首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Aspergillus awamori K4 β-xylosidase gene (Xaw1) sequence was deduced by sequencing RT-PCR and PCR products. The ORF was 2,412 bp and the predicted peptide was 804 amino acids long, corresponding to a molecular weight of 87,156 Da. The mature protein was 778 amino acids long with a molecular weight of 84,632 Da. A homology search of the amino acid sequence revealed that it was very similar to the Aspergillus niger β-xylosidase gene with only five amino acid differences. K4 β-xylosidase had the same catalytic mechanism as family 3 β-glucosidases, involving Asp in region A. At an early stage in the reaction with xylobiose and xylotriose, the hydrolysis rate was much lower than the transxylosylation rate, decreasing gradually as the substrate concentration increased, whereas the transxylosylation rate increased greatly. Aspergillus awamori K4 β-xylosidase had broad acceptor specificity toward alcohols, hydroxybenzenealcohols, sugar alcohols and disaccharides. A consensus portion involving the hydroxymethyl group of the acceptor was confirmed in the major transfer products 1(4)-O-β-d-xylosyl erythritol, (2-hydroxyl)-phenyl-methyl-β-d-xylopyranoside, 6S-O-β-d-xylosyl maltitol (S: sorbitol residue) and 6G-O-β-d-xylosyl palatinose (G: glucosyl residue). This might suggest that the methylene in the hydroxymethyl group facilitates base-catalyzed hydroxyl group attack of the anomeric center of the xylosyl–enzyme intermediate.  相似文献   

2.
The specificity of the aglycone-binding site of Escherichia coli alpha-xylosidase (YicI), which belongs to glycoside hydrolase family 31, was characterized by examining the enzyme's transxylosylation-catalyzing property. Acceptor specificity and regioselectivity were investigated using various sugars as acceptor substrates and alpha-xylosyl fluoride as the donor substrate. Comparison of the rate of formation of the glycosyl-enzyme intermediate and the transfer product yield using various acceptor substrates showed that glucose is the best complementary acceptor at the aglycone-binding site. YicI preferred aldopyranosyl sugars with an equatorial 4-OH as the acceptor substrate, such as glucose, mannose, and allose, resulting in transfer products. This observation suggests that 4-OH in the acceptor sugar ring made an essential contribution to transxylosylation catalysis. Fructose was also acceptable in the aglycone-binding site, producing two regioisomer transfer products. The percentage yields of transxylosylation products from glucose, mannose, fructose, and allose were 57, 44, 27, and 21%, respectively. The disaccharide transfer products formed by YicI, alpha-D-Xylp-(1-->6)-D-Manp, alpha-D-Xylp-(1-->6)-D-Fruf, and alpha-d-Xylp-(1-->3)-D-Frup, are novel oligosaccharides that have not been reported previously. In the transxylosylation to cello-oligosaccharides, YicI transferred a xylosyl moiety exclusively to a nonreducing terminal glucose residue by alpha-1,6-xylosidic linkages. Of the transxylosylation products, alpha-d-Xylp-(1-->6)-D-Manp and alpha-d-Xylp-(1-->6)-D-Fruf inhibited intestinal alpha-glucosidases.  相似文献   

3.
The gene coding for beta-xylosidase, bxl1, has been cloned from the thermophilic filamentous fungus, Talaromyces emersonii. This is the first report of a hemicellulase gene from this novel source. At the genomic level, bxl1 consists of an open reading frame of 2388 nucleotides with no introns that encodes a putative protein of 796 amino acids. The bxl1 translation product contains a signal peptide of 21 amino acids that yields a mature protein of 775 amino acids, with a predicted molecular mass of 86.8 kDa. The deduced amino acid sequence of bxl1 exhibits considerable homology with the primary structures of the Aspergillus niger, Aspergillus nidulans, Aspergillus oryzae, and Trichoderma reesei beta-xylosidase gene products, and with some beta-glucosidases, all of which have been classified as Family 3 glycosyl hydrolases. Northern blot analysis of the bxl1 gene indicates that it is induced by xylan and methyl-beta-D-xylopyranoside. D-Xylose induced expression of bxl1 but was shown to repress induction of the gene at high concentrations. The presence of six CreA binding sites in the upstream regulatory sequence (URS) of the bxl1 gene indicates that the observed repression by D-glucose may be mediated, at least partly, by this catabolite repressor.  相似文献   

