首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lateral orbitotomy approach was used to surgically expose the optic nerve in the guinea pig. This approach was excellent for experimental access to the optic nerve with minimal trauma to the eye.  相似文献   

2.
Serotonin-like immunoreactivity in the optic lobes of three insect species   总被引:4,自引:0,他引:4  
The cellular localization of 5-HT in the optic lobes of three insect species was assayed with the use of antibodies raised against 5-HT. In Schistocerca, Periplaneta, and Calliphora all neuropil regions of the optic lobe, the lamina, medulla and lobula, contain 5-HT-immunoreactive varicose fibres in different patterns, like columns and layers. Such fibres also connect the lobula to neuropil in the lateral protocerebrum. In Calliphora also 5-HT-positive fibres of the medulla and lobula plate have projections to the lateral protocerebrum, whereas the origin of the lamina fibres is not certain. In all species the processes displaying 5-HT-like immunoreactivity appear to be derived from a relatively small number of cell bodies, each neuron thus having processes over a large volume of the neuropil of the optic lobe in different layers.  相似文献   

3.
Regeneration of the different components of the optic tract of Rutilus takes place at a variable rate and follows a relatively precise pattern. The first optic centres to be reinnervated belong to the lateral thalamo-pretectal group (5 weeks at 14 degrees C after section of the optic nerve), followed by the anterior optic tectum and lateral geniculate nucleus (8 weeks after section), the central regions of the tectum, the suprachiasmatic nucleus and the nucleus of the basal optic root (10-15 weeks after section), and finally the medial thalamo-pretectal nuclei and the caudal regions of the optic tectum (16-25 weeks after section).  相似文献   

4.
Responses of relay neurons of the dorsal lateral geniculate body to stimulation of area 17 of the visual cortex and the optic chiasma were studied in curarized cats. A high degree of correlation was found between the latent periods of antidromic responses of these neurons to stimulation of the visual cortex and orthodromic responses of the same neurons to stimulation of the optic chiasma (r=0.895; P=0.01). In 9% of cases antidromic unit responses were recorded to stimulation of the optic chiasma, evidence that the optic nerve contains centrifugal fibers. The functional role of the temporal dispersion of the afferent flow in the visual system is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 6, pp. 606–612, November–December, 1978.  相似文献   

5.
The primary visual pathways, in particular those to the lateral geniculate body, of 11 albino and 7 pigmented rabbits, were studied using the method of anterograde labelling with horseradish peroxidase following injection of the tracer into the vitreous body of one eye. A heavy projection to the contralateral dorsal lateral geniculate nucleus was seen in all animals. In both albino and pigmented animals a region devoid of label was present in the medial part of the alpha sector of the nucleus. This region corresponded to a compact, oval or wedge-shaped field of terminal label in the ipsilateral nucleus, which was much heavier in pigmented than in albino rabbits. In the ventral lateral geniculate nucleus, contralateral retinal input was almost entirely confined to the caudal half of the lateral sector of the nucleus, where two laminae of dense terminal label, separated by a less densely labelled area, were oriented parallel to one another and to the optic tract. This bilaminar distribution of retinal afferents to the ventral lateral geniculate nucleus has not been described in previous studies. The ipsilateral projection was to the dorsal part of the lateral sector and was most prominent in pigmented animals. The "intergeniculate leaflet" received a prominent contralateral input in all animals, and a clear ipsilateral input in pigmented animals, which overlapped with the contralateral input. Projections to other primary visual centres (pretectal nuclei, superior colliculus, nuclei of the accessory optic tract) are also described.  相似文献   

