首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Cortisol is an essential hormone in the regulation of the stress response along the HPA axis, and salivary cortisol has been used as a measure of free circulating cortisol levels. Recently, salivary alpha-amylase (sAA) has also emerged as a novel biomarker for psychosocial stress responsiveness within the sympathetic adrenomedullary (SAM) system.

Principal Findings

We measured sAA and salivary cortisol in healthy volunteers after exposure to the Trier Social Stress Test (TSST) and electric stimulation stress. One hundred forty-nine healthy volunteers participated in this study. All subjects were exposed to both the TSST and electric stimulation stress on separate days. We measured sAA and salivary cortisol levels three times immediately before, immediately after, and 20 min after the stress challenge. The State (STAI-S) and Trait (STAI-T) versions of the Spielberger Anxiety Inventory test and the Profile of Mood State (POMS) tests were administered to participants before the electrical stimulation and TSST protocols. We also measured HF, LF and LF/HF Heart Rate Variability ratio immediately after electrical stimulation and TSST exposure. Following TSST exposure or electrical stimulation, sAA levels displayed a rapid increase and recovery, returning to baseline levels 20 min after the stress challenge. Salivary cortisol responses showed a delayed increase, which remained significantly elevated from baseline levels 20 min after the stress challenge. Analyses revealed no differences between men and women with regard to their sAA response to the challenges (TSST or electric stimulations), while we found significantly higher salivary cortisol responses to the TSST in females. We also found that younger subjects tended to display higher sAA activity. Salivary cortisol levels were significantly correlated with the strength of the applied electrical stimulation.

Conclusions

These preliminary results suggest that the HPA axis (but not the SAM system) may show differential response patterns to distinct kinds of stressors.  相似文献   

2.
Psychosocial stress plays a major role in the etiology and the course of mental disorders that often show an altered activation of the hypothalamus–pituitary–adrenal (HPA) axis. The Trier Social Stress Test (TSST) reliably activates the HPA axis and reflects real life stress exposure. However, habituation may confound the results of clinical trials that apply TSST. The present study investigates the cortisol response after repeated psychosocial stress induction with short-term and long-term intervals between repeated testing sessions. Forty-one healthy subjects were exposed to the TSST four times with an interval of 24 h between the first and the second testing session (t1 and t2). The 3rd and the 4th testing session (t3 and t4) were also separated by a 24-hour interval whereas there were 10 weeks between t2 and t3. A significant decrease in the salivary cortisol responses was noticed from testing session t1 to t2 as well as from testing session t3 to t4. By contrast, there were no differences in the HPA axis reactivity between testing session t2 and t3. Our results demonstrated the habituation of the HPA axis to a standardized psychosocial stress test when testing was repeated after 24 h. By contrast, a renewed challenge with a ten-week-interval in-between activated the HPA axis in a similar manner as before. It is suggested that studies designed to investigate the HPA axis activity under repeated psychosocial stress conditions should apply the TSST three times in order to separate habituation from intervention effects.  相似文献   

3.
Acute nicotine administration has been shown to activate the hypothalamic-pituitary-adrenal (HPA) axis and stimulate secretion of adrenocorticotrophic hormone (ACTH), corticosterone/cortisol and beta-endorphin (beta-END) in both rodents and humans, raising the possibility that activation of the HPA axis by nicotine may mediate some of the effects of nicotine. Since stress can increase the risk of drug use and abuse, we hypothesized that repeated stress would increase the ability of nicotine to stimulate the secretion of HPA hormones. To test our hypothesis, mice were exposed to repeated stress (swimming in 15 degrees C water for 3 min/day for 5 days) and killed 15 min after injection of saline or nicotine (0.1 mg/kg, s.c.). Repeated exposure to stress increased the ability of nicotine to stimulate plasma ACTH (p<0.05) and beta-END (p<0.05), but not corticosterone secretion. In contrast, repeated exposure to stress increased the post-saline injection levels of corticosterone (p<0.05), but not ACTH and beta-END. The present results suggest that chronic stress leads to an enhanced sensitivity of some components of the HPA axis to a subsequent nicotine challenge.  相似文献   

4.

Background

In this study the predictive value of the combined dexamethasone/CRH test (DEX/CRH test) for acute antidepressant response was investigated.