4.
The effect of different amino acids on the hemicellulase synthesis by the fungus Aspergillus awamori 16-4E was investigated. The favorable influence of beta-alanine on the enzyme synthesis was demonstrated. Quantitative changes of beta-alanine and glutamic acid in the cell of Asp. awamori 16-4E were followed during the fungal development.  相似文献   

5.
Aspergillus awamori K4 β-xylosidase has broad acceptor specificity. It has been used to synthesize a sugar fatty acid ester via its transxylosylation activity. One xylosyl residue was initially transferred to hexamethylene glycol as a linker with a yield of 0.36 g/g xylobiose. Linoleic acid was subsequently linked to one terminal hydroxyl side of the transfer product hydroxyhexyl xyloside through an esterification reaction catalyzed by a lipase. The synthesis of hexyl linoleoyl xyloside was confirmed by TOF-MS analysis. The binding with a linker improved the esterification reaction because of the hydrophobic hexamethylene chain and also prevented steric hindrance by the xylosyl residue. This sugar fatty acid ester synthesis method using transglycosylation should facilitate the production of emulsifiers or surfactants with various functions.  相似文献   

6.
Complementary DNAs encoding alpha-amylases (Amyl I, Amyl III) and glucoamylase (GA I) were cloned from Aspergillus awamori KT-11 and their nucleotide sequences were determined. The sequence of Amyl III that was a raw starch digesting alpha-amylase was found to consist of a 1,902 bp open reading frame encoding 634 amino acids. The signal peptide of the enzyme was composed of 21 amino acids. On the other hand, the sequence of Amyl I, which cannot act on raw starch, consisted of a 1,500 bp ORF encoding 499 amino acids. The signal peptide of the enzyme was composed of 21 amino acids. The sequence of GA I consisted of a 1,920 bp ORF that encoded 639 amino acids. The signal peptide was composed of 24 amino acids. The amino acid sequence of Amyl III from the N-terminus to the amino acid number 499 showed 63.3% homology with Amyl I. However, the amino acid sequence from the amino acid number 501 to C-terminus, including the raw-starch-affinity site and the TS region rich in threonine and serine, showed 66.9% homology with GA I.  相似文献   

7.
用重叠PCR合成植物甜蛋白brazzein基因   总被引:3,自引:0,他引:3  
陈波 《生物技术》2007,17(4):43-45
目的:为在泡盛曲霉(Aspergillus awamori)中进行表达,采用重叠PCR合成了植物甜蛋白brazzein基因。方法:根据非洲热带植物Pentadiplandra brazzeana产生的天然甜蛋白brazzein的氨基酸序列及泡盛曲霉糖化酶基因glaA的密码子偏爱性,设计并化学合成了2对3’-端互补的寡聚核苷酸,通过PCR延伸获得2条末端有部分重叠的双链核苷酸片段,再通过重叠PCR扩增,合成了用于泡盛曲霉表达的植物甜蛋白brazzein基因。结果:将brazzein基因克隆到pMD18-T载体,随机挑取6个重组质粒测序,结果1个重组质粒有连续4个碱基缺失,3个重组质粒各有1个碱基缺失,2个重组质粒携带的brazzein基因核苷酸序列完全正确。结论:合成的brazzein基因大小162 bp,编码54个氨基酸,推断的氨基酸序列与Pentadiplandra brazzeana产生的天然brazzein完全一致,表明植物甜蛋白brazzein基因成功合成。  相似文献   

8.
A chromosomal DNA fragment with a length of 2,025 bp, carrying the structural gene coding for glucoamylase in Thermoanaerobacterium thermosaccharolyticum, was cloned and sequenced. It coded for 695 amino acids, representing a polypeptide with a predicted molecular mass of 77.5 kDa. The deduced amino acid sequence exhibited high homologies with the glucoamylase sequence of another bacterial glucoamylase (Clostridium sp. G0005) and with fungal glucoamylases. The catalytic domain (amino acids 271 to 695) of the T. thermosaccharolyticum enzyme shared a high degree of similarity (five conserved regions) with the catalytic domain of Aspergillus awamori glucoamylase. By comparing the secondary structure of the sequence of the catalytic domain of the T. thermosaccharolyticum enzyme with that of glucoamylase from A. awamori, and on the basis of X-ray crystallographic data available for the A. awamori enzyme, it turned out that, most probably, both enzymes have a catalytic domain organized into an "(alpha/alpha)(6)-barrel" and an overall size and shape that is very similar. These findings confirm and extend our working model for the macromolecular architecture of the T. thermosaccharolyticum glucoamylase obtained, in earlier experiments, by electron microscopy of negatively stained isolated enzyme molecules. Antibodies for an enzyme-specific peptide located near the active site were successfully applied for inhibition studies of enzyme activity and for electron microscopic epitope mapping. A study comparing the site of attachment of this kind of antibody to the T. thermosaccharolyticum glucoamylase molecule with the expected attachment site as deduced from the A. awamori enzyme structure confirmed the close similarity of both glucoamylases regarding the macromolecular architecture of that part of the enzyme carrying the catalytic center, though helices H9, H10, and H11 in peripheral parts of the A. awamori enzyme are missing in the T. thermosaccharolyticum enzyme.  相似文献   