6.
Differentiation of the optic lobe anlagen begin in the brain of second instar. Each is an elongated disc of cortical cells placed on the dorsolateral border of each protocerebrum. In the late second instar the disc elongates and its two ends bend inwards which gradually separate from the central region, thus giving three imaginal discs. The protocerebral neuropile extends into these discs and medulla interna and externa are formed. The rudiments of compound eyes (cephalic complex) appear in the early laid larva. These are attached with the brain and pharyngeal wall separately. The posterior portion of cephalic complex (optic bud), after establishing a nervous association with the central optic lobe anlage (lamina ganglionaris), forms the compound eye. Ech optic bud is attached to the brain by a non-nervous stalk. The epiblast cells of the optic bud do not migrate into the brain and the lamina is formed by the proliferation of the central imaginal disc. The reorientation of the optic lobe anlagen starts in the late third instar and the medulla interna divides into two unequal lobes. In 2 day pupa the nerve fibres from the lamina travel into the optic stalk and the optic nerve is formed. The epiblast cells of the optic bud differentiate to form a peripheral epithelial layer which becomes pigmented and gets apposed to the lateral boundary of the brain. The central epiblast cells of the optic bud form several ommatidia. The optic nerve degenerates gradually and various components of the compound eye are formed by the epiblast cells. Chiasm internum is present but chiasm externum is absent.  相似文献   

7.
GAP-43 is an abundant intracellular growth cone protein that can serve as a PKC substrate and regulate calmodulin availability. In mice with targeted disruption of the GAP-43 gene, retinal ganglion cell (RGC) axons fail to progress normally from the optic chiasm into the optic tracts. The underlying cause is unknown but, in principle, can result from either the disruption of guidance mechanisms that mediate axon exit from the midline chiasm region or defects in growth cone signaling required for entry into the lateral diencephalic wall to form the optic tracts. Results here show that, compared to wild-type RGC axons, GAP-43-deficient axons exhibit reduced growth in the presence of lateral diencephalon cell membranes. Reduced growth is not observed when GAP-43-deficient axons are cultured with optic chiasm, cortical, or dorsal midbrain cells. Lateral diencephalon cell conditioned medium inhibits growth of both wild-type and GAP-43-deficient axons to a similar extent and does not affect GAP-43-deficient axons more so. Removal or transplant replacement of the lateral diencephalon optic tract entry zone in GAP-43-deficient embryo preparations results in robust RGC axon exit from the chiasm. Together these data show that RGC axon exit from the midline region does not require GAP-43 function. Instead, GAP-43 appears to mediate RGC axon interaction with guidance cues in the lateral diencephalic wall, suggesting possible involvement of PKC and calmodulin signaling during optic tract formation.  相似文献   

8.
The lateral protocerebrum of the fly's brain is composed of a system of optic glomeruli, the organization of which compares to that of antennal lobe glomeruli. Each optic glomerulus receives converging axon terminals from a unique ensemble of optic lobe output neurons. Glomeruli are interconnected by systems of spiking and nonspiking local interneurons that are morphologically similar to diffuse and polarized local interneurons in the antennal lobes. GABA-like immunoreactive processes richly supply optic glomeruli, which are also invaded by processes originating from the midbrain and subesophageal ganglia. These arrangements support the suggestion that circuits amongst optic glomeruli refine and elaborate visual information carried by optic lobe outputs, relaying data to long-axoned neurons that extend to other parts of the central nervous system including thoracic ganglia. The representation in optic glomeruli of other modalities suggests that gating of visual information by other sensory inputs, a phenomenon documented from the recordings of descending neurons, could occur before the descending neuron dendrites. The present results demonstrate that future studies must consider the roles of other senses in visual processing.  相似文献   