Methodology/Principal Findings

In 114 depressed inpatients suffering from unipolar or bipolar depression (sample 1) the DEX/CRH test was performed at admission and shortly before discharge. During their stay in the hospital patients received different antidepressant treatment regimens. At admission, the rate of nonsuppression (basal cortisol levels >75.3 nmol/l) was 24.6% and was not related to the later therapeutic response. Moreover, 45 out of 114 (39.5%) patients showed an enhancement of HPA axis function at discharge in spite of clinical improvement. In a second sample, 40 depressed patients were treated either with reboxetine or mirtazapine for 5 weeks. The DEX/CRH test was performed before, after 1 week, and after 5 weeks of pharmacotherapy. Attenuation of HPA axis activity after 1 week was associated with a more pronounced alleviation of depressive symptoms after 5-week mirtazapine treatment, whereas downregulation of HPA system activity after 5 weeks was related to clinical response to reboxetine. However, early improvement of HPA axis dysregulation was not necessarily followed by a beneficial treatment outcome.

Conclusions/Significance

Taken together, performance of a single DEX/CRH test does not predict the therapeutic response. The best predictor for response seems to be an early attenuation of HPA axis activity within 1 or 2 weeks. However, early improvement of HPA system dysfunction is not a sufficient condition for a favourable response. Since a substantial part of depressive patients display a persistence of HPA axis hyperactivity at discharge, downregulation of HPA system function is not a necessary condition for acute clinical improvement either. Our data underline the importance of HPA axis dysregulation for treatment outcome in major depression, although restoration of HPA system dysfunction seems to be neither a necessary nor a sufficient determinant for acute treatment response.  相似文献   

5.

Background

In adults, hypothalamus–pituitary–adrenal (HPA) axis activity shows sexual dimorphism, and this is thought to be a mechanism underlying sex-specific disease incidence. Evidence is scarce on whether these sex differences are also present in childhood. In a meta-analysis, we recently found that basal (non-stimulated) cortisol in saliva and free cortisol in 24-h urine follow sex-specific patterns. We explored whether these findings could be extended with sex differences in HPA axis reactivity.

Methods

From inception to January 2016, PubMed and EMBASE.com were searched for studies that assessed HPA axis reactivity in healthy girls and boys aged ≤18 years. Articles were systematically assessed and reported in the categories: (1) diurnal rhythm, (2) cortisol awakening response (CAR), (3) protocolled social stress tests similar or equal to the Trier Social Stress Test for children (TSST-C), (4) pharmacological (ACTH and CRH) stress tests, and (5) miscellaneous stress tests.

Results

Two independent assessors selected 109 out of 6158 records for full-text screening, of which 81 studies (with a total of 14,591 subjects) were included. Studies showed that girls had a tendency towards a more variable diurnal rhythm (12 out of 29 studies), a higher CAR (8 out of 18 studies), and a stronger cortisol response to social stress tests (9 out of 21 studies). We found no evidence for sex differences in cortisol response after a pharmacological challenge or to miscellaneous stress tests.

Discussion

Sex differences in HPA axis reactivity appear to be present in childhood, although evidence is not unequivocal. For a better evaluation of sex differences in HPA axis reactivity, standardization of protocols and reports of stress tests is warranted.
  相似文献   

6.

Background  

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is a hallmark of complex and multifactorial psychiatric diseases such as anxiety and mood disorders. About 50-60% of patients with major depression show HPA axis dysfunction, i.e. hyperactivity and impaired negative feedback regulation. The neuropeptide corticotropin-releasing hormone (CRH) and its receptor type 1 (CRHR1) are key regulators of this neuroendocrine stress axis. Therefore, we analyzed CRH/CRHR1-dependent gene expression data obtained from the pituitary corticotrope cell line AtT-20, a well-established in vitro model for CRHR1-mediated signal transduction. To extract significantly regulated genes from a genome-wide microarray data set and to deduce underlying CRHR1-dependent signaling networks, we combined supervised and unsupervised algorithms.  相似文献   

