首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The design of efficient and safe gene delivery vehicles remains a major challenge for the application of gene therapy. Of the many reported gene delivery systems, metal complexes with high affinity for nucleic acids are emerging as an attractive option. We have discovered that certain metallohelices—optically pure, self-assembling triple-stranded arrays of fully encapsulated Fe—act as nonviral DNA delivery vectors capable of mediating efficient gene transfection. They induce formation of globular DNA particles which protect the DNA from degradation by various restriction endonucleases, are of suitable size and electrostatic potential for efficient membrane transport and are successfully processed by cells. The activity is highly structure-dependent—compact and shorter metallohelix enantiomers are far less efficient than less compact and longer enantiomers.  相似文献   

2.
New directions in liposome gene delivery   总被引:4,自引:0,他引:4  
The history of liposomes, progress in liposome gene delivery, and future directions are discussed. Specific characteristics of liposomes and DNA:liposome complexes have been identified that are essential for optimal delivery and gene expression. Of particular interest are the requirements for increased delivery and high levels of gene expression in vivo. At present, significant efforts are focused towards achieving specific delivery and gene expression in target organs and tissues.  相似文献   

3.
Modification of a model protein, horseradish peroxidase (HRP), with amphiphilic block copolymer poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (Pluronic), was previously shown to enhance the transport of this protein across the blood-brain barrier in vivo and brain microvessel endothelial cells in vitro. This work develops procedures for synthesis and characterization of HRP with Pluronic copolymers, having different lengths of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks. Four monoamine Pluronic derivatives (L81, P85, L121, P123) were synthesized and successfully conjugated to a model protein, HRP, via biodegradable or nondegradable linkers (dithiobis(succinimidyl propionate) (DSP), dimethyl 3,3'-dithiobispropionimidate (DTBP), and disuccinimidyl propionate (DSS)). The conjugation was confirmed by HRP amino group titration, matrix-assisted laser desorption/ionization-time of flight spectroscopy, and cation-exchange chromatography. HRP conjugates containing an average of one to two Pluronic moieties and retaining in most cases over 70% of the activity were synthesized. Increased cellular uptake of these conjugates was demonstrated using the Mardin-Derby canine kidney cell line and primary bovine brain microvessel endothelial cells. The optimal modifications included Pluronic L81 and P85. These copolymers have shorter PPO chains compared to Pluronic P123 and L121, which were less efficient. There was little if any dependence of the uptake on the length of the hydrophilic PEO block for the optimal modifications. The proposed modifications may be used to increase cellular uptake of other proteins.  相似文献   

4.
Series of cationic lipids 1a-p, with variable length of hydrocarbon chains, alternative quaternary ammonium heads, carbamate linkages between hydrocarbon chains and quaternary ammonium heads, as well as different anion combined with them, were synthesized for liposome-mediated gene delivery. Two plasmid DNAs, pGL3-control and pGFP-N2, were transferred by cationic liposomes formed from the above cationic lipids into five mammalian cell lines, and the transfection efficiency of some of the cationic liposomes was superior or parallel to that of two commercial transfection agents, Lipofectamine2000 and Sofast.  相似文献   

5.
阳离子脂质体等非病毒载体以其制备简单、低毒性、低免疫原性、可生物降解等优点,成为近年来基因转运中的常用载体。理解阳离子脂质体运载基因的机制对阳离子脂质体的研究具有重要意义。从跨膜机制和信号调控的角度,介绍了脂质体/DNA复合体以特定构象避免细胞外基质中核酸酶的降解,跨越细胞膜进入细胞的过程;阐明了DNA在信号调控的作用下,逃离溶酶体并安全释放的机制;讨论了基因穿过核被膜进入到细胞核的方式,为进一步阐明阳离子脂质体运载基因的分子机制奠定基础。  相似文献   

6.
Chitosan and its derivatives for gene delivery   总被引:2,自引:0,他引:2  
Gene delivery can particularly be used for the treatment of diseases by the insertion of genetic materials (DNA and RNA) into mammalian cells either to express new proteins or to prevent the expression of existing proteins. Chitosan, a natural polymer is nontoxic, biocompatible, and biodegradable and it is used as a support material for gene delivery. However, practical use of chitosan has been mainly limited to its unmodified forms, and thus modified chitosans can be used for the wide range of biomedical applications including the interaction and intracellular delivery of genetic materials. In this context, this review paper provides the recent development on chitosan derivatives available for gene delivery.  相似文献   

