首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two types of rapidly biodegradable vegetable products (the liquid fraction of clover and the glycerol-containing sidestream from biodiesel production) were selected for anodic oxidation in microbial fuel cells (MFC) equipped with a biocathode. As benchmark references, five abundant amino-acids in plant sap (l-glutamine, l-glutamic acid, l-asparagine, l-aspartic acid and l-alanine) were tested separately. Their performance was in the same order of magnitude of clover sap oxidation (145–225 A m−3 MFC; 39–95 W m−3 MFC). Glycerol oxidation resulted in competitive current and power outputs (111 A m−3 MFC; 23 W m−3 MFC).  相似文献   

2.
Summary We have confirmed previous demonstrations of sodium gradient-stimulated transport ofl-alanine, phenylalanine, proline, and -alanine, and in addition demonstrated transport of N-methylamino-isobutyric acid (MeAIB) and lysine in isolated rabbit kidney brush border vesicles. In order to probe the multiplicity of transport pathways available to each of these14C-amino acids, we measured the ability of test amino acids to inhibit tracer uptake. To obtain a rough estimate of nonspecific effects, e.g., dissipation of the transmembrane sodium electrochemical potential gradient, we measured the ability ofd-glucose to inhibit tracer uptake.l-alanine and phenylalanine were completely mutually inhibitory. Roughly 75% of the14C-l-alanine uptake could be inhibited by proline and -alanine, while lysine and MeAIB were no more effective thand-glucose. Roughly 50% of the14C-phenylalanine uptake could be inhibited by proline and -alanine; lysine was as effective as proline and -alanine, and the effects of pairs of these amino acids at 50mm each were not cumulative. MeAIB was no more effective thand-glucose. We conclude that three pathways mediate the uptake of neutral,l, -amino acids. One system is inaccessible to lysine, proline, and -alanine. The second system carries a major fraction of thel-alanine flux; it is sensitive to proline and -alanine, but not to lysine. The third system carries half the14C-phenylalanine flux, and it is sensitive to proline, lysine, and -alanine. Since the neutral,l, -amino acid fluxes are insensitive to MeAIB, we conclude that they are not mediated by the classicalA system, and since all of thel-alanine flux is inhibited by phenylalanine, we conclude that it is not mediated by the classicalASC system.l-alanine and phenylalanine completely inhibit uptake of lysine. MeAIB is no more effective thand-glucose in inhibiting lysine uptake, while proline and -alanine appear to inhibit a component of the lysine flux. We conclude that the14C-lysine fluxes are mediated by two systems, one, shared with phenylalanine, which is inhibited by proline, -alanine, andl-alanine, and one which is inhibited byl-alanine and phenylalanine but inaccessible to proline, -alanine, and MeAIB. Fluxes of14C-proline and14C-MeAIB are completely inhibited byl-alanine, phenylalanine, proline, and MeAIB, but they are insensitive to lysine. Proline and MeAIB, as well as alanine and phenylalanine, but not lysine, inhibit14C--alanine uptake. However, -alanine inhibits only 38% of the14C-proline uptake and 57% of the MeAIB uptake. We conclude that two systems mediate uptake of proline and MeAIB, and that one of these systems also transports -alanine.  相似文献   

3.
Recently, we reported that intracerebroventricular (i.c.v.) injection of l-alanine attenuated the stress response under an acute stressful condition in chicks. However, no information of l-alanine was available for the influence on energy expenditure and changes in the posture under stressful conditions. The purpose of the present study was to clarify whether central l-alanine affects heat production (HP) of neonatal chicks, and whether HP is correlated with the behavior after isolation-induced stress. The i.c.v. injection of l-alanine (0.8 μmol) decreased oxygen consumption, carbon dioxide production and HP shortly after injection. Central l-alanine reduced the posture for active wakefulness, but increased the posture for sitting motionless with head drooped (sleeping posture). The present study demonstrates that central l-alanine decreases energy expenditure and causes a hypnotic effect in chicks exposed to an acute stressful condition.  相似文献   

