首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of magnetic field (MF) treatments of maize (Zea mays L.) var. Ganga Safed 2 seeds on the growth, leaf water status, photosynthesis and antioxidant enzyme system under soil water stress was investigated under greenhouse conditions. The seeds were exposed to static MFs of 100 and 200 mT for 2 and 1 h, respectively. The treated seeds were sown in sand beds for seven days and transplanted in pots that were maintained at -0.03, -0.2 and -0.4 MPa soil water potentials under greenhouse conditions. MF exposure of seeds significantly enhanced all growth parameters, compared to the control seedlings. The significant increase in root parameters in seedlings from magnetically-exposed seeds resulted in maintenance of better leaf water status in terms of increase in leaf water potential, turgor potential and relative water content. Photosynthesis, stomatal conductance and chlorophyll content increased in plants from treated seeds, compared to control under irrigated and mild stress condition. Leaves from plants of magnetically-treated seeds showed decreased levels of hydrogen peroxide and antioxidant defense system enzymes (peroxidases, catalase and superoxide dismutase) under moisture stress conditions, when compared with untreated controls. Mild stress of -0.2 MPa induced a stimulating effect on functional root parameters, especially in 200 mT treated seedlings which can be exploited profitably for rain fed conditions. Our results suggested that MF treatment (100 mT for 2 h and 200 for 1 h) of maize seeds enhanced the seedling growth, leaf water status, photosynthesis rate and lowered the antioxidant defense system of seedlings under soil water stress. Thus, pre sowing static magnetic field treatment of seeds can be effectively used for improving growth under water stress.  相似文献   

2.
Our previous investigation reported the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. In this study, soybean seeds treated with static magnetic fields of 150 and 200 mT for 1 h were evaluated for reactive oxygen species (ROS) and activity of antioxidant enzymes. Superoxide and hydroxyl radicals were measured in embryos and hypocotyls of germinating seeds by electron paramagnetic resonance spectroscopy and kinetics of superoxide production; hydrogen peroxide and antioxidant activities were estimated spectrophotometrically. Magnetic field treatment resulted in enhanced production of ROS mediated by cell wall peroxidase while ascorbic acid content, superoxide dismutase and ascorbate peroxidase activity decreased in the hypocotyl of germinating seeds. An increase in the cytosolic peroxidase activity indicated that this antioxidant enzyme had a vital role in scavenging the increased H(2)O(2) produced in seedlings from the magnetically treated seeds. Hence, these studies contribute to our first report on the biochemical basis of enhanced germination and seedling growth in magnetically treated seeds of soybean in relation to increased production of ROS.  相似文献   

3.
Experiments were conducted to study the effect of static magnetic fields on the seeds of soybean (Glycine max (L.) Merr. var: JS-335) by exposing the seeds to different magnetic field strengths from 0 to 300 mT in steps of 50 mT for 30, 60, and 90 min. Treatment with magnetic fields improved germination-related parameters like water uptake, speed of germination, seedling length, fresh weight, dry weight and vigor indices of soybean seeds under laboratory conditions. Improvement over untreated control was 5-42% for speed of germination, 4-73% for seedling length, 9-53% for fresh weight, 5-16% for dry weight, and 3-88% and 4-27% for vigor indices I and II, respectively. Treatment of 200 mT (60 min) and 150 mT (60 min), which were more effective than others in increasing most of the seedling parameters, were further explored for their effect on plant growth, leaf photosynthetic efficiency, and leaf protein content under field conditions. Among different growth parameters, leaf area, and leaf fresh weight showed maximum enhancement (more than twofold) in 1-month-old plants. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at the J-I-P phase. The total soluble protein map (SDS-polyacrylamide gel) of leaves showed increased intensities of the bands corresponding to a larger subunit (53 KDa) and smaller subunit (14 KDa) of Rubisco in the treated plants. We report here the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean.  相似文献   