7.
Cationic liposome-mediated in vivo gene transfer represents a promising approach for somatic gene therapy. To assess the most suitable liposome for gene delivery into a wide range of organs and fetuses in mice, we have explored several types of cationic liposomes conjugated with plasmid DNA carrying the beta-galactosidase gene through intravenous injection into pregnant animals. Transduction efficiency was assessed by Southern blot analysis and expression of the transferred gene was evaluated by enzymatic demonstration of beta-galactosidase activity. Through the analysis of several types of recently synthesized cationic liposome/lipid formulations, DMRIE-C reagent, a liposome formulation of the cationic lipid DMRIE (1, 2-dimyristyloxypropyl-3-dimethyl-hydroxy ethyl ammonium bromide) and cholesterol in membrane-filtered water met our requirements. When the plasmid DNA/DMRIE-C complexes were administered intravenously into pregnant mice at day 11.5 post coitus (p.c.), transferred genes were observed in several organs in dams and were expressed. Furthermore, although the copy numbers transferred into embryos were low, we observed reporter gene expression in the progeny.  相似文献   

8.
The present study investigated the potency of the mannosylated cationic liposomes (Man liposomes) that we have developed in novel DNA vaccine carrier. Ovalbumin (OVA) was selected as a model antigen for vaccination; accordingly, OVA-encoding pDNA (pCMV-OVA) was constructed to evaluate DNA vaccination. The potency of the Man liposome/pCMV-OVA complex was compared with naked pCMV-OVA and that complexed with DC-Chol liposomes. In cultured mouse peritoneal macrophages, MHC class I-restricted antigen presentation of the Man liposome/pCMV-OVA complex was significantly higher than that of naked pCMV-OVA and that complexed with DC-Chol liposomes. After intravenous administration, OVA mRNA expression and MHC class I-restricted antigen presentation on CD11c+ cells and inflammatory cytokines, such as TNF-alpha, IL-12, and IFN-gamma, that can enhance the Th1 response of the Man liposome/pCMV-OVA complex were higher than that of naked pCMV-OVA and that complexed with DC-Chol liposomes. Also, the spleen cells from mice immunized by intravenous administration of the Man liposome/pCMV-OVA complex showed the highest proliferation response and IFN-gamma secretion. These findings suggest that the targeted delivery of DNA vaccine by Man liposomes is a potent vaccination method for DNA vaccine therapy.  相似文献   

9.
Chitosan is a widely available, mucoadhesive polymer that is able to increase cellular permeability and improve the bioavailability of orally administered protein drugs. It can also be readily formed into nanoparticles able to entrap drugs or condense plasmid DNA. Studies on the formulation and oral delivery of such chitosan nanoparticles have demonstrated their efficacy in enhancing drug uptake and promoting gene expression. This review summarizes some of these findings and highlights the potential of chitosan as a component of oral delivery systems.  相似文献   

10.
Quaternary ammonium lipids 1b-d, with diether linkages between hydrocarbon chains and butane or hexane backbone, were synthesized for cationic liposome-mediated gene delivery. The synthetic strategy of using C-4 or C-6 synthon permits the achievement of the variation of the hydrophobic domain as well as changes of space between the quaternary ammonium head and the hydrophobic domain in the diether-linked cationic lipids.  相似文献   

11.
The new cholesterol-based cationic lipids B, C, and D with an ether linked spacer were synthesized by using aminopropyl chain extension with acrylonitrile. The cholesterol-based cationic lipid A with carbamoyl linkage were also synthesized in order to compare the difference in transfection efficiency of the two linkage types. To this end, GFP expression of these cationic lipids was confirmed respectively.  相似文献   

12.
Overcoming the barriers to efficient gene transfer is a fundamental goal of biotechnology. A versatile approach to enhance the delivery of nonviral DNA involves complexation with cationic polymers, which can be designed to overcome the barriers to effective gene transfer. More recently, DNA release from a polymer substrate or scaffold has been shown to enhance gene transfer, likely by increasing DNA concentrations in the cell microenvironment. We propose a novel approach that combines these two strategies in which cationic polymer/DNA complexes are tethered to a substrate that supports cell adhesion. The cationic polymers package the DNA for efficient internalization and the surface tethering functions to maintain elevated concentrations in the cell microenvironment for cells adhered to the substrate. The cationic polymer polylysine (degree of polymerization equal to 19 or 150) was modified with biotin groups, which was confirmed by mass spectrometry and biochemical analysis. Complex formation of DNA with biotinylated-polylysine, or mixtures of biotinylated and nonbiotinylated polylysines, was confirmed by gel electrophoresis. Plasmid DNA encoding for the reporter gene beta-galactosidase was complexed with different mixtures of biotinylated and nonbiotinylated polylysine and incubated on neutravidin (nonglycosylated avidin)-coated surfaces. DNA surface densities ranging from 0.1 to 4.3 microg/cm2 were observed and found to be a function of the number of biotin groups, the molecular weight of the polylysine, and the amount of DNA. HEK293T or NIH/3T3 cells were then seeded onto the DNA-modified surfaces, and transfection was quantified at 48 and 96 h. Transfection by the DNA surfaces was observed with both cell lines, and expression levels up to 100 fold greater than bulk delivery of the complexes was obtained. Transfection was found to be a function of the surface DNA quantities and the number of tethers on the complex. Transfected cells were observed only in the region in which DNA complexes were tethered, suggesting that the location of transfected cells can be specifically controlled. Surface tethering of DNA represents a promising approach to enhancing gene transfer and spatially controlling gene delivery, which may have applications to a multitude of fields ranging from tissue engineering to functional genomics.  相似文献   