4.
The aspartate-derived amino-acid pathway leads to the production of the essential amino-acids lysine, methionine, threonine and isoleucine. Aspartate kinase (AK) is the first enzyme in this pathway and exists in isoforms that are feedback inhibited by lysine and threonine. Two maize (Zea mays L.) threonine-overproducing, lysine-insensitive AK mutants (Ask1-LT19 and Ask2-LT20) were previously isolated. The present study was conducted to determine the map location of Ask2 and to examine the amino-acid profiles of the Ask mutants. The threonine-overproducing trait conferred by Ask2-LT20 was mapped to the long arm of chromosome 2. Both mutants exhibited increased free threonine concentrations (nmol/mg dry weight) over wild-type. The percent free threonine increased from approximately 2% in wild-type kernels to 37–54% of the total free amino-acid pool in homozygous mutant kernels. Free methionine concentrations also increased significantly in homozygous mutants. Free lysine concentrations were increased but to a much lesser extent than threonine or methionine. In contrast to previous studies, free aspartate concentrations were observed to decrease, indicating a possible limiting factor in threonine synthesis. Total (free plus protein-bound) amino-acid analyses demonstrated a consistent, significant increase in threonine, methionine and lysine concentrations in the homozygous mutants. Significant increases in protein-bound (total minus free) threonine, methionine and lysine were observed in the Ask mutants, indicating adequate protein sinks to incorporate the increased free amino-acid concentrations. Total amino-acid contents (nmol/kernel) were approximately the same for mutant and wild-type kernels. In five inbred lines both Ask mutations conferred the threonine-overproducing phenotype, indicating high expressivity in different genetic backgrounds. These analyses are discussed in the context of the regulation of the aspartate-derived amino-acid pathway.  相似文献   

5.
Bioorganic fertilizer containing Paenibacillus polymyxa SQR-21 showed very good antagonistic activity against Fusarium oxysporum. To optimize the role of P. polymyxa SQR-21 in bioorganic fertilizer, we conducted a study of spore germination under various conditions. In this study, l-asparagine, glucose, fructose and K+ (AGFK), and sugars (glucose, fructose, sucrose, and lactose) plus l-alanine were evaluated to determine their ability to induce spore germination of two strains; P. polymyxa ACCC10252 and SQR-21. Spore germination was measured as a decrease in optical density at 600 nm. The effect of heat activation and germination temperature were important for germination of spores of both strains on AGFK in Tris–HCl. l-Alanine alone showed a slight increase in spore germination; however, fructose plus l-alanine significantly induced spore germination, and the maximum spore germination rate was observed with 10 mmol l−1 l-alanine in the presence of 1 mmol l−1 fructose in phosphate-buffered saline (PBS). In contrast, fructose plus l-alanine hardly induced spore germination in Tris–HCl; however, in addition of 10 mmol l−1 NaCl into Tris–HCl, the percentages of OD600 fall were increased by 19.6% and 24.3% for ACCC10252 and SQR-21, respectively. AGFK-induced spore germination was much more strict to germination temperature than that induced by fructose plus l-alanine. For both strains, fructose plus l-alanine-induced spore germination was not sensitive to pH. The results in this study can help to predict the effect of environmental factors and nutrients on spore germination diversity, which will be beneficial for bioorganic fertilizer storage and transportation to improve the P. polymyxa efficacy as biological control agent.  相似文献   

6.
Norbert Sauer 《Planta》1984,161(5):425-431
Glucose or non-metabolizable glucose analogues induce two systems of amino-acid transport in Chlorella vulgaris: an arginine-lysine system and a proline system. An additional third system of amino-acid transport is induced when glucose and an inorganic nitrogen source are present during glucose induction. The transport rates in glucose-NH 4 + -treated cells are 10 to 80 times higher than in untreated cells. The transport system shows a rather broad specificity and catalyses the transport of at least ten neutral and acidic amino acids. Three of these amino acids (l-alanine, l-serine and glycine) are transported by the proline system as well. The system is specific for l-amino acids and has a pH optimum between 5 and 6. Transport by this system seems to be active, since amino acids are accumulated inside the cells.  相似文献   