9.
Cubillos S  Lima L 《Amino acids》2006,31(3):325-331
Summary. Goldfish retinal explant outgrowth in the presence of fetal calf serum is stimulated by taurine. In the absence of it, but with glucose in the medium, length of neurites is still elevated by the amino acid. Using the medium in the presence of glucose, but in the absence of fetal calf serum, we explored the effect of optic tectum medium from cultures of them coming from goldfish without crush of the optic nerve or 3, 5, 10, 14 and 20 days after crush. Retinal explants, intact or from goldfish with crush of the optic nerve 10 days prior to starting the culture, were employed in order to measure the possible effect of optic tectum media and the inter action with taurine. In other type of experiments the optic nerve was crushed 1, 2, 4, 7 and 10 days before dissection of the optic tectum, and then co-cultured with intact or 10 days post-crush retinal explants. Optic tectum media produced a time-dependent effect on outgrowth in lesioned retinas with a maximum effect around 5 days after the lesion for the corresponding optic tectum. Taurine, 4 mM, did not further affect the outgrowth in the presence of optic tectum media, but did significantly increase length of neurites either in intact or in post-lesion retinas. Co-culture of optic tectum at different days post-lesion and retinas at 10 days post-lesion increased the outgrowth around 4 days post-lesion, in a preparation resulting in mutual effects of both types of tissues. The addition of taurine in these conditions did not further increase outgrowth, rather inhibited it according to the time after lesion of optic nerve corresponding to the co-cultured optic tectum. The effect of taurine was concentration-dependent, since 0.2 mM was more effective than 2 or 4 mM in the presence of optic tectum with lesion of 2 days. These results demonstrate the time-course of the regeneration processes in the visual system of goldfish, indicating the crucial periods after crush in which the tectum could produce stimulation and later decrease or no effect on outgrowth from the retina. In addition, they are evidences of the interaction between taurine and optic tectum production of time-produced specific agents. The mechanisms underlying these effects are closely related to calcium, as it was demonstrated by the addition of extracellular or intracellular chelators to the medium, which inhibited the effects of the optic tectum and the trophic properties of taurine in this system. The inhibitor of taurine transport, guanidoethylsulfonate, also decreased the stimulatory effects of the optic tectum and of taurine, indicating an interaction of substances produced by the tectum with taurine, and an effect of taurine mediated through its entrance to the cells. Overall, retinal explants outgrowth in the absence of fetal calf serum, the interaction of agents of the optic tectum and taurine modulates outgrowth from the retina, and these effects are mediated by calcium levels and by the levels of intracellular taurine.  相似文献   

10.
Dorsal-ventral (DV) specification in the early optic vesicle plays a crucial role in the proper development of the eye. To address the questions of how DV specification is determined and how it affects fate determination of the optic vesicle, isolated optic vesicles were cultured either in vitro or in ovo. The dorsal and ventral halves of the optic vesicle were fated to develop into retinal pigment epithelium (RPE) and neural retina, respectively, when they were separated from each other and cultured. In optic vesicles treated with collagenase to remove the surrounding tissues, the neuroepithelium gave rise to cRax expression but not Mitf, suggesting that surrounding tissues are necessary for RPE specification. This was also confirmed in in ovo explant cultures. Combination cultures of collagenase-treated optic vesicles with either the dorsal or ventral part of the head indicated that head-derived factors have an important role in the fate determination of the optic vesicle: in the optic vesicles co-cultured with the dorsal part of the head Mitf expression was induced in the neuroepithelium, while the ventral head portion did not have this effect. The dorsal head also suppressed Pax2 expression in the optic vesicle. These observations indicate that factors from the dorsal head portion have important roles in the establishment of DV polarity within the optic vesicle, which in turn induces the patterning and differentiation of the neural retina and pigment epithelium.  相似文献   

11.
Spiral and translation stimuli were used to investigate the response properties of cat AMLS (anteromedial lateral suprasylvian area) neurons to optic flow. The overwhelming majority of cells could be significantly excited by the two modes of stimuli and most responsive cells displayed obvious direction selectivity. It is the first time to find a visual area in mammalian brain preferring rotation stimuli. Two representative hypotheses are discussed here on the neural mechanism of optic flow analysis in visual cortex, and some new viewpoints are proposed to explain the experimental results.  相似文献   

12.
Spiral and translation stimuli were used to investigate the response properties of cat AMLS (anteromedial lateral suprasylvian area) neurons to optic flow. The overwhelming majority of cells could be significantly excited by the two modes of stimuli and most responsive cells displayed obvious direction selectivity. It is the first time to find a visual area in mammalian brain preferring rotation stimuli. Two representative hypotheses are discussed here on the neural mechanism of optic flow analysis in visual cortex, and some new viewpoints are proposed to explain the experimental results.  相似文献   