4.
The effects of pre-sowing magnetic treatments on growth and yield of tomato (cv Campbell-28) were investigated under field conditions. Tomato seeds were exposed to full-wave rectified sinusoidal non-uniform magnetic fields (MFs) induced by an electromagnet at 100 mT (rms) for 10 min and at 170 mT (rms) for 3 min. Non-treated seeds were considered as controls. Plants were grown in experimental plots (30.2 m(2)) and were cultivated according to standard agricultural practices. During the vegetative and generative growth stages, samples were collected at regular intervals for growth rate analyses, and the resistance of plants to geminivirus and early blight was evaluated. At physiological maturity, the plants were harvested from each plot and the yield and yield parameters were determined. In the vegetative stage, the treatments led to a significant increase in leaf area, leaf dry weight, and specific leaf area (SLA) per plant. Also, the leaf, stem, and root relative growth rates of plants derived from magnetically treated seeds were greater than those shown by the control plants. In the generative stage, leaf area per plant and relative growth rates of fruits from plants from magnetically exposed seeds were greater than those of the control plant fruits. At fruit maturity stage, all magnetic treatments increased significantly (P < .05) the mean fruit weight, the fruit yield per plant, the fruit yield per area, and the equatorial diameter of fruits in comparison with the controls. At the end of the experiment, total dry matter was significantly higher for plants from magnetically treated seeds than that of the controls. A significant delay in the appearance of first symptoms of geminivirus and early blight and a reduced infection rate of early blight were observed in the plants from exposed seeds to MFs. Pre-sowing magnetic treatments would enhance the growth and yield of tomato crop.  相似文献   

5.
The effect of pre-sowing magnetic treatments was investigated on germination, growth and yield of okra (Abelmoschus esculentus cv. Sapz pari). The dry okra seeds were exposed to sinusoidal magnetic field induced by an electromagnet. The average magnetic field exposure was 99 mT for 3 and 11 min and seeds with no magnetic field treatment were considered as control. Both treated and non-treated seeds were sown in experimental plots (120 m2) under similar conditions. Samples were collected at regular intervals for statistical analysis. A significant increase (P < 0.05) was observed in germination percentage, number of flowers per plant, leaf area (cm2), plant height (cm) at maturity, number of fruits per plant, pod mass per plant and number of seeds per plant. The 99 mT for 11 min exposure showed better results as compared to control.  相似文献   

6.
Influence of pre-sowing magnetic treatments on plant growth and final yield of lettuce (cv. Black Seeded Simpson) were studied under organoponic conditions. Lettuce seeds were exposed to full-wave rectified sinusoidal non uniform magnetic fields (MFs) induced by an electromagnet at 120 mT (rms) for 3 min, 160 mT (rms) for 1 min, and 160 mT (rms) for 5 min. Non treated seeds were considered as controls. Plants were grown in experimental stonemasons (25.2 m(2)) of an organoponic and cultivated according to standard agricultural practices. During nursery and vegetative growth stages, samples were collected at regular intervals for growth analyses. At physiological maturity, the plants were harvested from each stonemason and the final yield and yield parameters were determined. In the nursery stage, the magnetic treatments induced a significant increase of root length and shoot height in plants derived from magnetically treated seeds. In the vegetative stage, the relative growth rates of plants derived from magnetically exposed seeds were greater than those shown by the control plants. At maturity stage, all magnetic treatments increased significantly (p < 0.05)--plant height, leaf area per plant, final yield per area, and fresh mass per plant--in comparison with the controls. Pre-sowing magnetic treatments would enhance the growth and final yield of lettuce crop.  相似文献   

7.
Priming of soybean seeds with static magnetic field exposure of 200 mT (1 h) and 150 mT (1 h) resulted in plants with enhanced performance index (PI). The three components of PI i.e the density of reaction centers in the chlorophyll bed (RC/ABS), exciton trapped per photon absorbed (φpo) and efficiency with which a trapped exciton can move in electron transport chain (Ψo) were found to be 17%, 27%  and 16% higher, respectively in leaves from 200 mT (1h) treated compared to untreated seeds.  EPR spectrum of  O2. – - PBN  adduct revealed that the O2. – radical level was lower by 16% in the leaves of plants that emerged from magnetic field treatment. Our study revealed that magnetoprimed seeds have a long lasting stimulatory effect on plants as reduced superoxide production and higher performance index contributed to higher efficiency of light harvesting that consequently increased biomass in plants from treated plants.  相似文献   

