首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutation of the binding site for Cbl (Tyr1045) in the EGF receptor (EGFR) results in impaired ubiquitination but does not affect EGFR internalization. However, the Y1045F mutation resulted in strongly decreased degradation of the EGFR, as well as efficient recycling of EGFR to the plasma membrane. Significantly, more wild-type EGFR than Y1045F EGFR was found localizing to multivesicular late endosomes. Ubiquitination of the EGFR was in HeLa cells inhibited both upon overexpressing the N-terminal part of Cbl and upon overexpressing a double mutant Grb2 incapable of interacting with Cbl and thereby being incapable of indirectly recruiting Cbl to the EGFR. Collectively, these data suggest that the ubiquitination resulting from direct binding of Cbl to pTyr1045 of the EGFR is critical for lysosomal sorting of the EGFR in contrast to ubiquitination resulting from Grb2-mediated binding of Cbl to the EGFR.  相似文献   

2.
Upon ligand binding, epidermal growth factor (EGF) receptor (R) autophosphorylates on COOH-terminal tyrosines, generating docking sites for signaling partners that stimulate proliferation, restitution, and chemotaxis. Specificity for individual EGFR tyrosines in cellular responses has been hypothesized but not well documented. Here we tested the requirement for particular tyrosines, and associated downstream pathways, in mouse colon epithelial cell chemotactic migration. We compared these requirements to those for the phenotypically distinct restitution (wound healing) migration. Wild-type, Y992/1173F, Y1045F, Y1068F, and Y1086F EGFR constructs were expressed in EGFR(-/-) cells; EGF-induced chemotaxis or restitution were determined by Boyden chamber or modified scratch wound assay, respectively. Pharmacological inhibitors of p38, phospholipase C (PLC), Src, MEK, JNK/SAPK, phosphatidylinositol 3-kinase (PI 3-kinase), and protein kinase C (PKC) were used to block EGF-stimulated signaling. Pathway activation was determined by immunoblot analysis. Unlike wild-type EGFR, Y992/1173F and Y1086F EGFR did not stimulate colon epithelial cell chemotaxis toward EGF; Y1045F and Y1068F EGFR partially stimulated chemotaxis. Only wild-type EGFR promoted colonocyte restitution. Inhibition of p38, PLC, and Src, or Grb2 knockdown, blocked chemotaxis; JNK, PI 3-kinase, and PKC inhibitors or c-Cbl knockdown blocked restitution but not chemotaxis. All four EGFR mutants stimulated downstream signaling in response to EGF, but Y992/1173F EGFR was partially defective in PLCγ activation whereas both Y1068F and Y1086F EGFR failed to activate Src. We conclude that specific EGFR tyrosines play key roles in determining cellular responses to ligand. Chemotaxis and restitution, which have different migration phenotypes and physiological consequences, have overlapping but not identical EGFR signaling requirements.  相似文献   

3.
The precise role of Cbl in epidermal growth factor (EGF) receptor (EGFR) endocytosis and trafficking remains to be fully uncovered. Here, we showed that mutant EGFR1044, which was truncated after residue 1044, did not associate with c-Cbl and was not ubiquitinated initially in response to EGF but was internalized with kinetics similar to those of wild-type EGFR. This finding indicates that c-Cbl-mediated ubiquitination is not required for EGF-induced EGFR endocytosis. We also showed that the previously identified internalization-deficient mutant receptor EGFR1010LL/AA bound to c-Cbl and was fully ubiquitinated in response to EGF, which indicates that c-Cbl binding and ubiquitination are not sufficient for EGFR internalization. We next investigated EGFR trafficking following EGFR internalization. We found that c-Cbl disassociation from EGFR occurred well in advance of EGFR degradation and that this event was concurrent with the selective dephosphorylation of EGFR at Y1045. This finding suggests that once EGFR is ubiquitinated, continual Cbl association is not required for EGFR degradation. Because EGFR1044 is ubiquitinated and degraded similarly to wild-type EGFR, we examined the role of another prominent Cbl homologue, Cbl-b, and found that Cbl-b was associated with both EGFR and EGFR1044. Further study showed that Cbl-b bound to EGFR at two regions: one in the C-terminal direction from residue 1044 and one in the N-terminal direction from residue 958. Moreover, Cbl-b association with EGFR rose markedly following a decrease in c-Cbl association, corresponding to a second peak of EGFR ubiquitination occurring later in EGFR trafficking. Using RNA interference to knock down both c-Cbl and Cbl-b, we were able to abolish EGFR downregulation. This knockdown had no affect on the rate of EGF-induced EGFR internalization. We found that the two Cbls accounted for total receptor ubiquitination and that while c-Cbl and Cbl-b are each alone sufficient to effect EGFR degradation, both are involved in the physiological, EGF-mediated process of receptor downregulation. Furthermore, these data ultimately reveal a previously unacknowledged temporal interplay of two major Cbl homologues with the trafficking of EGFR.  相似文献   