9.
Glucansucrase or glucosyltransferase (GTF) enzymes of lactic acid bacteria display high sequence similarity but catalyze synthesis of different alpha-glucans (e.g., dextran, mutan, alternan, and reuteran) from sucrose. The variations in glucosidic linkage specificity observed in products of different glucansucrase enzymes appear to be based on relatively small differences in amino acid sequences in their sugar-binding acceptor subsites. This notion was derived from mutagenesis of amino acids of GTFA (reuteransucrase) from Lactobacillus reuteri strain 121 putatively involved in acceptor substrate binding. A triple amino acid mutation (N1134S:N1135E:S1136V) in a region immediately next to the catalytic Asp1133 (putative transition state stabilizing residue) converted GTFA from a mainly alpha-(1-->4) ( approximately 45%, reuteran) to a mainly alpha-(1-->6) ( approximately 80%, dextran) synthesizing enzyme. The subsequent introduction of mutation P1026V:I1029V, involving two residues located in a region next to the catalytic Asp1024 (nucleophile), resulted in synthesis of an alpha-glucan containing only a very small percentage of alpha-(1-->4) glucosidic linkages ( approximately 5%) and a further increased percentage of alpha-(1-->6) glucosidic linkages ( approximately 85%). This changed glucosidic linkage specificity was also observed in the oligosaccharide products synthesized by the different mutant GTFA enzymes from (iso)maltose and sucrose. Amino acids crucial for glucosidic linkage type specificity of reuteransucrase have been identified in this report. The data show that a combination of mutations in different regions of GTF enzymes influences the nature of both the glucan and oligosaccharide products. The amino acids involved most likely contribute to sugar-binding acceptor subsites in glucansucrase enzymes.  相似文献   

10.
Aspergillus awamori BTMFW032, isolated from sea water, produced tannase as extracellular enzyme under submerged culture conditions. Enzyme with a specific activity of 2761.89 IU/mg protein, a final yield of 0.51 %, and a purification fold of 6.32 was obtained after purification to homogeneity by ultrafiltration and gel filtration. SDS-PAGE analyses under non- reducing and reducing conditions yielded a single band of 230 kDa and 37.8 kDa, respectively, indicating presence of six identical monomers. pI of 4.4 and 8.02 % carbohydrate content in the enzyme were observed. Optimal temperature was 30oC, although the enzyme was active at 5-80 oC. Two pH optima, pH 2 and pH 8, were recorded and the enzyme was stable only at pH 2.0 for 24 h. Methylgallate recorded maximal affinity and K(m) and V(max) were recorded, respectively, as 1.9 X 10?3 M and 830 micronmol/min. Impact of several metal salts, solvents, surfactants, and typical enzyme inhibitors on tannase activity were determined to establish the novelty of the enzyme. Gene encoding tannase isolated from A. awamori is 1.232 kb and nucleic acid sequence analysis revealed an open reading frame consisting of 1122 bp (374 amino acids) of one stretch in -1 strand. In-silico analyses of gene sequences and comparison with reported sequences of other species of Aspergillus indicated that the acidophilic tannase from marine A. awamori is differs from that of other reported species.  相似文献   

11.
A culture filtrate of Bacillus sp. KT12 was used to prepare polyphenyl beta-oligoxylosides from xylan and polyphenols in a one-step reaction. One oligoxyloside transfer enzyme was purified from multiple xylanolytic enzymes in the culture filtrate. N-terminal amino acid sequence determination classified the enzyme as a glycosyl hydrolase family 11 (endo-xylanase). The xylanolytic enzyme activities could be markedly altered; its hydrolytic activity was almost entirely inhibited at acidic pH, whereas near constant transxylosylation activity was observed at pH 4-11. Further, metal ions activated transxylosylation and almost completely inhibited hydrolysis. The enzyme specifically induced a beta-xylosyl transfer reaction to acceptor molecules, such as divalent and trivalent phenolic hydroxyl groups, and displayed no activity toward alcoholic compounds. The Bacillus sp. KT12 xylanolytic enzyme was a suitable enzyme for the synthesis of polyphenyl beta-oligoxylosides.  相似文献   