7.
The present investigation evaluates the anti-stress activity of risperidone (RIS) in the cold restraint stress (CRS) model and related stress pathways. Rats were pretreated with RIS (0.1 and 1.0 mg/kg) for 21 days before subjecting to CRS. Ultra low dose of RIS (ULD; 0.1 mg/kg) in contrast to higher dose (1.0 mg/kg) significantly reduced stress in terms of ulcer index. ULD also reversed stress-induced increase in plasma corticosterone and norepinephrine levels used as markers for the function of hypothalamo-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS) respectively. ULD caused dose and brain region (hippocampus, prefrontal cortex and striatum) specific changes to stress-induced perturbations of serotonin, dopamine and its metabolites indicating modulation of brain monoaminergic system (BMS). ULD did not show any extrapyramidal side effects. Thus, the anti-stress effect ULD is probably mediated through the HPA axis, SNS and BMS. The study indicates a potential use of ULD in stress disorders.  相似文献   

8.

Introduction

In patients with severe illness, such as aneurysmal subarachnoid hemorrhage (SAH), a physiologic stress response is triggered. This includes activation of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system. The aim of this study was to investigate the very early responses of these systems.

Methods

A porcine animal model of aneurysmal SAH was used. In this model, blood is injected slowly to the basal cisterns above the anterior skull base until the cerebral perfusion pressure is 0 mm Hg. Sampling was done from blood and urine at -10, +15, +75 and +135 minutes from time of induction of SAH. Analyses of adrenocorticotropic hormone (ACTH), cortisol, aldosterone, catecholamines and chromogranin-A were performed.

Results

Plasma ACTH, serum cortisol and plasma aldosterone increased in the samples following induction of SAH, and started to decline after 75 minutes. Urine cortisol also increased after SAH. Urine catecholamines and their metabolites were found to increase after SAH. Many samples were however below detection level, not allowing for statistical analysis. Plasma chromogranin-A peaked at 15 minutes after SAH, and thereafter decreased.

Conclusions

The endocrine stress response after aneurysmal SAH was found to start within 15 minutes in the HPA axis with early peak values of ACTH, cortisol and aldosterone. The fact that the concentrations of the HPA axis hormones decreased 135 minutes after SAH may suggest that a similar pattern exists in SAH patients, thus making it difficult to catch these early peak values. There were also indications of early activation of the sympathetic nervous system, but the small number of valid samples made interpretation difficult.  相似文献   

9.

Background

Psychosocial stress is a risk factor for coronary heart disease (CHD). The mechanisms are incompletely understood, although dysfunction of the hypothalamic pituitary adrenal (HPA) axis might be involved. We examined the association between cortisol responses to laboratory-induced mental stress and the progression of coronary artery calcification (CAC).

Methods and Results

Participants were 466 healthy men and women (mean age = 62.7±5.6 yrs), without history or objective signs of CHD, drawn from the Whitehall II epidemiological cohort. At the baseline assessment salivary cortisol was measured in response to mental stressors, consisting of a 5-min Stroop task and a 5-min mirror tracing task. CAC was measured at baseline and at 3 years follow up using electron beam computed tomography. CAC progression was defined as an increase >10 Agatston units between baseline and follow up. 38.2% of the sample demonstrated CAC progression over the 3 years follow up. There was considerable variation in the cortisol stress response, with approximately 40% of the sample responding to the stress tasks with an increase in cortisol of at least 1 mmol/l. There was an association between cortisol stress reactivity (per SD) and CAC progression (odds ratio = 1.27, 95% CI, 1.02–1.60) after adjustments for age, sex, pre-stress cortisol, employment grade, smoking, resting systolic BP, fibrinogen, body mass index, and use of statins. There was no association between systolic blood pressure reactivity and CAC progression (odds ratio per SD increase = 1.03, 95% CI, 0.85–1.24). Other independent predictors of CAC progression included age, male sex, smoking, resting systolic blood pressure, and fibrinogen.