4.
Tyrphostin AG1478 is known as a specific and reversible inhibitor of TK (tyrosine kinase) activity of the EGFR [EGF (epidermal growth factor) receptor]. It is attractive as an anticancer agent for cancers with elevated EGFR TK levels. However, post‐application effects of AG1478 are not well studied. We have analysed EGFR phosphorylation after termination of AG1478 application using human epidermoid carcinoma A431 cells. It was found that AG1478 inhibitory action is fast, but not fully reversible: removal of tyrphostin resulted in incomplete restoration of the overall EGFR phosphorylation. Analysing the state of two individual autophosphorylation sites of internalized EGFR, Tyr1045 and Tyr1173, we demonstrated that phosphorylation of Tyr1173 involved in stimulation of the MAPK (mitogen‐activated protein kinase) cascade was restored much more efficiently than that in position 1045, which binds the ubiquitin ligase c‐Cbl and is necessary for targeting the receptor for lysosomal degradation. c‐Cbl association with EGFR abolished by AG1478 was not reestablished after tyrphostin cessation. As a consequence, ubiquitination‐dependent EGFR delivery to lysosomes was blocked, while phosphorylation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) was even increased. Thus, after termination of AG1478, the intracellular level of the inhibitor can be reached at which mitogenic signalling will be restored, whereas the EGFR negative regulation due to lysosomal degradation will not.  相似文献   

5.
Poor downregulation of ErbB receptors is associated with enhanced downstream signaling and tumorigenesis. It has been suggested that poor downregulation of ErbB-2, -3 and -4 receptors when compared to ErbB1 is due to decreased recruitment of Cbl E3 ligase proteins. However, a highly conserved Cbl binding site is not only present in ErbB1/EGFR (FLQRpY1045SSDP), but also in ErbB2 (PLQRpY1091SEDP) and ErbB4 (STQRpY1103SADP). We therefore replaced the ErbB1 Cbl binding site by that of ErbB2 and ErbB4. Whereas retrovirally infected NIH3T3 cells containing the EGFR Y1045F mutation showed dramatically impaired Cbl recruitment, EGFR ubiquitination and delayed EGFR degradation, replacement of the EGFR Cbl binding site by that of ErbB2 or ErbB4 did not affect Cbl recruitment, receptor-ubiquitination, -degradation, -downregulation or ligand degradation. We conclude that poor downregulation of ErbB2 and ErbB4 receptors is not due to sequence variations in the Cbl binding site of these receptors.  相似文献   

6.
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is an endosomal protein essential for the efficient sorting of activated growth factor receptors into the lysosomal degradation pathway. Hrs undergoes ligand-induced tyrosine phosphorylation on residues Y329 and Y334 downstream of epidermal growth factor receptor (EGFR) activation. It has been difficult to investigate the functional roles of phosphoHrs, as only a small proportion of the cellular Hrs pool is detectably phosphorylated. Using an HEK 293 model system, we found that ectopic expression of the protein Cbl enhances Hrs ubiquitination and increases Hrs phosphorylation following cell stimulation with EGF. We exploited Cbl's expansion of the phosphoHrs pool to determine whether Hrs tyrosine phosphorylation controls EGFR fate. In structure-function studies of Cbl and EGFR mutants, the level of Hrs phosphorylation and rapidity of apparent Hrs dephosphorylation correlated directly with EGFR degradation. Differential expression of wild-type versus Y329,334F mutant Hrs in Hrs-depleted cells revealed that one or both tyrosines regulate ligand-dependent Hrs degradation, as well as EGFR degradation. By modulating Hrs ubiquitination, phosphorylation, and protein levels, Cbl may control the composition of the endosomal sorting machinery and its ability to target EGFR for lysosomal degradation.  相似文献   