7.
Zusammenfassung Das Murein (Peptidoglycan) eines aus Faeces isolierten Streptococcus, der in den wichtigsten Merkmalen mit Peptostreptococcus evolutus (Prevot) Smith übereinstimmt, weist folgende Molverhältnisse auf (aufgerundete bzw. abgerundete Zahlen): Mur:GlcNH2:Ala:Glu:Lys:Gly=1:1:3:1:1:1. Das Verhältnis l-Alanin:d-Alanin=2,15:1. Die Glutaminsäure liegt in der d-Konfiguration und als Amid vor.Durch die Partialhydrolyse der Zellwände und die anschließende Isolierung und Identifizierung der Peptide konnte die Aminosäuresequenz des Mureins geklärt werden. Das Tetrapeptid stimmt mit der üblichen Sequenz l-Ala-d-Glu-NH2-l-Lys-d-Ala der meisten übrigen Bakterien überein. Die Quervernetzung des Mureins wird durch das Peptid Glycyl-l-Alanin hergestellt, wobei l-Alanin an die -Aminogruppe des Lysins gebunden ist. Die Dinitrophenylierung der Zellwand ergab, daß 35% des Glycins und 6% des Lysins eine freie Aminogruppe aufweisen. Die Quervernetzung ist demnach nur zu höchstens 60% durchgeführt.
The chemical composition of the cell walls of Streptococci III. The amino acid sequence of a glycine containing murein from Peptostreptococcus evolutus (Prevot) Smith
Summary Peptostreptococcus evolutus was isolated from feces. Its murein containes muramic acid, glucosamine, alanine, d-glutamic acid, lysine and glycine at a molar ratio of about 1:1:3:1:1:1. The ratio of l-alanine: d-alanine is 2,15:1. Glutamic acid is present as an amide.By acid partial hydrolysis of the cell walls and subsequent isolation and identification of the peptides the amino acid sequence of the murein was elucidated. The tetrapeptide is identical with that of most bacteria (l-Ala-d-Glu-NH2-l-Lys-d-Ala). The crosslinking of the murein is performed by the peptide glycyl-l-alanine. l-alanine is attached to the -amino group of lysine while the amino group of glycine is bound to the carboxyl group of the c-terminal d-alanine of an adjacent tetrapeptide. About 35% glycine and 6% lysine of the murein are dinitrophenylisable indicating that maximally 60% of the possible cross-linkages are realized.
  相似文献   

8.
Based on the report that the introduction of the biosynthetic precursor of lincomycin, propylproline, could increase the production of lincomycin (Bruce et al. in US Patent 3,753,859, 1973), a mutant strain pro10–20, with resistance of feedback suppression of proline (an analog of propylproline) was thus selected and lincomycin production increased by 10%. The addition of three amino acids (l-proline, l-tyrosine, l-alanine) which are the precursors of propylproline to the fermentation medium was found to enhance the accumulation of l-dopa through different pathways and was favorable to lincomycin biosynthesis. The production of lincomycin was increased by 23, 10, 13%, respectively, with the addition of 0.05 g L−1 l-proline at 60 h, 0.005 g L−1 l-tyrosine and 0.1 g L−1 l-alanine directly in the medium.  相似文献   