8.
The effect of the exposure of maize seeds to stationary magnetic fields on germination and early growth has been studied under laboratory conditions. Seeds were magnetically exposed to one of two magnetic field strengths, 125 or 250 mT for different periods of time. Mean germination time and the time required to obtain 10, 25, 50, 75 and 90% of seeds to germinate were calculated. The results showed a reduction of these parameters for most of magnetic treatments, therefore their rate of germination was increased.Growth data measured on the 7th and 10th day after seeding allowed us to corroborate the effect observed in germination tests. Treated plants grew higher and heavier than control; on the 10th day total length was greater than control plants exposed to stationary magnetic field, corresponding with increase of the total fresh weight. The greatest increases were obtained for plants continuously exposed to 125 or 250 mT.  相似文献   

9.
The effects of a stationary magnetic field on the germination of rice seeds (Oryza sativa, L.) and on the initial stages of growth of rice plants have been evaluated. In both tests, the seeds were exposed to one of two magnetic field strengths (125 or 250 mT) for different times (1 min, 10 min, 20 min, 1 h, 24 h, or chronic exposure) as 12 separate treatments (doses D1–D6 for 125 mT and doses D7–D12 for 250 mT). Nonexposed seeds were used as controls (C). The mean germination time (MGT) was significantly reduced compared to control when seeds were exposed to magnetic field (54.00 h for D5 and D11, and 58.56 h for control). The parameters T1 and T10, times required to obtain 1 and 10% of germinated seeds, were also reduced. The T10 of control seeds was 44.40 h, while treatments D5, D6, D11, and D12 gave rise to values of 36.00, 36.96, 32.64, and 39.36 h, respectively. The higher germination rate of treated seeds obtained in the germination test is in agreement with the higher lengths and weights of rice plants exposed to a magnetic field recorded on the growth tests. All the parameters measured were over the control ones, although the highest lengths and weights of rice plants were obtained for chronic exposure to magnetic field (doses D6 and D12). Stem length of control plants (45.36 mm) measured at the tenth day was significantly lower than that obtained for doses D6 (58.58 mm) and D12 (80.63 mm); the same behavior was observed on total length, stem weight, and total weight. Our finding indicates that this type of magnetic treatment clearly affects germination and the first stages of growth of rice plants.  相似文献   

10.
Seeds of chickpea (Cicer arietinum L.) were exposed in batches to static magnetic fields of strength from 0 to 250 mT in steps of 50 mT for 1-4 h in steps of 1 h for all fields. Results showed that magnetic field application enhanced seed performance in terms of laboratory germination, speed of germination, seedling length and seedling dry weight significantly compared to unexposed control. However, the response varied with field strength and duration of exposure without any particular trend. Among the various combinations of field strength and duration, 50 mT for 2 h, 100 mT for 1 h and 150 mT for 2 h exposures gave best results. Exposure of seeds to these three magnetic fields improved seed coat membrane integrity as it reduced the electrical conductivity of seed leachate. In soil, seeds exposed to these three treatments produced significantly increased seedling dry weights of 1-month-old plants. The root characteristics of the plants showed dramatic increase in root length, root surface area and root volume. The improved functional root parameters suggest that magnetically treated chickpea seeds may perform better under rainfed (un-irrigated) conditions where there is a restrictive soil moisture regime.  相似文献   