13.
This paper reports results concerning the transfection of gliosarcoma cells 9L using an original cholesterol-based cationic liposome as carrier. This cationic liposome was prepared from triethyl aminopropane carbamoyl cholesterol (TEAPC-Chol) and a helper lipid, dioleoyl phosphatidyl ethanolamine (DOPE). The used concentration of liposome was not cytotoxic as revealed by the MTT test. TEAPC-Chol/DOPE liposomes allowed the plasmids encoding reporter genes to enter the nucleus as observed both by electron microscopy and functionality tests using fluorescence detection of green fluorescent protein (GFP) and luminometric measurements of luciferase activity. By changing the cationic lipid/DNA molar charge ratio, optimal conditions were determined. Further, improvement of the transfection level has been obtained by either precondensing plasmid DNA with poly-l-lysine or by adding polyethylene glycol (PEG) in the transfection medium. The optimal conditions determined are different depending on whether the transfection is made with cells in culture or with tumors induced by subcutaneous (s.c.) injection of cells in Nude mice. For in vivo assays, a simple method to overcome the interference of haemoglobin with the chemiluminescence intensity of luciferase has been used. These results would be useful for gaining knowledge about the potential for the cationic liposome TEAPC-Chol/DOPE to transfect brain tumors efficiently.  相似文献   

14.
This paper reports results concerning the transfection of gliosarcoma cells 9L using an original cholesterol-based cationic liposome as carrier. This cationic liposome was prepared from triethyl aminopropane carbamoyl cholesterol (TEAPC-Chol) and a helper lipid, dioleoyl phosphatidyl ethanolamine (DOPE). The used concentration of liposome was not cytotoxic as revealed by the MTT test. TEAPC-Chol/DOPE liposomes allowed the plasmids encoding reporter genes to enter the nucleus as observed both by electron microscopy and functionality tests using fluorescence detection of green fluorescent protein (GFP) and luminometric measurements of luciferase activity. By changing the cationic lipid/DNA molar charge ratio, optimal conditions were determined. Further, improvement of the transfection level has been obtained by either precondensing plasmid DNA with poly-L-lysine or by adding polyethylene glycol (PEG) in the transfection medium. The optimal conditions determined are different depending on whether the transfection is made with cells in culture or with tumors induced by subcutaneous (s.c.) injection of cells in Nude mice. For in vivo assays, a simple method to overcome the interference of haemoglobin with the chemiluminescence intensity of luciferase has been used. These results would be useful for gaining knowledge about the potential for the cationic liposome TEAPC-Chol/DOPE to transfect brain tumors efficiently.  相似文献   

15.
The facile synthesis of biocompatible and nontoxic gene delivery vectors has been the focus of research in recent years due to the high potential in treating genetic diseases. 2-Methacryloxyethyl phosphorylcholine (MPC) copolymers were recently studied for their ability to produce nontoxic and biocompatible materials. The synthesis of well-defined and water-soluble MPC polymer based cationic vectors for gene delivery purposes was therefore attractive, due to the potential excellent biocompatibility of the resulting copolymers. Herein, cationic MPC copolymers of varying architectures (block versus random) were produced by the reversible addition--fragmentation chain transfer (RAFT) polymerization technique. The copolymers produced were evaluated for their gene delivery efficacy in the presence and absence of serum. It was found that copolymer architectures and molecular weights do affect their gene delivery efficacy. The statistical copolymers produced larger particles, and showed poor gene transfection efficiency as compared to the diblock copolymers. The diblock copolymers served as efficient gene delivery vectors, in both the presence and absence of serum in vitro. To the best of our knowledge, this is the first report where the effect of architecture of MPC based copolymer on gene delivery efficacy has been studied.  相似文献   