9.
The phototrophic bacterium Rhodobacter capsulatus E1F1 assimilates ammonia and other forms of reduced nitrogen either through the GS/GOGAT pathway or by the concerted action of l-alanine dehydrogenase and aminotransferases. These routes are light-independent and very responsive to the carbon and nitrogen sources used for cell growth. GS was most active in cells grown on nitrate or l-glutamate as nitrogen sources, whereas it was heavily adenylylated and siginificantly repressed by ammonium, glycine, l-alanine, l-aspartate, l-asparagine and l-glutamine, under which conditions specific aminotransferases were induced. GOGAT activity was kept at constitutive levels in cells grown on l-amino acids as nitrogen sources except on l-glutamine where it was significantly induced during the early phase of growth. In vitro, GOGAT activity was strongly inhibited by l-tyrosine and NADPH. In cells using l-asparagine or l-aspartate as nitrogen source, a concerted induction of l-aspartate aminotransferase and l-asparaginase was observed. Enzyme level enhancements in response to nitrogen source variation involved de novo protein synthesis and strongly correlated with the cell growth phase.Abbreviations ADH l-alanine dehydrogenase - AOAT l-alanine:2-oxoglutarate aminotransferase - Asnase l-asparaginase - GOAT Glycine: oxaloacetate aminotransferase - GOGAT Glutamate synthase - GOT l-aspartate: 2-oxoglutarate aminotransferase - GS Glutamine synthetase - HPLC High-Pressure Liquid Chromatography - MOPS 2-(N-morpholino)propanesulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

10.
Rhodopseudomonas acidophila strain 7050 assimilated ammonia via a constitutive glutamine synthetase/glutamate synthase enzyme system.Glutamine synthetase had a K m for NH 4 + of 0.38 mM whilst the nicotinamide adenine dinucleotide linked glutamate synthase had a K m for glutamine of 0.55 mM. R. acidophila utilized only a limited range of amino acids as sole nitrogen sources: l-alanine, glutamine and asparagine. The bacterium did not grow on glutamate as sole nitrogen source and lacked glutamate dehydrogenase. When R. acidophila was grown on l-alanine as the sole nitrogen source in the absence of N2 low levels of a nicotinamide adenine dinucleotide linked l-alanine dehydrogenase were produced. It is concluded, therefore, that this reaction was not a significant route of ammonia assimilation in this bacterium except when glutamine synthetase was inhibited by methionine sulphoximine. In l-alanine grown cells the presence of an active alanine-glyoxylate aminotransferase and, on occasions, low levels of an alanine-oxaloacetate aminotransferase were detected. Alanine-2-oxo-glutarate aminotransferase could not be demonstrated in this bacterium.Abreviations ADH alanine dehydrogenase - GDH glutamate dehydrogenase - GS glutamine synthetase - GOGAT glutamate synthase - MSO methionine sulphoximine  相似文献   

11.
A Corynebacterium glutamicum strain with inactivated pyruvate dehydrogenase complex and a deletion of the gene encoding the pyruvate:quinone oxidoreductase produces about 19 mM l-valine, 28 mM l-alanine and about 55 mM pyruvate from 150 mM glucose. Based on this double mutant C. glutamicumaceEpqo, we engineered C. glutamicum for efficient production of pyruvate from glucose by additional deletion of the ldhA gene encoding NAD+-dependent l-lactate dehydrogenase (LdhA) and introduction of a attenuated variant of the acetohydroxyacid synthase (△C–T IlvN). The latter modification abolished overflow metabolism towards l-valine and shifted the product spectrum to pyruvate production. In shake flasks, the resulting strain C. glutamicumaceEpqoldhA △C–T ilvN produced about 190 mM pyruvate with a Y P/S of 1.36 mol per mol of glucose; however, it still secreted significant amounts of l-alanine. Additional deletion of genes encoding the transaminases AlaT and AvtA reduced l-alanine formation by about 50%. In fed-batch fermentations at high cell densities with adjusted oxygen supply during growth and production (0–5% dissolved oxygen), the newly constructed strain C. glutamicumaceEpqoldhA △C–T ilvNalaTavtA produced more than 500 mM pyruvate with a maximum yield of 0.97 mol per mole of glucose and a productivity of 0.92 mmol g(CDW)−1 h−1 (i.e., 0.08 g g(CDW) −1 h−1) in the production phase.  相似文献   