7.
Tumor necrosis factor (TNF) and epidermal growth factor (EGF) are key regulators in the intricate balance maintaining intestinal homeostasis. Previous work from our laboratory shows that TNF attenuates ligand-driven EGF receptor (EGFR) phosphorylation in intestinal epithelial cells. To identify the mechanisms underlying this effect, we examined EGFR phosphorylation in cells lacking individual TNF receptors. TNF attenuated EGF-stimulated EGFR phosphorylation in wild-type and TNFR2(-/-), but not TNFR1(-/-), mouse colon epithelial (MCE) cells. Reexpression of wild-type TNFR1 in TNFR1(-/-) MCE cells rescued TNF-induced EGFR inhibition, but expression of TNFR1 deletion mutant constructs lacking the death domain (DD) of TNFR1 did not, implicating this domain in EGFR downregulation. Blockade of p38 MAPK, but not MEK, activation of ERK rescued EGF-stimulated phosphorylation in the presence of TNF, consistent with the ability of TNFR1 to stimulate p38 phosphorylation. TNF promoted p38-dependent EGFR internalization in MCE cells, suggesting that desensitization is achieved by reducing receptor accessible to ligand. Taken together, these data indicate that TNF activates TNFR1 by DD- and p38-dependent mechanisms to promote EGFR internalization, with potential impact on EGF-induced proliferation and migration key processes that promote healing in inflammatory intestinal diseases.  相似文献   

8.
Gefitinib-sensitive nonsmall cell lung cancers (NSCLC) are characterized by somatic mutations in the kinase domain of epidermal growth factor receptor (EGFR). The mutant EGFR forms are reported to mediate characteristic signal transduction pathways that are different from those mediated by the wild-type EGFR and are involved in transformation in vivo. We have examined signal transduction pathways initiated from a frequently identified gefitinib-sensitizing mutant EGFR lacking residues 746-750 by employing a mouse fibroblast cell line that is free of endogenous EGFR and transiently transfected COS-7 cells. Upon EGF stimulation, the deletion-mutant EGFR mediated prolonged downstream signals. The analysis of the phosphotyrosine patterns of the receptor revealed that the deletion-mutant EGFR lacked phosphorylation at tyrosine residue 1045, which is the major binding site of Cbl. The EGF-induced endocytosis of the deletion-mutant EGFR was impaired. The ubiquitination and downregulation of the deletion-mutant EGFR were also reduced. On the other hand, another mutant, EGFR, possessing a L858R substitution, exhibited phosphorylation at 1045 and its downstream signalings were not prolonged. These data suggest that the signal transduction pathways initiated from these mutant forms are different, and that impaired endocytosis might be responsible for the prolonged signals mediated by the deletion-mutant EGFR.  相似文献   

9.
Overexpression and poor downregulation of ErbB receptor tyrosine kinases are associated with enhanced signaling and tumorigenesis. Attenuation of EGF-receptor (EGFR) signaling is mediated by endocytosis and ubiquitination by the E3-ligase Cbl. En route to lysosomes, but before incorporation of the EGFR into internal vesicles of MVBs, the EGFR undergoes Usp8-mediated deubiquitination. ErbB2 displays enhanced recycling back to the cell surface, and therefore we hypothesized that Usp8 is not part of the ErbB2 trafficking pathway. Here, we demonstrate, in the context of a chimeric EGFR-ErbB2 receptor, that (i) EGF induces pY1091 Cbl binding site-dependent K63-polyubiquitination of EGFR-ErbB2, (ii) Cbl is tyrosine phosphorylated upon stimulation of EGFR-ErbB2 wt and Y1091F mutant receptor, (iii) EGF-induced activation of EGFR-ErbB2 induces Usp8 tyrosine phosphorylation, and (iv) ubiquitination of the EGFR-ErbB2 wt and Y1091F mutant is enhanced upon coexpression of catalytically inactive Usp8-C748A in the presence and absence of EGF. We further show that Usp8 tyrosine phosphorylation upon stimulation of EGFR-ErbB2 is (a) independent of Y1091, (b) dependent on Src- and EGFR-ErbB2-kinase activity, (c) enhanced upon coexpression of Usp8-C748A, and (d) partly dependent on the Microtubule Interacting and Transport (MIT) domain of Usp8. Our findings demonstrate that Usp8 is part of the ErbB2 endosomal trafficking pathway.  相似文献   