Conclusion

Results demonstrate an association between heightened cortisol reactivity to stress and CAC progression. These data support the notion that cortisol reactivity, an index of HPA function, is one of the possible mechanisms through which psychosocial stress may influence the risk of CHD.  相似文献   

10.
《Hormones and behavior》2009,55(5):584-591
Ever since the seminal studies of Hans Selye, activation of hypothalamus-pituitary-adrenal (HPA) axis is emblematic of stress. Consequently, the lack of HPA axis responses following the undisputable psychological stress of a panic attack stands out as one of the most intriguing findings of contemporary psychiatry. On the other hand, the defensive behaviors and aversive emotions produced by stimulation of the dorsal periaqueductal gray matter (DPAG) have been proposed as a model of panic attacks. Therefore, we examined whether the plasma levels of ‘stress hormones’ corticotropin and prolactin show any change following the DPAG-evoked freezing and flight behaviors of the rat. Rats bearing an electrode into the DPAG and an intra-atrial catheter were stimulated at 9:00 a.m., 18–24 h after the catheter implantation. Blood samples were withdrawn just before 1-min stimulation of DPAG, immediately after (5 or 15 min) and throughout 3 to 27 h following stimulation. In another experiment, samples were withdrawn either before or following a prolonged stimulation (5 min) of the DPAG with flight threshold intensity. Hormones were measured by either chemiluminescent or double-antibody immunoassays. Hormone plasma levels following freezing and flight behaviors were compared to those of resting or restraint-stressed rats. Data show that stress hormones remain unaltered following the DPAG-evoked defensive behaviors. Not even the 5-min stimulation of DPAG with the flight threshold intensity changed corticotropin plasma levels significantly. As far as we known, this is the first demonstration of the lack of stress hormone responses following the intense emotional arousal and physical exertion of a fear-like behavior in rats. Data add new evidence of DPAG involvement in spontaneous panic attacks.  相似文献   

11.
12.
Ever since the seminal studies of Hans Selye, activation of hypothalamus-pituitary-adrenal (HPA) axis is emblematic of stress. Consequently, the lack of HPA axis responses following the undisputable psychological stress of a panic attack stands out as one of the most intriguing findings of contemporary psychiatry. On the other hand, the defensive behaviors and aversive emotions produced by stimulation of the dorsal periaqueductal gray matter (DPAG) have been proposed as a model of panic attacks. Therefore, we examined whether the plasma levels of ‘stress hormones’ corticotropin and prolactin show any change following the DPAG-evoked freezing and flight behaviors of the rat. Rats bearing an electrode into the DPAG and an intra-atrial catheter were stimulated at 9:00 a.m., 18–24 h after the catheter implantation. Blood samples were withdrawn just before 1-min stimulation of DPAG, immediately after (5 or 15 min) and throughout 3 to 27 h following stimulation. In another experiment, samples were withdrawn either before or following a prolonged stimulation (5 min) of the DPAG with flight threshold intensity. Hormones were measured by either chemiluminescent or double-antibody immunoassays. Hormone plasma levels following freezing and flight behaviors were compared to those of resting or restraint-stressed rats. Data show that stress hormones remain unaltered following the DPAG-evoked defensive behaviors. Not even the 5-min stimulation of DPAG with the flight threshold intensity changed corticotropin plasma levels significantly. As far as we known, this is the first demonstration of the lack of stress hormone responses following the intense emotional arousal and physical exertion of a fear-like behavior in rats. Data add new evidence of DPAG involvement in spontaneous panic attacks.  相似文献   

13.

Background

Exposure to early postnatal stress is known to hasten the progression of kindling epileptogenesis in adult rats. Despite the significance of this for understanding mesial temporal lobe epilepsy (MTLE) and its associated psychopathology, research findings regarding underlying mechanisms are sparse. Of several possibilities, one important candidate mechanism is early life ‘programming’ of the hypothalamic-pituitary-adrenal (HPA) axis by postnatal stress. Elevated corticosterone (CORT) in turn has consequences for neurogenesis and cell death relevant to epileptogenesis. Here we tested the hypotheses that MS would augment seizure-related corticosterone (CORT) release and enhance neuroplastic changes in the hippocampus.

Methodology/Principal Findings

Eight-week old Wistar rats, previously exposed on postnatal days 2–14 to either maternal separation stress (MS) or control brief early handling (EH), underwent rapid amygdala kindling. We measured seizure-induced serum CORT levels and post-kindling neurogenesis (using BrdU). Three weeks post-kindling, rats were euthanized for histology of the hippocampal CA3c region (pyramidal cell counts) and dentate gyrus (DG) (to count BrdU-labelled cells and measure mossy fibre sprouting). As in our previous studies, rats exposed to MS had accelerated kindling rates in adulthood. Female MS rats had heightened CORT responses during and after kindling (p<0.05), with a similar trend in males. In both sexes total CA3c pyramidal cell numbers were reduced in MS vs. EH rats post-kindling (p = 0.002). Dentate granule cell neurogenesis in female rats was significantly increased post-kindling in MS vs. EH rats.