13.
The neurons of the first optic ganglion (the lamina) in the desert ant, Cataglyphis bicolor, have been studied with the light microscope after Golgi silver impregnation. The different types of retinal and laminal fibres and their configuration are compared with the results obtained in the bee. The first synaptic region in the visual system of the ant lies proximally to the fenestrated layer below the basement membrane and the layer containing the monopolar cell bodies. The synaptic region can be separated into three morphologically different zones: (1) The most distal layer where the short visual fibres end at two different levels. The short visual fibres and some laminal fibres (monopolar cell fibres) also show lateral elements in this region. (2) The second layer appears almost free of branches of retinal and laminal fibres. (3) The most proximal layer, which has a characteristically dense horizontal structure resulting from the lateral elements of long visual, centrifugal, monopolar and tangential fibres. Nine cell axons arising from each ommatidium leave the retina. Six of these are short visual fibres and end at two different levels in the lamina. Three different types of short visual fibres can be distinguished by their different terminal depths and lateral branching pattern. The remaining three fibres, the long visual fibres, terminate in the medulla. They can be distinguished from each other by their lateral elements in the lamina neuropile. The five morphologically different laminal fibre types (axons of the monopolar cells in the lamina) have different shapes and different arborizations at different levels. Tangential, centrifugal and incerta sedis-fibres, which originate either from cell bodies in the cell body layer at the periphery of the outer chiasma or more centrally, terminate in the synaptic region of the lamina. Consideration is given to the clearly demarkated arrangement and length of the branching pattern of retinal and laminal fibres at different levels of the synaptic region of the lamina. In addition, a hypothetical connectivity pattern is discussed.  相似文献   

14.
Fine needle aspiration biopsy of an orbital mass was performed under CT guidance in a nine-year-old boy presenting with rapidly increasing proptosis of the right eye with lateral displacement and no light perception. The cytologic findings consisted of bipolar astrocytes with cytoplasmic fibrillated processes intermingled with Rosenthal fibers. A cytologic diagnosis of juvenile pilocytic astrocytoma was advanced; this was confirmed by subsequent histologic study of the surgical specimen. The differential diagnosis among juvenile pilocytic astrocytoma, neurilemmoma and meningioma of the optic nerve are discussed.  相似文献   

15.
The contribution of the axonal transport to the biosynthesis of myelin phospholipids was investigated in the rabbit optic pathway. A double labeling technique was used. The same animals were injected with one isotope intravitreally and the other intraventricularly. This procedure allows double labeling of the optic nerves, optic tracts, lateral geniculate bodies (LGB), and superior colliculus (SC). The precursors simultaneously injected were: [1-14C]palmitate (15 Ci intravitreally in both eyes or 50 Ci intraventricularly) and [2-3H]glycerol (50 Ci intravitreally in both eyes or 100 Ci intraventricularly). Twenty four hours and 10 days after the injections, myelin was purified from pooled optic nerves and optic tracts as well as from pooled LGBs or SCs. The phospholipids were extracted and then separated by thin-layer chromatography; the specific radioactivity of the various classes of phospholipids was determined. Using both administration routes of14C-or3H-precursors, the distribution of label and specific radioactivity of myelin phospholipids in the retina and in all other optic structures were very similar. Phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine + phosphoinositol were preferentially labeled with both precursors. These results suggest that, in the rabbit optic pathway the phospholipids synthesized in the retinal ganglion cells and transported along the axons, could undergo transaxonal transfer into myelin.  相似文献   

16.
In each optic lobe and optic peduncle of two aquatic beetles viz. Dineutes indicus and Cybister rugulosus the neurosecretory cells are observed with the help of various histochemical techniques. These cells are arranged to form a discrete group. A group in the optic lobe of both species contains about 25 to 30 neurosecretory cells. On the basis of staining properties the neurosecretory cells are classified into A and B types. These cells stain with chrome haematoxylin-phloxine and paraldehyde fuchsin, but do not stain with azan. Histochemically, the neurosecretory material is positive for proteins and shows a negative reaction for 1,2-glycols. The cells show variations in RNA contents in correlation with the state of secretory activity. Axons of the neurosecretory cell group of the optic lobe are observed directed to the optic peduncle. The axonal tract from neurosecretory cells in the optic peduncle runs towards the lateral margin of the brain.  相似文献   

