共查询到19条相似文献,搜索用时 0 毫秒
1.
Oliveira SM Leite Vilamaior PS Corradi LS Góes RM Taboga SR 《Cell biology international》2007,31(3):235-245
Mongolian gerbils (Meriones unguiculatus) were grouped into two experimental groups: GEx.01 suffered orchiectomy and after 30 days received doses of testosterone cipionate (T), while GEx.02 received weekly and alternated doses of the anti-androgens cyproterone acetate and flutamide for 30 days, and the animals were then euthanized. Structural evaluation reveals a more intense reduction in epithelial height in GEx.02. Smooth muscle cells (SMC) presented a star-shaped aspect after 30 days of hormonal ablation and basal membrane was shown to be more intensely grooved in GEx.01. In both groups, after hormonal replacement, recovery in epithelial height could be noted and the SMC presented its phenotypes, but an increase in RER was seen, characterizing a modulation from its contractile to secreting phenotype. In conclusion, the prostate presented involution capacity after androgen ablation and the ability to reorganize after hormonal replacement, but events resulting from orchiectomy and subsequent T replacement were shown to be more aggressive to the prostate. 相似文献
2.
We have investigated epithelial cell proliferation and the rate of glandular recovery of the ventral prostate (VP) and seminal vesicle (SV) promoted by testosterone replacement (TR) in castration-induced regressed glands. Adult male Wistar rats were castrated and, after 21 days, they were treated with testosterone propionate (4 mg/kg/day). Intact (CT) and castrated rats without TR (CS) were also analysed. VP and SV were processed for histochemistry, morphometric-stereological analysis and immunocytochemistry to determine the PCNA index (PI). After 10 days of TR, the VP weight reached approximately 72% of the CT values, while the SV weight exceeded approximately 17% of the CT values. By the third day of TR, VP and SV presented a mean PI of 34% and 94% for distal region and 14% and 22% for proximal region, respectively. SV also had more luminal cells PCNA-positive than VP, mainly in the distal region. The PI values fell on days 5, 7 and 10, but were still higher than CT. These findings indicate that epithelial cells from involuted SV are more responsive to TR than those from VP when stimulated to proliferate and replace the luminal cell population, suggesting a different mechanism regulating cell proliferation in response to androgenic stimuli. 相似文献
3.
Human diabetes mellitus (IDDM; type I diabetes) is a T cell-mediated disease that is closely modeled in non-obese diabetic (NOD) mice. The pathogenesis of IDDM involves the transmigration of autoimmune T cells into the pancreatic islets and the subsequent destruction of insulin-producing beta cells. Therapeutic interventions leading to beta cell regeneration and the reversal of established IDDM are exceedingly limited. We report here that specific inhibition of T cell intra-islet transmigration by using a small molecule proteinase inhibitor restores beta cell functionality, increases insulin-producing beta cell mass, and alleviates the severity of IDDM in acutely diabetic NOD mice. As a result, acutely diabetic NOD mice do not require insulin injections for survival for a significant time period, thus providing a promising clue to effect IDDM reversal in humans. The extensive morphometric analyses and the measurements of both the C-peptide blood levels and the proinsulin mRNA levels in the islets support our conclusions. Diabetes transfer experiments suggest that the inhibitor specifically represses the T cell transmigration and homing processes as opposed to causing immunosuppression. Overall, our data provide a rationale for the pharmacological control of the T cell transmigration step in human IDDM. 相似文献
4.