10.
The mechanism of UV-radiation-induced EGF receptor (EGFR) internalization remains to be established. In the present study, we found UV-radiation-mediated internalization of the EGFR to be dependent on the cytoplasmic carboxy-terminal region. UV radiation was unable to induce internalization of EGFR carboxy-terminal truncation mutants where all or four of the five major autophosphorylation sites were missing (963- and 1028-EGFR, respectively). Mutational removal of serine residues 1046, 1047, 1057 and 1142 within the carboxy-terminal receptor region was also sufficient to abolish UV-radiation-induced internalization of the EGFR. Furthermore, the UV-radiation-induced internalization was abrogated for an EGFR mutated in tyrosine 1045 (Y1045F), the major c-Cbl binding site. However, UV radiation did not induce phosphorylation at tyrosine 1045, in contrast to the prominent phosphorylation induced by EGF. Our results suggest a mechanism for UV-radiation-induced internalization of EGFR involving a conformational change that is dependent on structural elements formed by specific serine and tyrosine residues in the carboxy-terminal domain.  相似文献   

11.
Studies on the differential routing of internalized epidermal growth factor receptors (EGFRs) induced by EGF, TGF alpha, and the superagonist EGF-TGF alpha chimera E4T suggested a correlation between receptor recycling and their mitogenic potency. EGFR sorting to lysosomes depends on its kinase domain and its ubiquitination by Cbl proteins. Proteasomes have also been proposed to regulate EGFR degradation, but the underlying mechanism remains obscure. Here we evaluated EGFR activation, Cbl recruitment, EGFR ubiquitination and degradation in response to EGF, TGF alpha, and E4T. We also determined the fate of activated EGFRs and Cbl proteins by using v-ATPase (bafilomycin A1) and proteasome (lactacystin) inhibitors. Our results demonstrate that E4T and TGF alpha provoke decreased Cbl recruitment, EGFR ubiquitination and EGFR degradation compared with EGF. Furthermore, bafilomycin treatment blocks EGFR but not c-Cbl degradation. In contrast, lactacystin treatment blocks EGF-induced c-Cbl degradation but does not block EGFR degradation, even though lactacystin causes a minor delay in EGFR degradation. Surprisingly, even though bafilomycin completely blocks EGFR degradation, it does not prevent EGFR de-ubiquitination upon prolonged EGF stimulation. Strikingly, when combined with bafilomycin, lactacystin treatment stabilizes the ubiquitinated EGFR and prevents its de-ubiquitination. We conclude that the enhanced EGFR recycling that has been observed in HER-14 cells following TGF alpha or E4T stimulation correlates with decreased EGFR ubiquitination and EGFR degradation, and that proteasomal activity is required for de-ubiquitination of the EGFR prior to its lysosomal degradation.  相似文献   

12.
Little is known about lung carcinoma epidermal growth factor (EGF) kinase pathway signaling within the context of the tissue microenvironment. We quantitatively profiled the phosphorylation and abundance of signal pathway proteins relevant to the EGF receptor within laser capture microdissected untreated, human non-small cell lung cancer (NSCLC) (n = 25) of known epidermal growth factor receptor (EGFR) tyrosine kinase domain mutation status. We measured six phosphorylation sites on EGFR to evaluate whether EGFR mutation status in vivo was associated with the coordinated phosphorylation of specific multiple phosphorylation sites on the EGFR and downstream proteins. Reverse phase protein array quantitation of NSCLC revealed simultaneous increased phosphorylation of EGFR residues Tyr-1148 (p < 0.044) and Tyr-1068 (p < 0.026) and decreased phosphorylation of EGFR Tyr-1045 (p < 0.002), HER2 Tyr-1248 (p < 0.015), IRS-1 Ser-612 (p < 0.001), and SMAD Ser-465/467 (p < 0.011) across all classes of mutated EGFR patient samples compared with wild type. To explore which subset of correlations was influenced by ligand induction versus an intrinsic phenotype of the EGFR mutants, we profiled the time course of 115 cellular signal proteins for EGF ligand-stimulated (three dosages) NSCLC mutant and wild type cultured cell lines. EGFR mutant cell lines (H1975 L858R) displayed a pattern of EGFR Tyr-1045 and HER2 Tyr-1248 phosphorylation similar to that found in tissue. Persistence of phosphorylation for AKT Ser-473 following ligand stimulation was found for the mutant. These data suggest that a higher proportion of the EGFR mutant carcinoma cells may exhibit activation of the phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (MTOR) pathway through Tyr-1148 and Tyr-1068 and suppression of IRS-1 Ser-612, altered heterodimerization with ERBB2, reduced response to transforming growth factor beta suppression, and reduced ubiquitination/degradation of the EGFR through EGFR Tyr-1045, thus providing a survival advantage. This is the first comparison of multiple, site-specific phosphoproteins with the EGFR tyrosine kinase domain mutation status in vivo.  相似文献   