17.
The optic lobe forms a prominent compartment of the Drosophila adult brain that processes visual input from the compound eye. Neurons of the optic lobe are produced during the larval period from two neuroepithelial layers called the outer and inner optic anlage (OOA, IOA). In the early larva, the optic anlagen grow as epithelia by symmetric cell division. Subsequently, neuroepithelial cells (NE) convert into neuroblasts (NB) in a tightly regulated spatio-temporal progression that starts at the edges of the epithelia and gradually move towards its centers. Neuroblasts divide at a much faster pace in an asymmetric mode, producing lineages of neurons that populate the different parts of the optic lobe. In this paper we have reconstructed the complex morphogenesis of the optic lobe during the larval period, and established a role for the Notch and Jak/Stat signaling pathways during the NE-NB conversion. After an early phase of complete overlap in the OOA, signaling activities sort out such that Jak/Stat is active in the lateral OOA which gives rise to the lamina, and Notch remains in the medial cells that form the medulla. During the third instar, a wave front of enhanced Notch activity progressing over the OOA from medial to lateral controls the gradual NE-NB conversion. Neuroepithelial cells at the medial edge of the OOA, shortly prior to becoming neuroblasts, express high levels of Delta, which activates the Notch pathway and thereby maintains the OOA in an epithelial state. Loss of Notch signaling, as well as Jak/Stat signaling, results in a premature NE-NB conversion of the OOA, which in turn has severe effects on optic lobe patterning. Our findings present the Drosophila optic lobe as a useful model to analyze the key signaling mechanisms controlling transitions of progenitor cells from symmetric (growth) to asymmetric (differentiative) divisions.  相似文献   

18.
We recorded visual evoked responses in eight patients with Parkinson's disease, using a depth electrode either at or below the stereotactic target in the ventral part of the globus pallidus internus (GPi), which is located immediately dorsal to the optic tract. Simultaneously, scalp visual evoked potentials (VEPs) were also recorded from a mid-occipital electrode with a mid-frontal reference electrode. A black-and-white checkerboard pattern was phase reversed at 1 Hz; check size was 50 min of arc. Pallidal VEPs to full field stimulation showed an initial positive deflection, with a latency of about 50 ms (P50), followed by a negativity with a mean latency of 80 ms (N80). The mean onset latency of P50 was about 30 ms. P50 and N80 were limited to the ventralmost of the GPi and the ansa lenticularis. Left half field stimulation evoked responses in the right ansa lenticularis region while right half field stimulation did not, and vice versa. These potentials thus seemed to originate posterior to the optic chiasm. The scalp VEPs showed typical triphasic wave forms consisting of N75, P100 and N145. The location of the recording electrode in the ansa lenticularis region did not modify the scalp VEP. These results suggest that P50 and N80 are near-field potentials reflecting the compound action potentials from the optic tract. Therefore, N75 of the scalp VEPs may represent an initial response of the striate cortex but not of the lateral geniculate nucleus.  相似文献   

19.
20.
The role of dying cells in the optic stalk in relation to retinal fiber migration was investigated in the chick embryo. Cell death was analysed at various stages of development by counting pycnotic nuclei and also by the Gomori acid phosphatase reaction, while nerve fibers were visualised by the Bodian method. A wave of cell death, beginning in the neural retina at stage 18 and advancing with time through the stalk towards the diencephalon, occurred simultaneously or slightly prior to differentiation and migration of ganglion cell axons. Cell death stopped and gliogenesis occurred in the stalk after penetration by retinal fibers. Cell death occurred in the stalk even when fiber penetration was prevented by optic cup ablation. In this case, necrosis ensued until almost complete degeneration of the stalk, usually within three days after the operation, and gliogenesis did not occur. As the stalk degenerated, its cells became heavily pigmented. These observations suggest that the onset of cell death in the optic stalk is determined prior to and independently of retinal fiber penetration. On the other hand, cessation of cell death and subsequent gliogenesis occur only in the presence of ingrowing optic fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号