Conclusions/Significance

These data demonstrate that early life stress results in enduring enhancement of HPA axis responses to limbic seizures, with increased hippocampal CA3c cell loss and augmented neurogenesis, in a sex-dependent pattern. This implicates important candidate mechanisms through which early life stress may promote vulnerability to limbic epileptogenesis in rats as well as to human MTLE and its associated psychiatric disorders.  相似文献   

14.

Background

The hypothalamic-pituitary-adrenal (HPA) axis is a central regulator of stress response and its dysfunction has been associated with a broad range of complex illnesses including Gulf War Illness (GWI) and Chronic Fatigue Syndrome (CFS). Though classical mathematical approaches have been used to model HPA function in isolation, its broad regulatory interactions with immune and central nervous function are such that the biological fidelity of simulations is undermined by the limited availability of reliable parameter estimates.

Method

Here we introduce and apply a generalized discrete formalism to recover multiple stable regulatory programs of the HPA axis using little more than connectivity between physiological components. This simple discrete model captures cyclic attractors such as the circadian rhythm by applying generic constraints to a minimal parameter set; this is distinct from Ordinary Differential Equation (ODE) models, which require broad and precise parameter sets. Parameter tuning is accomplished by decomposition of the overall regulatory network into isolated sub-networks that support cyclic attractors. Network behavior is simulated using a novel asynchronous updating scheme that enforces priority with memory within and between physiological compartments.

Results

Consistent with much more complex conventional models of the HPA axis, this parsimonious framework supports two cyclic attractors, governed by higher and lower levels of cortisol respectively. Importantly, results suggest that stress may remodel the stability landscape of this system, favoring migration from one stable circadian cycle to the other. Access to each regime is dependent on HPA axis tone, captured here by the tunable parameters of the multi-valued logic. Likewise, an idealized glucocorticoid receptor blocker alters the regulatory topology such that maintenance of persistently low cortisol levels is rendered unstable, favoring a return to normal circadian oscillation in both cortisol and glucocorticoid receptor expression.

Conclusion

These results emphasize the significance of regulatory connectivity alone and how regulatory plasticity may be explored using simple discrete logic and minimal data compared to conventional methods.
  相似文献   

15.

Background

Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary.

Methods

Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated.

Results

Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn’t affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment.

Conclusion

BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.  相似文献   

16.

Background  

Laboratory routine procedures such as handling, injection, gavage or transportation are stressful events which may influence physiological parameters of laboratory animals and may interfere with the interpretation of the experimental results. Here, we investigated if female BALB/c mice derived from in-house breeding and BALB/c mice from a vendor which were shipped during their juvenile life differ in their HPA axis activity and stress responsiveness in adulthood.  相似文献   

17.

Background  

Lung maturation is modulated by several factors, including glucocorticoids. Expression of hypothalamic-pituitary-adrenal (HPA) axis-related components, with proposed or described local regulatory systems analogous to the HPA axis, was reported in peripheral tissues. Here, HPA axis-related genes were studied in the mouse developing lung during a period overlapping the surge of surfactant production.  相似文献   

18.

Background

The hypothalamic-pituitary-adrenal (HPA) axis regulates stress responses and HPA dysfunction has been associated with several chronic diseases. Low birthweight may be associated with HPA dysfunction in later life, yet human studies are inconclusive. The primary study aim was to identify genetic variants associated with HPA axis function. A secondary aim was to evaluate if these variants modify the association between birthweight and HPA axis function in adolescents.

Methods

Morning fasted blood samples were collected from children of the Western Australia Pregnancy Cohort (Raine) at age 17 (n = 1077). Basal HPA axis function was assessed by total cortisol, corticosteroid binding globulin (CBG), and adrenocorticotropic hormone (ACTH). The associations between 124 tag single nucleotide polymorphisms (SNPs) within 16 HPA pathway candidate genes and each hormone were evaluated using multivariate linear regression and penalized linear regression analysis using the HyperLasso method.