13.
Spred proteins modulate growth factor receptor signaling by inhibiting the Ras-MAPK cascade. Here, we show that Spred-1, Spred-2, and Spred-3 are ubiquitinated in HEK293T cells stimulated with epidermal growth factor (EGF) or pervanadate. Spred-2 tyrosines Y228 and/or Y231 in the Kit binding domain were identified as putative phosphorylation site(s) critical for Spred-2 ubiquitination. Depletion of Cbl and Cbl-b E3 ubiquitin ligases by RNA interference, or overexpression of a Cbl dominant inhibitory mutant (Cbl-N), inhibited Spred-2 ubiquitination, while conversely, wild type Cbl enhanced Spred-2 ubiquitination. Interaction of Spred-2 with Cbl-N was detectable by co-immunoprecipitation and required the Cbl SH2 domain and Spred-2 Y228 and Y231 residues. Studies on endogenous Spred-2 in ME4405 melanoma cells showed that pervanadate induced Spred-2 ubiquitination and a marked reduction in Spred-2 steady-state levels that was partially blocked by the proteasomal inhibitor, MG-132. These results suggest a role for Spred-2 tyrosine phosphorylation and ubiquitination in controlling Spred-2 expression levels.  相似文献   

14.
Members of the casitas B-lineage lymphoma (Cbl) family (Cbl, Cbl-b and Cbl-c) of ubiquitin ligases serve as negative regulators of receptor tyrosine kinases (RTKs). An essential role of Cbl-family protein-dependent ubiquitination for efficient ligand-induced lysosomal targeting and degradation is now well-accepted. However, a more proximal role of Cbl and Cbl-b as adapters for CIN85-endophilin recruitment to mediate ligand-induced initial internalization of RTKs is supported by some studies but refuted by others. Overexpression and/or incomplete depletion of Cbl proteins in these studies is likely to have contributed to this dichotomy. To address the role of endogenous Cbl and Cbl-b in the internalization step of RTK endocytic traffic, we established Cbl/Cbl-b double-knockout (DKO) mouse embryonic fibroblasts (MEFs) and demonstrated that these cells lack the expression of both Cbl-family members as well as endophilin A, while they express CIN85. We show that ligand-induced ubiquitination of EGFR, as a prototype RTK, was abolished in DKO MEFs, and EGFR degradation was delayed. These traits were reversed by ectopic human Cbl expression. EGFR endocytosis, assessed using the internalization of 125I-labeled or fluorescent EGF, or of EGFR itself, was largely retained in Cbl/Cbl-b DKO compared to wild type MEFs. EGFR internalization was also largely intact in Cbl/Cbl-b depleted MCF-10A human mammary epithelial cell line. Inducible shRNA-mediated knockdown of CIN85 in wild type or Cbl/Cbl-b DKO MEFs had no impact on EGFR internalization. Our findings, establish that, at physiological expression levels, Cbl, Cbl-b and CIN85 are largely dispensable for EGFR internalization. Our results support the model that Cbl–CIN85–endophilin complex is not required for efficient internalization of EGFR, a prototype RTK.  相似文献   

15.
Phosphorylation of epidermal growth factor receptor (EGFR) on tyrosine 845 by c-Src has been shown to be important for cell proliferation and migration in several model systems. This cross talk between EGFR and Src family kinases (SFKs) is one mechanism for resistance to EGFR inhibitors both in cell models and in the clinic. Here, we show that phosphorylation of tyrosine 845 on EGFR is required for proliferation and transformation using several cell models of breast cancer. Overexpression of EGFR-Y845F or treating cells with the SFK inhibitor dasatinib abrogated tyrosine 845 phosphorylation, yet had little to no effect on other EGFR phosphorylation sites or EGFR kinase activity. Abrogation of Y845 phosphorylation inhibited cell proliferation and transformation, even though extracellular signal-regulated kinase (ERK) and Akt remained active under these conditions. Importantly, cotransfection of mitogen-activated protein kinase (MAPK) kinase 3 and p38 MAPK restored cell proliferation in the absence of EGFR tyrosine 845 phosphorylation. Taken together, these data demonstrate a novel role for p38 MAPK signaling downstream of EGFR tyrosine 845 phosphorylation in the regulation of breast cancer cell proliferation and transformation and implicate SFK inhibitors as a potential therapeutic mechanism for overcoming EGFR tyrosine kinase inhibitor resistance in breast cancer.  相似文献   