We previously found that ingestion of an extract of Ninjin-to (NJT; Ren-Shen-Tang) suppressed the development of autoimmune diabetes in C57BL/KsJ mice induced by multiple low doses of streptozotocin. To verify this effects on spontaneous autoimmune diabetes, the effects of NJT on NOD mice were investigated in the present study. NJT, provided in drinking water (0.25%, 450 mg/kg/day) from 6 weeks of age, significantly prevented the incidence of spontaneous diabetes in female NOD mice at 30 weeks of age (2/10) compared with that of the controls (7/10), with no effects on body growth or food intake. Even in non-diabetic mice, the blood glucose levels of the NOD controls gradually increased with age, while such increase in NJT-treated mice was significantly suppressed by preventing any deficiency of glucose tolerance. NJT also significantly suppressed the progression of insulitis, which causes insulin deficiency and diabetes. It is well known that NOD mice develop insulitis and diabetes because of their Th1-dominant autoimmune response. IFN-gamma production from splenic T lymphocytes stimulated with anti-CD3 monoclonal antibodies was increased, whereas IL-4 production was decreased in NOD controls compared to age- and sex-matched normal ICR mice. NJT-treatment reduced these deviations of cytokine production in NOD mice. These data all suggest that NJT can prevent spontaneous insulitis and diabetes by the modification of deviated cytokine production in NOD mice. 相似文献
5.
Liang K Du W Zhu W Liu S Cui Y Sun H Luo B Xue Y Yang L Chen L Li F 《The Journal of biological chemistry》2011,286(45):39537-39545
The development of insulin-dependent diabetes mellitus (IDDM) results from the selective destruction of pancreatic beta-cells. Both humans and spontaneous models of IDDM, such as NOD mice, have an extended pre-diabetic stage. Dynamic changes in beta-cell mass and function during pre-diabetes, such as insulin hyper-secretion, remain largely unknown. In this paper, we evaluated pre-diabetic female NOD mice at different ages (6, 10, and 14 weeks old) to illustrate alterations in beta-cell mass and function as disease progressed. We found an increase in beta-cell mass in 6-week-old NOD mice that may account for improved glucose tolerance in these mice. As NOD mice aged, beta-cell mass progressively reduced with increasing insulitis. In parallel, secretory ability of individual beta-cells was enhanced due to an increase in the size of slowly releasable pool (SRP) of vesicles. Moreover, expression of both SERCA2 and SERCA3 genes were progressively down-regulated, which facilitated depolarization-evoked secretion by prolonging Ca(2+) elevation upon glucose stimulation. In summary, we propose that different mechanisms contribute to the insulin hyper-secretion at different ages of pre-diabetic NOD mice, which may provide some new ideas concerning the progression and management of type I diabetes. 相似文献
6.
Xue M Dervish S Harrison LC Fulcher G Jackson CJ 《The Journal of biological chemistry》2012,287(20):16356-16364
Activated protein C (aPC) is a natural anticoagulant with strong cyto-protective and anti-inflammatory properties. aPC inhibits pancreatic inflammation and preserves functional islets after intraportal transplantation in mice. Whether aPC prevents the onset or development of type 1 diabetes (T1D) is unknown. In this study, when human recombinant aPC was delivered intraperitoneally, twice weekly for 10 weeks (from week 6 to 15) to non-obese diabetic (NOD) mice, a model for T1D, the incidence of diabetes was reduced from 70% (saline control) to 7.6% by 26 weeks of age. Islets of aPC-treated mice exhibited markedly increased expression of insulin, aPC/protein C, endothelial protein C receptor, and matrix metalloproteinase (MMP)-2 when examined by immunostaining. The insulitis score in aPC-treated mice was 50% less than that in control mice. T regulatory cells (Tregs) in the spleen, pancreatic islets, and pancreatic lymph nodes were increased 37, 53, and 59%, respectively, in NOD mice following aPC treatment. These Tregs had potent suppressor function and, after adoptive transfer, delayed diabetes onset in NOD.severe combined immunodeficiency mice. The culture of NOD mouse spleen cells with aPC reduced the secretion of inflammatory cytokines interleukin (IL)-1β and interferon-γ but increased IL-2 and transforming growth factor-β1, two cytokines required for Treg differentiation. In summary, our results indicate that aPC prevents T1D in the NOD mouse. The aPC mechanism of action is complex, involving induction of Treg differentiation, inhibition of inflammation, and possibly direct cyto-protective effects on β cells. 相似文献
7.