11.
Nickel toxicity affects many metabolic facets of plants and induces anatomical and morphological changes resulting in reduced growth and productivity. To overcome the damaging effects of nickel (Ni) stress, different strategies of the application of nutrients with plant hormones are being adopted. The present experiment was carried out to assess the growth and physiological response of wheat plant (Triticum aestivum L.) cv. Samma to pre-sowing seed treatment with GA3 alone as well as in combination with Ca2+ and/or Ni stress. The pre-sowing seed treatment of Ni decreased all the growth characteristics (plant height, root length, fresh, and dry weight) as well as chlorophyll (Chl) content and enzyme carbonic anhydrase (CA: E.C. 4.2.1.1) activity. However, an escalation was recorded in malondialdehyde content and electrolyte leakage in plants raised from seed soaked with Ni alone. Moreover, all the growth parameters and physiological attributes (Chl content, proline (Pro) content, CA, peroxidase (E.C.1.11.1.7), catalase (E.C. 1.11.1.6), superoxide dismutase (E.C. 1.15.1.1), ascorbate peroxidase (E.C. 1.11.1.11), and glutathione reductase (E.C. 1.6.4.2) were enhanced in the plants developed from the seeds soaked with the combination of GA3 (10−6 M), Ca2+, and Ni. The present study showed that pre-sowing seed treatment of GA3 with Ca2+ was more capable in mitigation of adverse effect of Ni toxicity by improving the antioxidant system and Pro accumulation.  相似文献   

12.
Epidemiological studies suggest a correlation between exposure to low-level extremely low-frequency (ELF) magnetic fields (MF) and certain cancers and neurodegenerative diseases. Experimental studies have not provided any mechanism for such effects, although at flux density levels significantly higher than the ones encountered in epidemiological studies, radical homoeostasis and levels of stress response proteins can be affected. Here, we report on the influence of MF exposure (50-Hz sine wave; 1 h; 0.025–0.10 mT; vertical or horizontal MF exposure direction) on different cellular parameters (proliferation, cell cycle distribution, superoxide radical anion, and HSP70 protein levels) in the human leukaemia cell line K562. The positive control heat treatment (42°C, 1 h) did not affect either cell proliferation or superoxide radical anion production but caused accumulation of cells in the G2 phase and increased the stress protein HSP70. MF exposure (0.10 mT, 1 h) did not affect either cell cycle kinetics or proliferation. Both vertical and horizontal MF exposures for 1 h caused significantly and transiently increased HSP70 levels (>twofold), at several flux densities, compared to sham controls and also compared to heat treatment. This exposure also increased (30–40%) the levels of the superoxide radical anion, comparable to the positive control PMA. Addition of free radical scavengers (melatonin or 1,10-phenantroline) inhibited the MF-induced increase in HSP70. In conclusion, an early response to ELF MF in K562 cells seems to be an increased amount of oxygen radicals, leading to HSP70 induction. Furthermore, the results suggest that there is a flux density threshold where 50-Hz MF exerts its effects on K562 cells, at or below 0.025 mT, and also that it is the MF, and not the induced electric field, which is the active parameter.  相似文献   

13.
Tang  Hengfang  Wang  Peng  Wang  Han  Fang  Zhiwei  Yang  Qiang  Ni  Wenfeng  Sun  Xiaowen  Liu  Hui  Wang  Li  Zhao  Genhai  Zheng  Zhiming 《Bioprocess and biosystems engineering》2019,42(12):1923-1933

Increasing evidence shows that static magnetic fields (SMFs) can affect microbial growth metabolism, but the specific mechanism is still unclear. In this study, we have investigated the effect of moderate-strength SMFs on growth and vitamin K2 biosynthesis of Flavobacterium sp. m1-14. First, we designed a series of different moderate-strength magnetic field intensities (0, 50, 100, 150, 190 mT) and exposure times (0, 24, 48, 72, 120 h). With the optimization of static magnetic field intensity and exposure time, biomass and vitamin K2 production significantly increased compared to control. The maximum vitamin K2 concentration and biomass were achieved when exposed to 100 mT SMF for 48 h; compared with the control group, they increased by 71.3% and 86.8%, respectively. Interestingly, it was found that both the cell viability and morphology changed significantly after SMF treatment. Second, the adenosine triphosphate (ATP) and glucose-6-phosphate dehydrogenase (G6PDH) metabolism is more vigorous after exposed to 100 mT SMF. This change affects the cell energy metabolism and fermentation behavior, and may partially explain the changes in bacterial biomass and vitamin K2 production. The results show that moderate-strength SMFs may be a promising method to promote bacterial growth and secondary metabolite synthesis.