16.
Objective: Epidermal growth factor (EGF) stimulates proliferation in 3T3‐L1 preadipocytes, but EGF action in differentiation is less clear. EGF promotes differentiation at concentrations <1 nM but inhibits differentiation at higher concentrations, suggesting a dual role in adipogenesis. We hypothesized that differences in EGF receptor activation and downstream signaling mediate distinct biological effects of EGF at low vs. high abundance. Research Methods and Procedures: We compared the effects of low (0.1 nM) vs. high (10 nM) EGF on the activation of EGF receptors, proximal signaling molecules Src and Shc, and the downstream mitogen‐activated protein kinase (MAPK) pathways extracellular regulated kinase (ERK) and p38 in proliferating and differentiated 3T3‐L1 cells. Results: Both low and high EGF activated ERK and p38 in preadipocytes. Src inhibitors PP1 and PP2 blocked ERK and p38 activation by low but not high EGF, and only high EGF increased Shc phosphorylation. Selective inhibition of the EGF receptor (EGFR) with AG1478 blocked ERK and p38 activation at both concentrations; however, selective inhibition of the ErbB2 receptor (EB2R) with AG825 or small interfering RNA (siRNA) blocked low but not high EGF activation of ERK and p38. Coimmunoprecipitation of EGFR with EB2R and Src was observed with low EGF in preadipocytes but at both concentrations in adipocytes. EB2R inhibition during differentiation decreased p38 activity and peroxisome proliferator‐activated receptor γ (PPARγ) abundance. Discussion: Our results show that EGFR homodimers mediate action of EGF at high abundance, but at low abundance, EGF promotes differentiation through EGFR/EB2R heterodimer activation of Src and p38. These results may partially explain the observations that high EGF concentrations inhibit, whereas low concentrations support, preadipocyte differentiation.  相似文献   

17.
Receptor down-regulation is the most prominent regulatory system of EGF receptor (EGFR) signal attenuation and a critical target for therapy against colon cancer, which is highly dependent on the function of the EGFR. In this study, we investigated the effect of ultraviolet-C (UV-C) on down-regulation of EGFR in human colon cancer cells (SW480, HT29, and DLD-1). UV-C caused inhibition of cell survival and proliferation, concurrently inducing the decrease in cell surface EGFR and subsequently its degradation. UV-C, as well as EGFR kinase inhibitors, decreased the expression level of cyclin D1 and the phosphorylated level of retinoblastoma, indicating that EGFR down-regulation is correlated to cell cycle arrest. Although UV-C caused a marked phosphorylation of EGFR at Ser-1046/1047, UV-C also induced activation of p38 MAPK, a stress-inducible kinase believed to negatively regulate tumorigenesis, and the inhibition of p38 MAPK canceled EGFR phosphorylation at Ser-1046/1047, as well as subsequent internalization and degradation, suggesting that p38 MAPK mediates EGFR down-regulation by UV-C. In addition, phosphorylation of p38 MAPK induced by UV-C was mediated through transforming growth factor-β-activated kinase-1. Moreover, pretreatment of the cells with UV-C suppressed EGF-induced phosphorylation of EGFR at tyrosine residues in addition to cell survival signal, Akt. Together, these results suggest that UV-C irradiation induces the removal of EGFRs from the cell surface that can protect colon cancer cells from oncogenic stimulation of EGF, resulting in cell cycle arrest. Hence, UV-C might be applied for clinical strategy against human colon cancers.  相似文献   