Clinical studies analyzing simultaneous nicotine-alcohol use by patients showed important alterations in various organic systems such as: respiratory, digestory, and genital. Also, the prostatic morphology and physiology have been analyzed, specially due to large occurrence of prostatic diseases. Then, this work aimed at determining the structure and ultrastructure of the prostatic stroma and epithelium, as well as the stroma epithelium interactions from rats submitted to simultaneous long-term alcohol-nicotine treatment. A total of 40 male rats were divided into four groups: control group (10 animals) received tap water; alcoholic group (10 animals) received diluted 10% Gay Lussac ethanol; nicotine group (10 animals) received a 0.125mg/100g of body weight dose of nicotine injected subcutaneosly on a daily basis; nicotine-alcohol group (10 animals) received simultaneous alcohol and nicotine treatment. After 90 days of treatment, the animals were sacrificed and samples from the ventral lobe of the prostate were collected and processed for transmission electron and light microscopies. The results showed atrophied epithelium; prostatic intra-epithelial neoplasia; dilated cisterns of the granular endoplasmic reticulum, large amounts of collagen fibers besides inflammatory cells, specially in the alcoholic and nicotine-alcohol groups. Therefore, it could be concluded that the association between alcohol and nicotine caused the impairment of the prostatic secretory process. Moreover, this association is related to prostatic pathogenesis, which could lead to late glandular malignancy. 相似文献
8.
Momordica charantia is a well known medicinal plant used in the traditional medicinal system for the treatment of various diseases
including diabetes mellitus. Recently, a novel protein termed as ADMc1 from the seed extract of M. charantia has been identified
and isolated showing significant antihyperglycemic activity in type 1 diabetic rats in which diabetes was induced. However, the
structure of this protein has not yet been analyzed. Homology modeling approach was used to generate a high quality protein 3D
structure for the amino acid sequence of the ADMc1 protein in this study. The comparative assessment of secondary structures
revealed ADMc1 as an all-alpha helix protein with random coils. Tertiary structure predicted on the template structure of Napin of
B. Napus (PDB ID: 1SM7) with which the ADMc1 showed significant sequence similarity, was validated using protein structure
validation tools like PROCHECK, WHAT_CHECK, VERIFY3D and ProSA. Arrangement of disulfide bridges formed by cysteine
residues were predicted by the Dianna 1.1 server. The presence of multiple disulfide bond confers the stable nature of the ADMc1
protein. Further, the biological activity of the ADMc1 was assessed in non-obese diabetic (NOD) mice which are spontaneous
model of type 1 diabetes. Significant reduction in the blood glucose levels of NOD mice was observed up to 8 h post administration
of the rADMc1 protein. Overall, the structural characterizations with antihyperglycemic activity of this seed protein of Momordica
charantia demonstrate its potential as an antidiabetic agent. 相似文献
9.
The harmful influence of the chronic alcohol ingestion on the male reproductive system leads to important alterations including hypogonadism and feminization, besides the morphological and functional disorganization of the different sexual glands. So, the aim of this study was to analyse the structural changes on the ventral lobe of the prostate of rats with hormonal replacement associated to chronic alcohol ingestion. A total of 30 rats (Rattus norvegicus albinus) was divided into three groups: control-received water; alcoholic-received ethanol diluted to 20% and hormone-treated alcoholic-received ethanol diluted to 20% associated with the administering of testosterone (5mg/kg of weight) during the last 30 days of treatment. After 150 days of treatment, the animals were sacrificed, the prostate removed and submitted to transmission and scanning electron microscopies, histochemical analysis for acid phosphatase, testosterone level and stereologic analysis. In the alcoholic group the results demonstrated reduction of the total cellular volume and disorganization of the organelles involved in the secretory process. It was characterized a partial recovery of the cellular volume after treatment with testosterone. It was concluded that the ethanol impaired the cellular morphology and the hormonal replacement by itself did not bring about efficient remodeling of the organelles responsible for the secretory process. 相似文献
10.