  相似文献   

14.
The aim of this study was to investigate the effects of a static magnetic field on six behavioral parameters (travel distance, average speed while in motion, travel distance of the head, body rotations, time in movement, and immobility time) of the ground beetle Laemostenus (Pristonychus) punctatus (Dejean) (Coleoptera: Carabidae). Adults of this troglophilic and guanophilic beetle were randomly divided into two groups, the first exposed to a static magnetic field of 110 mT for 5 h, and the second a control group. Beetle behavior after these 5 h was monitored in an open‐field test for 12 min and analyzed using ANY‐maze software. Exposure to a static magnetic field of 110 mT increased motor activity (travel distance and average speed while in motion) in the first 4 min. After that there were no significant differences. We conclude that the applied static magnetic field affects motor activity of adult specimens of L. (P.) punctatus, and we discuss the mechanism, possibly through acting on the control centers responsible for orientation and movement.  相似文献   

15.
Influence of magnetic field on activity of given anaerobic sludge   总被引:1,自引:0,他引:1  
Two modes of magnetic fields were applied in the Cr6+ removal sludge reactors containing two predominated strains—Bacillus sp. and Brevibacillus sp., respectively. The magnetic field mode I* of 0–4.5 or 0–14 mT between pieces was obtained by setting the magnetic pieces with the surface magnetic density of 0–6 or 0–20 mT into the reactor, and the magnetic field mode II* of 6, 20, or 40 mT on the return line was obtained by controlling the working distance of the permanent magnet outside the sludge return line. The effects of different magnetic fields on the activity of the given anaerobic sludge were studied by comparing with the control (absent of magnetic field). The results showed that the magnetic field of 0–4 mT improved the activity of given sludge most effectively, Umax·\textCH4 U_{{\max \cdot {\text{CH}}_{4} }} (the peak methane-producing rate) and the methane producing volume per gCODCr reached 64.3 mlCH4/gVSS.d and 124 mlCH4/gCODCr, which increased by 20.6 and 70.7%, respectively, compared with the control. And the magnetic field of 20 mT took second place. It could be concluded that the input of some magnetic field could improve the activity of anaerobic sludge by increasing the transformation efficiency of CODCr matters to methane, and the total organic wastage did not increase.  相似文献   

16.
磁场对羊草过氧化物酶的激活效应及同工酶分析   总被引:17,自引:0,他引:17  
利用外磁场处理羊草种子,并将羊草进行盐(NaCl)碱(Na2CO3)混合胁迫处理,结果表明,磁场处理不仅促进了羊草的生长,而且提高了羊草的抗盐碱性。磁场使羊草过氧化物酶(POD)活性提高,并且诱发了一条新的同工酶带。根据羊草的长势及POD活性分析,确定羊草最佳的磁处理参数是300mT处理,其次是200mT。  相似文献   

17.
The aim of study was to investigate the effects of static magnetic fields [1 mT (miliTesla), 5 and 10 mT] on Saprolegnia parasitica growth, development, and cytotoxicity in the infection of trout eggs in hatcheries under laboratory and industrial conditions. The egg envelope (SEM) structures resulting from infection with and development of S. parasitica are also presented. S. parasitica mycelium was cultured on a microbiological medium SDA in Petri dishes (4 ± 0.2°C, 97% humidity) exposed to a magnetic field and in a control, to assess the mycelium growth rate. Effects of the magnetic field on cytotoxicity of S. parasitica after a 21‐day incubation on SDA medium were analyzed using the colorimetric cytotoxicity test MTT. Eggs of brown trout Salmo trutta were infected with S. parasitica by inoculum and incubated in glass vessels (4 ± 0.2°C) in a magnetic field and a control. The degree of mycelium invasion of the egg envelopes and the percentage of egg mortality were recorded daily thoughout the period of embrionic development. The magnetic field effects on brown trout eggs infected by wild strains of fungus‐like organisms (FLO) in the hatchery (4°C ± 0.1) were also investigated. Changes in the structure of brown trout egg envelopes as a result of infection and development of S. parasitica were examined in a FIB/SEM. The effects of magnetic fields of 5 and 10 mT on slowing the growth of mycelium of S. parasitica in vitro were also observed. Determining biochemical properties of S. parasitica also showed the effects of the magnetic field in differentiating the cytotoxicity. All magnetic field values showed a distinct decrease from medium to low values of S. parasitica cytotoxicity; the most effective reduction was observed at 5 mT. Magnetic fields in all tested levels slowed development of the mycelium on the incubated trout eggs, resulting in a decrease in the number of eggs infected by S. parasitica and thus permitting a greater hatching success. Similar effects were observed in other hatching conditions where eggs were also exposed. No negative effects of magnetic field treatment on the condition of the newly‐hatched larvae were observed. The SEM and FIB (Focused Ion Beam) analyses revealed penetration of S. parasitica via radial canals of the envelope. The magnetic field had no effect on the structure of hyphae or sporangia of S. parasitica, but did affect the growth rate of mycelium on the egg surface.  相似文献   

