-transferase, selenium-dependent glutathione peroxidase, and total-GPX and the levels of GSH-eq, GSSG, and thiobarbituric acid reactive substances remained unchanged during reoxygenation in both saline- and ATZ-injected fish. The GSSG/GSH-eq ratio in ATZ-injected fish increased at 30 min of reoxygenation compared with saline-injected ones. Reoxygenation also increased carbonyl protein levels in saline-injected fish, whose levels were similar to the ATZ-injected group. Our work shows that inhibition of liver tilapia catalase causes a redox imbalance during reoxygenation, which is insufficient to induce further oxidative stress. This indicates the relevance of hepatic catalase for hypoxia/reoxygenation stress in tilapia fish.  相似文献   

17.
Climate change is disturbing marine biological processes, and impacting goods and services provided to society. Physiological studies are a major contributor to the improvement of biological forecasting in the context of climate change. Oxidative stress biomarkers are useful tools to assess the metabolic status and health of organisms, improving management of wild and cultured populations. The aims of this study were to assess the health status and vulnerability of Sparus aurata juveniles toward ocean warming and heat wave events by (1) exposing fish to a thermal ramp from 18 °C until their Critical Thermal Maximum (≈35 °C) and (2) quantifying oxidative stress biomarkers in several organs, i.e. lipid peroxidation (LPO), catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and cytochrome CYP1A. Fish showed signs of oxidative stress in every tissue tested (gills, muscle, liver, brain and intestine), the most affected being muscle and liver, which showed greater increases in LPO. In general, antioxidant enzymes increased their activity: CAT increased in every organ tested, GST increased in every organ except brain (no change) and SOD increased in every organ except intestine (no change) and brain (decrease, probably due to enzyme denaturation). Muscle showed the greatest stress response with a massive increase in GST. Hepatic CYP1A decreased upon warming suggesting that temperature influences detoxifying mechanisms and may affect fish health. These results are significant in the context of climate change and associated impacts on fisheries and aquaculture because over-induction of oxidative stress due to warming can induce health problems, mortality and shortened lifespan.  相似文献   

18.
The current research aims to determine alterations in gene expression and enzymatic activity of fish antioxidant metabolism in response to pesticide administration. To this end, three different deltamethrin concentrations (0.25, 1, 2.5 μg/L) were administrated to rainbow trout (Oncorhynchus mykiss) at different time intervals (6, 12, 24, 48 and 72 h) in order to observe the influences of the pesticide on the activity of glutathione reductase, glucose 6-phosphate dehydrogenase, 6-ghosphogluconate dehydrogenase, and the expression of Hsp70 gene. We observed that the activities of the enzymes decreased with increasing deltamethrin concentrations and exposure time. The pesticide had more inhibitory effects on gill enzymes than those of muscle, liver and kidney. In addition, we detected that deltamethrin increased the expression of the stress-related protein Hsp70 with significant fold-chance values. The efficiency rate was 96.4% which is equal to 1.96 calculated via conversion formula used to calculate fold-chance value. We conclude that deltamethrin causes oxidative stress in fish both at protein and mRNA levels.  相似文献   

19.
The Pampean region, an extensive area of South America is continuously impacted by agricultural activities and the pesticides related to them like chlorpyrifos and glyphosate. Both pesticides have been registered in freshwater bodies of the region. One of the most abundant and widely distributed fish species in Pampean streams is Cnesterodon decemmaculatus, which have to cope with this altered scenario.In the present study the toxicity of Clorfox® and Roundup Max®, the commercial formulations of chlorpyrifos and glyphosate, respectively, and their mixture where evaluated using a set of biomarkers at different biological organization levels in fish exposed to relevant environmentally pesticides concentrations. Somatic indexes such as the condition factor (K), and the hepato-somatic index (HSI), the locomotor activity through the distance traveled and the average speed, the enzymatic activities of acetylcholinesterase (AChE) in brain and muscle, catalase (CAT) in muscle and liver, glutathione-S-transferase (GST) in brain, liver, muscle and gills, aspartate amino-transferase (AST), alanine amino-transferase (ALT), AST/ALT ratio and alkaline phosphatase (ALP) in liver were measured on C. decemmaculatus. Adult females were exposed during 6 weeks to the following concentrations: 0.0084 μl/l and 0.00084 μl/l of Clorfox (CF), 0.2 and 2 mg/l of Roundup Max (RM) and all the combinations of these concentrations. The CF exposure caused a decrease in the condition factor and in the locomotor activity parameters and induced an increase brain AChE, liver CAT activity and AST/ALT ratio. On the other hand, the exposure to RM produced a decrease in liver GST, AST/ALT ratio and ALP activity. Finally, some pesticide combinations decrease general condition and liver GST activities, and increase brain GST and liver ALP activities. Different responses in biomarkers were observed in mixtures treatments, reflecting the complex interactions between these toxics and suggesting a suppressive action of RM on CF effects.Since the concentrations we tested are environmentally relevant and the overall fish health condition was affected, the presence of these pesticides in freshwater systems could impose a risk for populations by causing deleterious effects on C. decemmaculatus in Pampean region.  相似文献   

20.
Mycotoxins which mainly consist of Aflatoxin (AF), Zearalenone (ZEN) and Deoxynivalenol (DON) are commonly found in many food commodities. Although each component has been shown to cause liver toxicity and oxidative stress in several species, there is no evidence regarding the effect of naturally contained multiple mycotoxins on tissue toxicity and oxidative stress in vivo. In the present study, mycotoxins-contaminated maize (AF 597 µg/kg, ZEN 729 µg/kg, DON 3.1 mg/kg maize) was incorporated into the diet at three different doses (0, 5 and 20%) to feed the mice, and blood and tissue samples were collected to examine the oxidative stress related indexes. The results showed that the indexes of liver, kidney and spleen were all increased and the liver and kidney morphologies changed in the mycotoxin-treated mice. Also, the treatment resulted in the elevated glutathione peroxidase (GPx) activity and malondialdehyde (MDA) level in the serum and liver, indicating the presence of the oxidative stress. Moreover, the decrease of catalase (CAT) activity in the serum, liver and kidney as well as superoxide dismutase (SOD) activity in the liver and kidney tissue further confirmed the occurrence of oxidative stress. In conclusion, our data indicate that the naturally contained mycotoxins are toxic in vivo and able to induce the oxidant stress in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号