Thaís A. Fornari Paula B. Donate Claudia Macedo Márcia M. C. Marques Danielle A. Magalhães Geraldo A. S. Passos 《Molecular and cellular biochemistry》2010,342(1-2):21-28
Gene expression of peripheral tissue antigens (PTAs) in stromal medullary thymic epithelial cells (mTECs) is a key process to the negative selection of autoreactive thymocytes. This phenomenon was termed “promiscuous gene expression” (PGE), which is partially controlled by the Aire gene. Nevertheless, reasons for the correlation of Aire and PTAs with the emergence of autoimmune diseases are largely unknown, though it may be a result of a chronological effect. Although the effect of Aire mutations in pathogenic autoimmunity is well know, it could not be a unique cause for autoimmunity. Independently of mutations, temporal deregulation of Aire expression may imbalance Aire-dependent PTAs and/or wide PGE. This deregulation may be an early warning sign for autoimmune diseases as it guarantees autoantigen representation in the thymus. To assess this hypothesis, we studied the expression levels of Aire, Aire-dependent (Ins2) and Aire-independent (Gad67 and Col2a1) PTAs using real-time-PCR of the thymic stromal cells of NOD mice during the development of autoimmune type 1 diabetes mellitus (DM-1). Wide PGE was studied by microarrays in which the PTA genes were identified through parallel CD80+ mTEC 3.10 cell line expression profiling. The results show that Aire gene was down-regulated in young pre-autoimmune (pre-diabetic) NOD mice. PGE and specific PTA genes were down-regulated in adult autoimmune diabetic animals. These findings represent evidence indicating that chronological deregulation of genes important to negative selection may be associated with the development of an autoimmune disease (DM-1) in mice. 相似文献
11.
Hiroharu Mifune Syusaku Suzuki Junichi Honda Yuta Kobayashi Yasutaka Noda Yoshihiro Hayashi Koshi Mochizuki 《Cell and tissue research》1992,267(2):267-272
Summary Atrial natriuretic peptide (ANP) levels in cardiocytes and plasma were examined by using immunohistochemistry, electron microscopy, and radioimmunoassay in non-obese diabetic mice (NOD). Cardiocyte ANP mRNA expression was measured by the polymerase chain reaction method. ANP immunoreactivity in the auricular cardiocytes was more prominent in hyperglycemic mice (NOD-h) than in normoglycemic mice (NOD-n). Ultrastructural examination showed that auricular cardiocytes of the NOD-h group contained more cytoplasmic granules than cells of the NOD-n group. Ultrastructural morphometry indicated that the number of granules per auricular cardiocyte was significantly larger in the NOD-h group than in the NOD-n group. (P<0.01), whereas the granule diameter was significantly smaller in the NOD-h group (P<0.01). Radioimmunoassay showed that ANP levels in the NOD-h auricular cardiocytes were significantly higher than those in the NOD-n cardiocytes (P<0.01); the opposite was true in plasma. Cardiocyte ANP mRNA expression was lower in the NOD-h group than in the NOD-n group. 相似文献
12.
Rajeev Verma Avijeet Chopra Charles Giardina Venkata Sabbisetti Joan A. Smyth Lawrence E. Hightower George A. Perdrizet 《Cell stress & chaperones》2015,20(3):495-505
The disease burden from diabetic kidney disease is large and growing. Effective therapies are lacking, despite an urgent need. Hyperbaric oxygen therapy (HBOT) activates Nrf2 and cellular antioxidant defenses; therefore, it may be generally useful for treating conditions that feature chronic oxidative tissue damage. Herein, we determined how periodic exposure to oxygen at elevated pressure affected type 2 diabetes mellitus-related changes in the kidneys of db/db mice. Two groups of db/db mice, designated 2.4 ATA and 1.5 ATA, were treated four times per week with 100 % oxygen at either 1.5 or 2.4 ATA (atmospheres absolute) followed by tests to assess kidney damage and function. The sham group of db/db mice and the Hets group of db/+ mice were handled but did not receive HBOT. Several markers of kidney damage were reduced significantly in the HBOT groups including urinary biomarkers neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C (CyC) along with significantly lower levels of caspase-3 activity in kidney tissue extracts. Other stress biomarkers also showed trends to improvement in the HBOT groups, including urinary albumin levels. Expressions of the stress response genes NRF2, HMOX1, MT1, and HSPA1A were reduced in the HBOT groups at the end of the experiment, consistent with reduced kidney damage in treated mice. Urinary albumin/creatinine ratio (ACR), a measure of albuminuria, was significantly reduced in the db/db mice receiving HBOT. All of the db/db mouse groups had qualitatively similar changes in renal histopathology. Glycogenated nuclei, not previously reported in db/db mice, were observed in these three experimental groups but not in the control group of nondiabetic mice. Overall, our findings are consistent with therapeutic HBOT alleviating stress and damage in the diabetic kidney through cytoprotective responses. These findings support an emerging paradigm in which tissue oxygenation and cellular defenses effectively limit damage from chronic oxidative stress more effectively than chemical antioxidants.