18.
Chickpea seeds of Pusa 1053 (Mediterranean) and Pusa 256 (native) were magnetoprimed with 100 mT static magnetic field for 1 h to evaluate the effect of magnetopriming on germination of seeds under saline conditions. Enhanced rate of germination and seedling growth parameters (root and shoot length, and vigour indices) under different salinity levels indicated that magnetopriming was more effective in alleviating salinity stress at early seedling stage in Pusa 1053 as compared to Pusa 256. Dynamics of seed water absorption in magnetoprimed seeds showed increased water uptake in Pusa 1053 under non-saline as compared to saline conditions. This could have resulted in faster hydration of enzymes in primed seeds leading to higher rate of germination. Total amylase, protease and dehydrogenase activities were higher in primed seeds as compared to unprimed seeds under both non-saline and saline conditions. Production of superoxide radicals was enhanced in germinating seeds of both the genotypes under salinity irrespective of priming. Increased levels of hydrogen peroxide in germinating magnetoprimed seeds, under both the growing conditions, suggested its role in promotion of germination. Our results showed that magnetopriming of dry seeds of chickpea can be effectively used as a pre-sowing treatment for mitigating adverse effects of salinity at seed germination and early seedling growth.  相似文献   

19.
Little is known about the influence of magnetic fields (MF) on growth of microalgae such as Chlorella vulgaris, which has been consumed as health food for various nutritional and pharmacological effects. This preliminary study investigated whether static MF can modulate the antioxidant system in C. vulgaris by exposing the cells to static MF generated by dual yoke electromagnets with magnetic flux density of 10-50 mT for 12 h. After exposure to 10-35 mT for 12 h, the activity of superoxide dismutases and peroxidase increased significantly compared to control cells. However, a remarkable increase of catalase activity occurred at 45 and 50 mT. The lipid peroxidation of algae cells determined by production of thiobarbituric acid-reactive substances was much increased when exposed to 35, 45, and 50 mT of MF. The scavenging ability of 2,2-diphenyl-1-picrylhydrazyl radical was decreased markedly while there was no variation of total carotenoids content in C. vulgaris cells. Assay of specific growth rate in 72 h cultivation after MF exposure was also conducted. In groups after exposure to 10-35 mT of MF, specific growth rate was significantly increased. These results suggest that 10-35 mT of static MF exposure could promote the growth of C. vulgaris and regulate its antioxidant defense system to protect cells efficiently, which could possibly enhance the growth of C. vulgaris in industrialized cultivation by MF.  相似文献   

20.
Proper priming techniques are among the most important methods for increasing seed germination and seedling growth. Three experiments were conducted to investigate the effects of plant hormone (500 and 1000 mg/L gibberellic acid (GA)), magnetic field (3, 15, 30 mili Tesla (mT)) and laser irradiation at 650 nm (200 mW) on the germination and the growth of Salvia officinalis. We examined the plumule and radical length, plumule and radical fresh weight, plumule and radical dry weight, germination percentage, germination rate and seed vigor. The two concentrations of GA significantly increased seed germination and seedling growth. The magnetic field at 15 mT significantly increased radical length. The effect of laser irradiation was also significant on plumule length, and fresh and dry weight, radicle fresh weight, germination percentage and rate and seed vigor. Such results may be of practical use in the field, especially in arid and semiarid areas, but more research must determine the response of medicinal sage, treated with the priming techniques tested in our experiments, under stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号