12.
This study determined the utilization of amino acids (AA) by bacteria from the lumen of the pig small intestine. Digesta samples from different segments of the small intestine were inoculated into media containing 10 mmol/L each of select AA (l-lysine, l-threonine, l-arginine, l-glutamate, l-histidine, l-leucine, l-isoleucine, l-valine, l-proline, l-methionine, l-phenylalanine or l-tryptophan) and incubated for 24 h. The previous 24-h culture served as an inoculum for a subsequent 24-h subculture during each of 30 subcultures. Results of the in vitro cultivation experiment indicated that the 24-h disappearance rates for lysine, arginine, threonine, glutamate, leucine, isoleucine, valine or histidine were 50–90% in the duodenum, jejunum or ileum groups. After 30 subcultures, the 24-h disappearance rates for lysine, threonine, arginine or glutamate remained greater than 50%. The denaturing gradient gel electrophoresis analysis showed that Streptococcus sp., Mitsuokella sp., and Megasphaera elsdenii-like bacteria were predominant in subcultures for utilizing lysine, threonine, arginine and glutamate. In contrast, Klebsiella sp. was not a major user of arginine or glutamate. Furthermore, analysis of AA composition and the incorporation of AA into polypeptides indicated that protein synthesis was a major pathway for AA metabolism in all the bacteria studied. The current work identified the possible predominant bacterial species responsible for AA metabolism in the pig small intestine. The findings provide a new framework for future studies to characterize the metabolic fate of AA in intestinal microbes and define their nutritional significance for both animals and humans.  相似文献   

13.
The chemoautotrophic symbiont-bearing clam Lucinoma aequizonata contains very high levels of free d-alanine in all tissues. The possible sources for this amino acid and its involvement in the clams' metabolism were investigated. Very low levels of d-alanine (generally below 1 mol·l-1) were measured in the sediment porewaters from the habitat of the clams. Experiments with 14C-labeled tracers demonstrate an active metabolism of d-alanine in the clams rather than a role as inert waste product. d-alanine is metabolized at about 0.12 mol·g fw-1·h-1. Label from aspartate, but not glucose and CO2, is incorporated into d-alanine. Incubation with labeled d-alanine did not result in formation of radioactive l-alanine. Tests for alanine racemase (EC 5.1.1.1) and d-amino acid oxidase (EC 1.4.3.3.) did not show activity in either gill, i.e. symbiont and host, or foot tissue. d-Alanine amino transferase (EC 2.6.1.b.) was demonstrated in gill and foot tissues. Two sources for d-alanine are proposed: a degradation of cell walls of symbiotic bacteria and production by the host using a d-specific alanine transaminase.Abbreviations aa amino acid(s) - fw fresh weight - HPLC high-performance liquid chromatography - MBH methyl benzethonium hydroxyde - NAC N-acetyl-l-cysteine - OPA ortho-phthaldialdehyde - TCA tricarbonic acid  相似文献   

14.
Candida maltosa JCM1504 can grow well onl-alanine as a sole carbon and nitrogen source. We found that the activities of alanine aminotransferase (AlaAT) and NAD-dependent glutamate dehydrogenase were remarkably induced when glucose-grown cells were transferred to medium containingl-alanine. This suggested thatC. maltosa has an induciblel-alanine degradation system including the above two enzymes. To assess whether AlaAT is essential for the first step ofl-alanine degradation, we isolated mutant N-07, which was unable to usel-alanine as a nitrogen source, from the wild strain. Mutant N-07 was very similar to the wild strain in terms of growth on pyruvate and on various amino acids other thanl-alanine, suggesting that N-07 lacked onlyl-alanine-assimilating ability. The AlaAT activity in the cell extract of N-07 was very low and was not induced byl-alanine, whereas the NAD-dependent glutamate dehydrogenase activity was the same as that of the wild strain and was inducible. Western blots with antibody raised against purified AlaAT fromC. maltosa indicated that no AlaAT protein was expressed in the mutant N-07. The low level of AlaAT activity described above was possibly due to the pyruvate-forming activity of other enzymes under the assay conditions. From these results, we concluded that AlaAT is an indispensable key enzyme forl-alanine assimilation inC. maltosa.  相似文献   