16.
17.
This study aimed to develop novel temperature-sensitive liposomes loading paclitaxel (PTX-TSL) and evaluate them in vitro to improve the delivery efficiency and targeting of PTX. K237 peptide was conjugated to the terminal NHS of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[hydroxyl succinimidyl (polyethylene glycol)-(DSPE-PEG-NHS), and K237-modified PTX-TSL (K237-PTX-TSL) was prepared using a film dispersion method. K237-TSL encapsulation with calcein was synthesized and used to determine the cellular uptake of TSL. The morphology of K237-PTX-TSL was observed using a transmission electron microscope. The particle size and potential were measured using a laser particle size analyzer. The phase transition temperature was detected using the differential scanning calorimetry. The Cell Counting Kit-8 assay and flow cytometry were used to evaluate the effects of K237-PTX-TSL on the proliferation and cell cycle of cell lines SKOV-3 and human umbilical vein endothelial cell (HUVEC). The encapsulation efficiency of K237-PTX-TSL was 94.23%?±?0.76%. The particle diameter was 88.3?±?4.7?nm. K237-PTX-TSL showed a fast release profile at 42?°C, while it was stable at 37?°C. PTX-TSL combined with hyperthermia significantly inhibited the cell proliferation of SKOV-3 cells and HUVECs due to increased cell arrest in the G2/M phase. The half-minimal inhibitory concentration value of K237-PTX-TSL on SKOV-3 cells and HUVECs was 13.61?±?1.81 and 5.54?±?0.95?nmol/L, respectively, which were significantly lower than those with PTX-TSL (p?<?0.01). K237 modification could increase the targeting efficiency of TSL to cancer cells and vascular endothelial cells, thus resulting in higher cytotoxicities compared with PTX-TSL, which might be a potential formulation for targeting cancer therapy.  相似文献   

18.
Cationic liposomes are useful to transfer genes into eukaryotic cells in vitro and in vivo. However, liposomes with good transfection efficiency are often cytotoxic, and also require serum-free conditions for optimal activity. In this report, we describe a new formulation of cationic liposome containing DC-6-14, O,O'-ditetradecanoyl-N-(alpha-trimethylammonioacetyl)diethan olamine chloride, dioleoylphosphatidylethanolamine and cholesterol for gene delivery into cultured human cells. This liposome, dispersed in 5% serum-containing growth medium, efficiently delivered a plasmid DNA for GFP (green fluorescent protein) into more than 80% of the cultured human cell hybrids derived from HeLa cells and normal fibroblasts. Flow cytometric analysis revealed that the efficiency of the GFP gene expression was 40-50% in a tumor-suppressed cell hybrid, while it was greatly reduced in the tumorigenic counterpart. The enhanced GFP expression in tumor-suppressed cell hybrids was quantitatively well correlated with a prolonged presence of the plasmid DNA, which had been labeled with another fluorescent probe, ethidium monoazide, within the cells. These results suggest that a newly developed cationic liposome is useful for gene delivery in serum-containing medium into human cells and the stability of the plasmid DNA inside the cell is a crucial step in this liposome-mediated gene expression. The mechanisms by which cationic liposome mediates gene transfer into eukaryotic cells are also discussed.  相似文献   

19.
Block copolymers poly(2-(dimethylamino) ethyl methacrylate)-b-poly(polyethylene glycol methacrylate) (PDMAEMA-b-P(PEGMA)) were prepared via reversible addition fragmentation chain transfer polymerization (RAFT). The polymerization was found to proceed with the expected living behavior resulting in block copolymers with varying block sizes of low polydispersity (PDI <1.3). The resulting block copolymer was self-assembled in an aqueous environment, leading to the formation of pH-responsive micelles. Further stabilization of the micellar system was performed in water using ethylene glycol dimethacrylate and the RAFT process to cross-link the shell. The cross-linked micelle was found to have properties significantly different from those of the uncross-linked block copolymer micelle. While a distinct critical micelle concentration (CMC) was observed using block copolymers, the CMC was absent in the cross-linked system. In addition, a better stability against disintegration was observed when altering the ionic strength such as the absence of changes of the hydrodynamic diameter with increasing NaCl concentration. Both cross-linked and uncross-linked micelles displayed good binding ability for genes. However, the cross-linked system exhibited a slightly superior tendency to bind oligonucleotides. Cytotoxicity tests confirmed a significant improvement of the biocompatibility of the synthesized cross-linked micelle compared to that of the highly toxic PDMAEMA. The cross-linked micelles were taken up by cells without causing any signs of cell damage, while the PDMAEMA homopolymer clearly led to cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号