Results

The penalized regression analysis revealed one candidate gene SNP, rs11621961 in the CBG encoding gene (SERPINA6), significantly associated with total cortisol and CBG. No other candidate gene SNPs were significant after applying the penalty or adjusting for multiple comparisons; however, several SNPs approached significance. For example, rs907621 (p = 0.002) and rs3846326 (p = 0.003) in the mineralocorticoid receptor gene (NR3C2) were associated with ACTH and SERPINA6 SNPs rs941601 (p = 0.004) and rs11622665 (p = 0.008), were associated with CBG. To further investigate our findings for SERPINA6, rare and common SNPs in the gene were imputed from the 1,000 genomes data and 8 SNPs across the gene were significantly associated with CBG levels after adjustment for multiple comparisons. Birthweight was not associated with any HPA outcome, and none of the gene-birthweight interactions were significant after adjustment for multiple comparisons.

Conclusions

Our study suggests that genetic variation in the SERPINA6 gene may be associated with altered CBG levels during adolescence. Replication of these findings is required.  相似文献   

19.
《Phytomedicine》2015,22(13):1178-1185
BackgroundWater extract of the fixed combination of Gardenia jasminoides Ellis fruit, Citrus aurantium L. fruit and Magnolia officinalis Rehd. et Wils. bark, traditional name – Zhi-Zi-Hou-Po (ZZHPD) is used for treatment of depressive-like symptoms in traditional Chinese medicine for centuries.Hypothesis/PurposeThe present study aimed to explore antidepressant-like effects and potential mechanisms of ZZHPD in a rat model of chronic unpredictable mild stress (CUMS).Study designAntidepressant-like effects of ZZHPD were investigated through behavioral tests, and potential mechanism was assessed by neuroendocrine system, neurotrophin and hippocampal neurogenesis.MethodsAntidepressant-like effects of ZZHPD (3.66, 7.32 and 14.64 g/kg/day) were estimated through coat state test, sucrose preference test, forced swimming test and open-field test. Effects of ZZHPD on hypothalamic-pituitary-adrenal (HPA) axis were evaluated by hormones measurement and dexamethasone suppression test. In addition, the expression of brain-derived neurotrophic factor (BDNF) in hippocampus was measured, as well as hippocampal neurogenesis was investigated by doublecortin (DCX) and 5-bromo-2-deoxyuridine/neuronal nuclei (BrdU/NeuN).ResultsThe results demonstrated that ZZHPD significantly reversed the depressive-like behaviors, normalized the levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT), restored the negative feedback loop of HPA axis and improved the levels of BDNF, DCX and BrdU/NeuN compared with those in CUMS-induced rats.ConclusionThe above results revealed that ZZHPD exerted antidepressant-like effects possibly by normalizing HPA axis function, increasing expression of BDNF in hippocampus and promoting hippocampal neurogenesis.  相似文献   

20.
The aim of the present study was to determine the effect of social stress and significance of prostaglandins (PG) generated by constitutive and inducible cyclooxygenase (COX-1 and COX-2) in the stimulation of hypothalamic-pituitary-adrenal (HPA) axis by corticotropin releasing hormone (CRH) under basal and social crowding stress conditions. The stressed rats were crowded in groups of 24 to a cage for 3 or 7 days, whereas the control animals were haused in groups of 7 to a cage of the same size. The activity of HPA axis was determined by measuring plasma ACTH and serum corticosterone levels 1 h after i.p. CRH administration. Inhibitors of COX-1, piroxicam (0.2, 2.0, and 5.0 mg/kg), and COX-2, compound NS-398 (0.2 and 2.0 mg/kg), were administered i.p. 15 min prior to CRH (0.1 microg/kg i.p.) to control or crowded rats. The obtained results indicate that social stress for 3 and 7 days markedly intensifies the stimulatory action of CRH on ACTH secretion. Neither piroxicam nor NS-398 induce any significant effect on the CRH-elicited ACTH and corticosterone secretion in non-stressed or crowded rats. Therefore, PG generated by COX-1 or COX-2 do not participate to a significant extent in the stimulation of HPA axis by CRH under either basal conditions or during crowding stress. These results also indicate that the stimulatory action of CRH on ACTH secretion is not only completely resistant to desensitization but is sensitized during social crowding stress. The results contrast with a significant involvement of PG in the vasopressin-induced stimulation of HPA response during crowding stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号