Electronic supplementary material
The online version of this article (doi:10.1007/s12192-015-0574-3) contains supplementary material, which is available to authorized users. 相似文献13.
Vieira KP de Almeida e Silva Lima Zollner AR Malaguti C Vilella CA de Lima Zollner R 《Cytokine》2008,42(1):92-104
NOD (non-obese diabetic) mice develop type 1 diabetes mellitus spontaneously and with a strong similarity to the human disease. Differentiation and function of pancreas beta cells are regulated by a variety of hormones and growth factors, including the nerve growth factor (NGF). Gangliosides have multiple immunomodulatory activities with immunosuppressive properties, decreasing lymphoproliferative responses and modulating cytokine production. In the present study, serum, pancreas islets and spleen mononuclear cells from NOD mice treated with monosialic ganglioside GM1 (100 mg/kg/day) and the group control which received saline solution were isolated to investigate the proinflammatory cytokines (IL-1beta, IFN-gamma, IL-12, TNF-alpha), NGF and its high-affinity receptor TrkA, peri-islet Schwann cells components (GFAP, S100-beta) expression and the relationship with diabetes onset and morphological aspects. Our results suggest that GM1 administration to female NOD mice beginning at the 4th week of life is able to reduce the index of inflammatory infiltrate and consequently the expression of diabetes, modulating the expression of proinflammatory cytokines (IL-12, IFN-gamma, TNF-alpha and IL-1beta). Furthermore, GM1 increases GFAP, S-100beta and NGF in pancreas islets, factors involved in beta cell survival. 相似文献
14.
Natalie McGregor Lalit Patel Matthew Craig Savannah Weidner Shaomeng Wang Kenneth J. Pienta 《Journal of cellular biochemistry》2010,110(5):1187-1194
Prostate cancer remains a leading cause of cancer death in American men. Androgen deprivation therapy (ADT) is the most common treatment for advanced prostate cancer patients; however, ADT fails in nearly all cases resulting in castration resistant or androgen‐insensitive (AI) disease. In many cases, this progression results from dysregulation of the pro‐survival Bcl‐2 family proteins. Inhibition of pro‐survival Bcl‐2 family proteins, therefore, may be an effective strategy to delay the onset of AI disease. Gossypol, a small molecule inhibitor of pro‐survival Bcl‐2 family proteins, has been demonstrated to inhibit AI prostate cancer growth. The apoptotic effect of gossypol, however, has been demonstrated to be attenuated by the presence of androgen in a prostate cancer xenograft mouse model (Vertebral Cancer of Prostate [VCaP]) treated with AT‐101 (R‐(?)‐gossypol acetic acid). This study was undertaken to better understand the in vitro effects of androgen receptor (AR) on AT‐101‐induced apoptosis. VCaP cells treated with AT‐101 demonstrated an increase in apoptosis and downregulation of Bcl‐2 pro‐survival proteins. Upon AR activation in combination with AT‐101 treatment, apoptosis is reduced, cell survival increases, and caspase activation is attenuated. Akt and X inhibitor of apoptosis (XIAP) are downregulated in the presence of AT‐101, and AR stimulation rescues protein expression. Combination treatment of bicalutamide and AT‐101 increases apoptosis by reducing the expression of these pro‐survival proteins. These data suggest that combination therapy of AT‐101 and ADT may further delay the onset of AI disease, resulting in prolonged progression‐free survival of prostate cancer patients. J. Cell. Biochem. 110: 1187–1194, 2010. Published 2010 Wiley‐Liss, Inc. 相似文献
15.