12.
A gene encoding a dextransucrase (dsrBCB4) that synthesizes only alpha-1,6-linked dextran was cloned from Leuconostoc mesenteroides B-1299CB4. The coding region consisted of an open reading frame (ORF) of 4,395 bp that coded a 1,465-amino-acids protein with a molecular mass 163,581 Da. The expressed recombinant DSRBCB4 (rDSRBCB4) synthesized oligosaccharides in the presence maltose or isomaltose as an acceptor, plus the products included alpha-1,6-linked glucosyl residues in addition to the maltosyl or isomaltosyl residue. Alignments of the amino acid sequence of DSRBCB4 with glucansucrases from Streptococcus and Leuconostoc identified conserved amino acid residues in the catalytic core that are critical for enzyme activity. The mutants D530N, E568Q, and D641N displayed a 98- to 10,000-fold reduction of total enzyme activity.  相似文献   

13.
The amplicon encoding dextransucrase DSR-F from Leuconostoc citreum B/110-1-2, a novel sucrose glucosyltransferase (GTF)-specific for α-1,6 and α-1,3 glucosidic bond synthesis, with α-1,4 branching was cloned, sequenced, and expressed into Escherichia coli JM109. Recombinant enzyme catalyzed oligosaccharides synthesis from sucrose as donor and maltose acceptor. The dsrF gene encodes for a protein (DSR-F) of 1,528 amino acids, with a theoretical molecular mass of 170447.72 Da (~170 kDa). From amino acid sequence comparison, it appears that DSR-F possesses the same domains as those described for GTFs. However, the variable region is longer than in other GTFs (by 100 amino acids) and two APY repeats (a 79 residue long motif with a high number of conserved glycine and aromatic residues, characterized by the presence of the three consecutive residues Ala, Pro, and Tyr) were identified in the glucan binding domain. The DSR-F catalytic domain possesses the catalytic triad involved in the glucosyl enzyme formation. The amino acid sequence of this domain shares a 56% identity with catalytic domain of the alternansucrase ASR from L. citreum NRRL B-1355 and with the catalytic domain of a putative alternansucrase sequence found in the genome of L. citreum KM20. A truncated active variant DSR-F-∆SP-∆GBD of 1,251 amino acids, with a molecular mass of 145 544 Da (~145 kDa), was obtained.  相似文献   

14.
The full-length cDNA of a phospholipid transfer protein (PLTP) was isolated from Aspergillus oryzae by a RACE-PCR procedure using degenerated primer pool selected from the N-terminal sequence of the purified phosphatidylinositol/phosphatidylglycerol transfer protein (PG/PI-TP). The cDNA encodes a 173 amino acid protein of 18823 Da. The deduced amino acid sequence from position 38 to 67 is 100% identical to the N-terminal sequence (first 30 amino acids) of the purified PG/PI-TP. This amino acid sequence is preceded by a leader peptide of 37 amino acids which is predicted to be composed of a signal peptide of 21 amino acids followed by an extra-sequence of 16 amino acids, or a membrane anchor protein signal (amino acid 5-29). This strongly suggests that the PG/PI-TP is a targeted protein. The deduced mature protein is 138 amino acids long with a predicted molecular mass of 14933 Da. Comparison of the deduced PG/PI-TP sequence with other polypeptide sequences available in databases revealed a homology with a protein deduced from an open reading frame coding for an unknown protein in Saccharomyces cerevisiae (36% identity and 57% similarity). Apart from this homology, the PG/PI-TP is unique and specific to the filamentous fungi on the basis of comparison of PLTP protein sequences. Northern blot analysis of RNA isolated from A. oryzae cultures grown on glucose or glucose supplemented with phospholipids suggests that the PG/PI-TP is transcribed by only one RNA species and allows us to show that expression of the protein is regulated at the messenger RNA level.  相似文献   