15.
We report the application of multiple time regression analysis with the in situ brain perfusion technique to measure the rates of passage between blood and brain for [14C]l-proline, [14C]l-alanine, and [14C] α-aminoisobutyric acid (AIB) and their rapidly reversible volumes following perfusion of these amino acids from 10 to 60 seconds. We also report on their mechanism of transport. Proline diffused through the blood-brain barrier with a transfer coefficient (Kin) of 0.55 ± 0.15 × 10−4 ml/s/g and had no reversible compartment. AIB had a low Kin of 0.68±0.14×10−4 ml/s/g and a significant reversible volume of 4.34±0.51×10−3 ml/g in parietal cortex.l-alanine had the highest transfer coefficient, 3.11±0.26 × 10−4 ml/s/g, and a reversible volume of 10.03±0.93×10−3 ml/g in the same cerebral region. Postwash procedures which remove any radiotracer in the vasculature and capillary depletion were performed for alanine and AIB, as they had significant reversible compartments, to test the possibility of rapid efflux from the endothelial cells. Results obtained from wash and capillary depletion procedures suggest that a rapid efflux could occur from endothelial cells after entry of alanine and AIB. Mechanisms of transport forl-alanine and AIB were investigated using amino acids (5 mM) as substrates and inhibitors of different amino acid transport systems. AIB transport was reduced by plasma andl-leucine and unchanged by sodium-free buffer, confirming its passage by the L1 system.l-alanine uptake was sodium-independent and not reduced by plasma.l-serine,l-cysteine,l-leucine andl-phenylalanine produced similar inhibition (66%) whilel-alanine produced a lower inhibition (41%).l-arginine increased alanine uptake in cortex and thalamus. Addingl-serine tol-phenylalanine reduced the uptake only in cortex and hippocampus. These data suggest thatl-alanine is transported by another L transport system different from the L1 system at the luminal membrane.  相似文献   

16.
Summary To develop a practical process for d-alanine production from dl-alanine, we screened 107 yeasts for their asymmetric degrading activity against dl-alanine. Candida maltosa JCM1504 degraded the l-isomer ten times more rapidly than the d-isomer. The cells of this strain were used as a biocatalyst for eliminating the l-isomer. However, when the degradation reaction was conducted in the presence of a high concentration of dl-alanine, the pH of the reaction mixture was rapidly increased by the liberation of ammonia from l-alanine, and consequently the reaction stopped. This hindrance was overcome by controlling the pH value at 6.0 with H2SO4 during the reaction. Additionally, we found that the maximum rate of l-isomer degradation was obtained at 30° C and pH 6.0 under conditions of high aeration (1.0 vvm) and agitation (1200 rpm). Under the optimal conditions, the l-isomer of 200 g dl-alanine/l was completely degraded within 40 h and 90 g d-alanine/l remained in the reaction mixture. d-Alanine was easily isolated from the reaction mixture. The chemical and optical purity of the d-isomer product so obtained was 99.0% and 99.9% enantiomeric excess, respectively.Offprint requests to: I. Umemura  相似文献   