The treatment of drug-resistant cancer is a clinical challenge, and thus screening for novel anticancer drugs is critically important. We recently demonstrated a strong enhancement of the antitumor activity of snake (Walterinnesia aegyptia) venom (WEV) in vitro in breast carcinoma, prostate cancer, and multiple myeloma cell lines but not in normal cells when the venom was combined with silica nanoparticles (WEV+NP). In the present study, we investigated the in vivo therapeutic efficacy of WEV+NP in breast cancer- and prostate cancer-bearing experimental mouse models. Xenograft breast and prostate tumor mice models were randomized into 4 groups for each cancer model (10 mice per group) and were treated with vehicle (control), NP, WEV, or WEV+NP daily for 28 days post tumor inoculation. The tumor volumes were monitored throughout the experiment. On Day 28 post tumor inoculation, breast and prostate tumor cells were collected and either directly cultured for flow cytometry analysis or lysed for Western blot and ELISA analysis. Treatment with WEV+NP or WEV alone significantly reduced both breast and prostate tumor volumes compared to treatment with NP or vehicle alone. Compared to treatment with WEV alone, treatment of breast and prostate cancer cells with WEV+NP induced marked elevations in the levels of reactive oxygen species (ROS), hydroperoxides, and nitric oxide; robust reductions in the levels of the chemokines CXCL9, CXCL10, CXCL12, CXCL13, and CXCL16 and decreased surface expression of their cognate chemokine receptors CXCR3, CXCR4, CXCR5, and CXCR6; and subsequent reductions in the chemokine-dependent migration of both breast and prostate cancer cells. Furthermore, we found that WEV+NP strongly inhibited insulin-like growth factor 1 (IGF-1)- and epidermal growth factor (EGF)-mediated proliferation of breast and prostate cancer cells, respectively, and enhanced the induction of apoptosis by increasing the activity of caspase-3,–8, and -9 in both breast and prostate cancer cells. In addition, treatment of breast and prostate cancer cells with WEV+NP or WEV alone revealed that the combination of WEV with NP robustly decreased the phosphorylation of AKT, ERK, and IκBα; decreased the expression of cyclin D1, surviving, and the antiapoptotic Bcl-2 family members Bcl-2, Bcl-XL, and Mcl-1; markedly increased the expression of cyclin B1 and the proapoptotic Bcl-2 family members Bak, Bax, and Bim; altered the mitochondrial membrane potential; and subsequently sensitized tumor cells to growth arrest. Our data reveal the therapeutic potential of the nanoparticle-sustained delivery of snake venom against different cancer cell types. 相似文献
16.
Calcium (Ca(2+)) is an important regulator of apoptotic signaling. Calbindin-D(9k) (CaBP-9k) and -D(28k) (CaBP-28k) have a high affinity for Ca(2+) ions. Uterine calbindins appear to be involved in the regulation of myometrial activity by intracellular Ca(2+). In addition, uterine calbindins are expressed in the mouse endometrium and are regulated by steroid hormones during implantation and development. The aim of the present study was to evaluate the regulation of apoptosis in the uteri of CaBP-9k, CaBP-28k, and CaBP-9k/28k knockout (KO) mice. Our findings indicated that Bax protein was enhanced in the uteri of CaBP-28k and CaBP-9k/28k KO mice compared to wild-type (WT) and CaBP-9k KO mice, but no difference was observed in Bcl-2 protein expression. The expressions of caspase 3, 6, and 7 proteins were higher in both CaBP-28k and CaBP-9k/28k KO mice than in WT and CaBP-9k KO mice. These results suggest that the absence of CaBP-28k increases apoptotic signaling. We also investigated the expression of endoplasmic reticulum (ER) stress genes by Western blot analysis in calbindin KO mice. C/EBP homologous protein and immunoglobulin heavy chain-binding protein protein levels were elevated in CaBP-28k KO mice compared to WT mice. When immature mice were treated with 17β-estradiol (E2) or progesterone (P4) for 3 days, we found that the expressions of Bax and caspase 3 protein were increased by E2 treatment in WT and CaBP-9k KO mice, and by P4 treatment in CaBP-28k KO mice. These results indicate that CaBP-28k blocks the up-regulation of apoptosis-related genes and ER stress genes, implying that CaBP-28k may decrease the expression of genes involved in apoptosis and ER stress in murine uterine tissue. 相似文献
17.