15.
A new Volvariella volvacea gene encoding an acetyl xylan esterase (designated as Vvaxe1) was cloned and expressed in Pichia pastoris. The cDNA contained an ORF of 1047 bp encoding 349 amino acids with a calculated mass of 39 990 Da. VvAXE1 is a modular enzyme consisting of an N-terminal signal peptide, a catalytic domain, and a cellulose-binding domain. The amino acid sequence of the enzyme exhibited a high degree of similarity to cinnamoyl esterase B from Penicillium funiculosum, and acetyl xylan esterases from Aspergillus oryzae, Penicillium purpurogenum, and Aspergillus ficuum. Recombinant acetyl xylan esterase released acetate from several acetylated substrates including beta-d-xylose tetraacetate and acetylated xylan. No activity was detectable on p-nitrophenyl acetate. Enzyme-catalyzed hydrolysis of 4-methylumbelliferyl acetate was maximal at pH 8.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 307.7 microM and a V(max) value of 24 733 IU micromol(-1) protein. ReAXE1 also exhibited a capacity to bind to Avicel and H(3)PO(4) acid-swollen cellulose.  相似文献   

16.
A growth medium was developed for maximal production in batch culture of extracellular xylanase and beta-xylosidase by Aspergillus awamori CMI 142717 and a mutant (AANTG 43) derived from the wild-type strain. The optimum pH for the production of xylanase and beta-xylosidase was 4.0. The best temperature of xylanase production was 30 degrees C; 35 degrees C was optimal for beta-xylosidase. Protease production was never completely suppressed under any of the conditions tested. However, protease titre was 3.5-fold less than the control in medium in which proteose peptone and yeast extract were omitted: the level of xylanase was not affected (8.6 U mL(-1)) but beta-xylosidase titre was increased 4.7-fold to 1.5 U mL(-1). When corn steep liquor was used as the sole nitrogen source, xylanse and beta-xylosidase titres were further increased by 1.5- and 1.9-fold, respectively. Of the carbon sources investigated, ball-milled oat straw or oat spelt xylan produced the highest titres of xylanse and beta-xylosidase. None of the soluble carbon sources investigated produced the high titres of xylanase or beta-xylosidase induced by either oat straw for xylanse and beta-xylosidase was 2% and the optimum spore inoculum was between 10(6) and 10(7) spores/mL(-1) final concentration. The level of xylanse activity obtained in the culture filtrates of the mutant was a remarkable 820 U mL(-1) when the reducing sugar released was measured by the dinitrosalicylic acid method. This enzyme titre would appear to be the highest reported so far. The xylanases system contained the correct balance of enzymes to effect extensive hydrolysis of oat spelt xylan. The protease titre was very low.  相似文献   

17.
Molecular cloning of the ecotin gene in Escherichia coli   总被引:2,自引:0,他引:2  
The nucleotide sequence of a 876 bp region in E. coli chromosome that encodes Ecotin was determined. The proposed coding sequence for Ecotin is 486 nucleotides long, which would encode a protein consisting of 162 amino acids with a calculated molecular weight of 18,192 Da. The deduced primary sequence of Ecotin includes a 20-residue signal sequence, cleavage of which would give rise to a mature protein with a molecular weight of 16,099 Da. Ecotin does not contain any consensus reactive site sequences of known serine protease inhibitor families, suggesting that Ecotin is a novel inhibitor.  相似文献   

18.
19.
A polygalacturonase gene of Aspergillus awamori IFO 4033 was cloned by genomic Southern hybridization with a probe of a DNA fragment synthesized by PCR. This was done using primers constructed based on the N-terminal amino acid sequence of a polygalacturonase, protopectinase-AS, produced by the strain and the consensus internal amino acid sequence of fungal polygalacturonases. The cloned polygalacturonase gene, containing an ORF, encodes 362 amino acids, including a 52-bp intron. It contains the consensus nucleotide sequence of PacC binding sites, and its expression was appeared to be regulated by ambient pH. After the intron was excised, the cloned gene was inserted into an expression plasmid for yeast, pMA91, and introduced into Saccharomyces cerevisiae to be expressed. The expressed gene product was purified to a homogeneous preparation, and this confirmed that the polygalacturonase produced was the product of the cloned gene.  相似文献   

20.
A genomic copy of the gene coding for chitosanase (csnA) was isolated from Aspergillus oryzae IAM 2660. A. oryzae csnA contains an open reading frame that encodes a polypeptide of 245 amino acids with a calculated molecular mass of 26,500 Da. The deduced amino acid sequence of A. oryzae csnA indicates extensive similarities to those of other fungal chitosanases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号