17.
Golisz A  Sugano M  Hiradate S  Fujii Y 《Planta》2011,233(2):231-240
Velvetbean (Mucuna pruriens) plants impede the growth of neighboring plants. One compound, 3-(3′,4′-dihydroxyphenyl)-l-alanine (l-DOPA), is responsible for the allelopathic capacity of velvetbean. This compound is an active allelochemical that decreases root growth of several plant species. In mammals, l-DOPA is a well-known therapeutic agent for the symptomatic relief of Parkinson’s disease. However, its mode of action in plants is still not well understood. To address such issues, gene expression in Arabidopsis thaliana plants, which had been exposed to l-DOPA, was analyzed using DNA microarrays. After 6 h of l-DOPA exposure, the expression of 110 genes was significantly upregulated, and the expression of 69 genes was significantly downregulated. These induced genes can be divided into different functional categories, mainly on the basis of subcellular localization, metabolism, and proteins with a binding function or cofactor requirement. Based on these results, we suggest that l-DOPA acts by two mechanisms: it influences amino acid metabolism and deregulates metal homeostasis, especially that of iron, which is required for the fundamental biological processes of all organisms.  相似文献   

18.
Corynebacterium glutamicum was genetically engineered to produce l-alanine from sugar under oxygen deprivation. The genes associated with production of organic acids in C. glutamicum were inactivated and the alanine dehydrogenase gene (alaD) from Lysinibacillus sphaericus was overexpressed to direct carbon flux from organic acids to alanine. Although the alaD-expressing strain produced alanine from glucose under oxygen deprivation, its productivity was relatively low due to retarded glucose consumption. Homologous overexpression of the gapA gene encoding glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in the alaD-expressing strain stimulated glucose consumption and consequently improved alanine productivity. In contrast gapA overexpression did not affect glucose consumption under aerobic conditions, indicating that oxygen deprivation engendered inefficient regeneration of NAD+ resulting in impaired GAPDH activity and reduced glucose consumption in the alanine-producing strains. Inactivation of the alanine racemase gene allowed production of l-alanine with optical purity greater than 99.5%. The resulting strain produced 98 g l−1 of l-alanine after 32 h in mineral salts medium. Our results show promise for amino acid production under oxygen deprivation.  相似文献   

19.
Summary Intracellular calcium was measured in single olfactory neurons from the channel catfish (Icatalurus punctatus) using the fluorescent Ca2+ indicator fura 2. In 5% of the cells, olfactory stimuli (amino acids) elicited an influx of calcium through the plasma membrane which led to a rapid transient increase in intracellular calcium concentration. Amino acids did not induce release of calcium from internal stores in these cells. Some cells responded specifically to one stimulus (l-alanine,l-arginine,l-norleucine andl-glutamate) while one cell responded to all stimuli. An increase in intracellular calcium could also be elicited in 50% of the cells by direct G-protein stimulation using aluminum fluoride. Because the fraction of cells which respond to direct G-protein stimulation is substantially larger than the fraction of cells responding to amino acids, we tested for possible damage of receptor proteins due to exposure of the olfactory neurons to papain during cell isolation. We find that pretreatment with papain does not alter specific binding ofl-alanine andl-arginine to olfactory receptor sites in isolated olfactory cilia. The results are discussed in terms of their relevance to olfactory transduction.  相似文献   

20.
To elucidate the mechanism by which dietary amino acids suppress the d-galactosamine (d-GalN)-induced hepatitis, we examined the involvement of Kupffer cells, tumor necrosis factor-α (TNF-α) and apoptosis in the mechanism. In experiment 1, the rats were fed with 10%l-glutamine or 5% glycine diet injected with d-GalN with or without gadolinium chloride (GdCl3)-pretreatment. The results indicated that these amino acids suppressed the d-GalN-induced elevation of serum transaminase activities, irrespective of GdCl3-pretreatment. In experiment 2, rats were fed with 10% of l-glutamine, l-serine, l-alanine or l-glutamic acid diets injected with d-GalN. The results demonstrated that all these amino acids suppressed the d-GalN-induced elevation of serum transaminase activities, but that serum TNF-α concentrations and hepatic caspase-3 activities in the rats were not appreciably changed. In conclusion, the suppressive effects of amino acids on d-GalN-induced hepatitis were suggested not to be always mediated by the inhibition of Kupffer cells → TNF-α → apoptosis pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号