The castration-induced atrophy of the rat prostate was used as a model for the validation of a sensitive technique allowing the quantitation of total mRNA in polyribosomes. Electron micrographs of polyribosome samples showed a decrease in polyribosomes length 7 days after castration (GDX). Specificity of labeled oligo(dt) probe for poly(A) was demonstrated and the technique was successfully applied to demonstrate that GDX is associated with a decrease in poly(A) mRNA content of polyribosomes. Provided that normalization of the hybridization signal for mRNA is achieved with a rRNA cDNA probe, the assay therefore represents a suitable tool for further studies regarding the translational regulation of total and/or specific mRNAs. 相似文献
18.
The development and maintenance of the prostate are dependent upon a complex series of interactions occurring between the epithelial and stromal tissues (Hayward and Cunha [2000]: Radiol. Clin. N. Am. 38:1-14). During the process of prostatic carcinogenesis, there are progressive changes in the interactions of the nascent tumor with its surrounding stroma and extracellular matrix. These include the development of a reactive stromal phenotype and the possible promotion, by stromal cells, of epithelial proliferation and loss of differentiated function (Hayward et al. [1996]: Ann. N. Y. Acad. Sci. 784:50-62; Grossfeld et al. [1998]: Endocr. Related Cancer 5:253-270; Rowley [1998]: Cancer Metastasis Rev. 17:411-419; Tuxhorn et al. [2002]: Clin. Cancer Res. 8:2912-2923). Many molecules play an as yet poorly defined role in establishing and maintaining a growth quiescent glandular structure in the adult. Peroxisome proliferator-activated receptor gamma (PPARgamma) is a candidate regulator of prostatic epithelial differentiation and may play a role in restricting epithelial proliferation. PPARgamma agonists are relatively non-toxic and have been used with limited success to treat some prostate cancer patients. We would propose that a more complete understanding of PPARgamma biology, particularly in the context of appropriate stromal-epithelial and host-tumor interactions would allow for the selection of patients most likely to benefit from this line of therapy. In particular, it seems reasonable to suggest that the patients most likely to benefit may be those with relatively indolent low stage disease for whom this line of therapy could be a useful additive to watchful waiting. 相似文献
19.
Hayashi SM Ton TV Hong HH Irwin RD Haseman JK Devereux TR Sills RC 《Chemico-biological interactions》2003,146(3):251-261
The present study characterized the immunohistochemical localization of beta-catenin protein in hepatocellular neoplasms and hepatoblastomas in B6C3F(1) mice exposed to diethanolamine (DEA) for 2 years and evaluated genetic alterations in the Catnb and H-ras genes which are known to play important roles in the pathogenesis of liver malignancies. Genomic DNA was isolated from paraffin sections of each liver tumor. Catnb exon 2 (corresponds to exon 3 in human) genetic alterations were identified in 18/18 (100%) hepatoblastomas from DEA exposed mice. Deletion mutations (15/18, 83%) were identified more frequently than point mutations (6/18, 33%) in hepatoblastomas. Eleven of 34 (32%) hepatocellular adenomas and carcinomas from DEA treated mice had mutations in exon 2 of the beta-catenin gene, while only 1 of 10 spontaneous neoplasms had a deletion mutation of codon 5-6. Common to all liver neoplasms (hepatocellular adenomas, carcinomas and hepatoblastomas) was membrane staining for the beta-catenin protein, while cytoplasmic and nuclear staining was observed only in hepatoblastomas. The lack of H-ras mutations in hepatocellular neoplasms and hepatoblastomas suggests that the ras signal transduction pathway is not involved in the development of liver tumors following DEA exposure which is different from that of spontaneous liver tumors that often contain H-ras mutations. 相似文献