18.
Nitric oxide (NO*) strongly inhibits the proliferation of human A431 tumour cells. It also inhibits tyrosine phosphorylation of a 170-kDa band corresponding to the epidermal growth factor receptor (EGFR) and induces the phosphorylation at tyrosine residue(s) of a 58-kDa protein which we have denoted NOIPP-58 (nitric oxide-induced 58-kDa phosphoprotein). The NO*-induced phosphorylation of NOIPP-58 is strictly dependent on the presence of EGF. Phosphorylation of NOIPP-58 and inhibition of the phosphorylation of the band corresponding to EGFR are both cGMP-independent processes. We also demonstrate that the p38 mitogen-activated protein kinase (p38MAPK) pathway is activated by NO* in the absence and presence of EGF, whereas the activity of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) and the c-Jun N-terminal kinase 1/2 (JNK1/2) pathways are not significantly affected or are slightly decreased, respectively, on addition of this agent. Moreover, we show that the p38MAPK inhibitor, SB202190, induces rapid vanadate/peroxovanadate-sensitive dephosphorylation of prephosphorylated EGFR and NOIPP-58. We propose that the dephosphorylation of both NOIPP-58 and EGFR are mediated by a p38MAPK-controlled phosphotyrosine-protein phosphatase (PYPP). Activation of the p38MAPK pathway during nitrosative stress probably prevents the operation of this PYPP, allowing NOIPP-58, and in part EGFR, to remain phosphorylated and therefore capable of generating signalling events.  相似文献   

19.
The epidermal growth factor receptor (EGFR) and its ligand amphiregulin (AR) have been shown to be co-over expressed in breast cancer. We have previously shown that an AR/EGFR autocrine loop is required for SUM149 human breast cancer cell proliferation, motility and invasion. We also demonstrated that AR can induce these altered phenotypes when expressed in the normal mammary epithelial cell line MCF10A, or by exposure of these cells to AR in the medium. In the present studies, we demonstrate that SUM149 cells and immortalized human mammary epithelial MCF10A cells that over express AR (MCF10A AR) or are cultured in the presence of exogenous AR, express higher levels of EGFR protein than MCF10A cells cultured in EGF. Pulse-chase analysis showed that EGFR protein remained stable in the presence of AR, yet was degraded in the presence of EGF. Consistent with this observation, tyrosine 1045 on the EGFR, the c-cbl binding site, exhibited less phosphorylation following stimulation with AR than following stimulation with EGF. Ubiquitination of the receptor was also dramatically less following stimulation with AR than following stimulation with EGF. Flow cytometry analysis showed that EGFR remained on the cell surface following stimulation with AR but was rapidly internalized following stimulation with EGF. Immunofluorescence and confocal microscopy confirmed the flow cytometry results. EGFR in MCF10A cells cultured in the presence of EGF exhibited a predominantly intracellular, punctate localization. In stark contrast, SUM149 cells and MCF10A cells growing in the presence of AR expressed EGFR predominantly on the membrane and at cell-cell junctions. We propose that AR alters EGFR internalization and degradation in a way that favors accumulation of EGFR at the cell surface and ultimately leads to changes in EGFR signaling.  相似文献   

20.
Integrin-mediated adhesion of epithelial cells to extracellular matrix (ECM) proteins induces prolonged tyrosine phosphorylation and partial activation of epidermal growth factor receptor (EGFR) in an integrin-dependent and EGFR ligand-independent manner. Integrin-mediated activation of EGFR in epithelial cells is required for multiple signal transduction events previously shown to be induced by cell adhesion to matrix proteins, including tyrosine phosphorylation of Shc, Cbl, and phospholipase Cgamma, and activation of the Ras/Erk and phosphatidylinositol 3'-kinase/Akt signaling pathways. In contrast, activation of focal adhesion kinase, Src, and protein kinase C, adhesion to matrix proteins, cell spreading, migration, and actin cytoskeletal rearrangements are induced independently of EGFR kinase activity. The ability of integrins to induce the activation of EGFR and its subsequent regulation of Erk and Akt activation permitted adhesion-dependent induction of cyclin D1 and p21, Rb phosphorylation, and activation of cdk4 in epithelial cells in the absence of exogenous growth factors. Adhesion of epithelial cells to the ECM failed to efficiently induce degradation of p27, to induce cdk2 activity, or to induce Myc and cyclin A synthesis; subsequently, cells did not progress into S phase. Treatment of ECM-adherent cells with EGF, or overexpression of EGFR or Myc, resulted in restoration of late-G(1) cell cycle events and progression into S phase. These results indicate that partial activation of EGFR by integrin receptors plays an important role in mediating events triggered by epithelial cell attachment to ECM; EGFR is necessary for activation of multiple integrin-induced signaling enzymes and sufficient for early events in G(1) cell cycle progression. Furthermore, these findings suggest that EGFR or Myc overexpression may provoke ligand-independent proliferation in matrix-attached cells in vivo and could contribute to carcinoma development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号