首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
Apoptotic cell death, characterized by chromatin condensation, nuclear fragmentation, cell membrane blebbing, and apoptotic body formation, is also accompanied by typical mitochondrial changes. The latter includes enhanced membrane permeability, fall in mitochondrial membrane potential (Deltapsi(m)) and release of cytochrome c into the cytosol. Gelsolin, an actin regulatory protein, has been shown to inhibit apoptosis, but when cleaved by caspase-3, a fragment that is implicated as an effector of apoptosis is generated. The mechanism by which the full-length form of gelsolin inhibits apoptosis is unclear. Here we show that the overexpression of gelsolin inhibits the loss of Deltapsi(m) and cytochrome c release from mitochondria resulting in the lack of activation of caspase-3, -8, and -9 in Jurkat cells treated with staurosporine, thapsigargin, and protoporphyrin IX. These effects were corroborated in vitro using recombinant gelsolin protein on isolated rat mitochondria stimulated with Ca(2+), atractyloside, or Bax. This protective function of gelsolin, which was not due to simple Ca(2+) sequestration, was inhibited by polyphosphoinositide binding. In addition we confirmed that gelsolin, besides its localization in the cytosol, is also present in the mitochondrial fraction of cells. Gelsolin thus acts on an early step in the apoptotic signaling at the level of mitochondria.  相似文献   

2.
Cytochrome c release from mitochondria induces caspase activation in cytosols; however, it is unclear whether the redox state of cytosolic cytochrome c can regulate caspase activation. By using cytosol isolated from mammalian cells, we find that oxidation of cytochrome c by added cytochrome oxidase stimulates caspase activation, whereas reduction of cytochrome c by added tetramethylphenylenediamine (TMPD) or yeast lactate dehydrogenase/cytochrome c reductase blocks caspase activation. Scrape-loading of cells with this reductase inhibited caspase activation induced by staurosporine. Similarly, incubating intact cells with ascorbate plus TMPD to reduce intracellular cytochrome c strongly inhibited staurosporine-induced cell death, apoptosis, and caspase activation but not cytochrome c release, indicating that cytochrome c redox state can regulate caspase activation. In homogenates from healthy cells cytochrome c was rapidly reduced, whereas in homogenates from apoptotic cells added cytochrome c was rapidly oxidized by some endogenous process. This oxidation was prevented if mitochondria were removed from the homogenate or if cytochrome oxidase was inhibited by azide. This suggests that permeabilization of the outer mitochondrial membrane during apoptosis functions not just to release cytochrome c but also to maintain it oxidized via cytochrome oxidase, thus maximizing caspase activation. However, this activation can be blocked by adding TMPD, which may have some therapeutic potential.  相似文献   

3.
Mitochondrial cytochrome c, which functions as an electron carrier in the respiratory chain, translocates to the cytosol in cells undergoing apoptosis, where it participates in the activation of DEVD-specific caspases. The apoptosis inhibitors Bcl-2 or Bcl-xL prevent the efflux of cytochrome c from mitochondria. The mechanism responsible for the release of cytochrome c from mitochondria during apoptosis is unknown. Here, we report that cytochrome c release from mitochondria is an early event in the apoptotic process induced by UVB irradiation or staurosporine treatment in CEM or HeLa cells, preceding or at the time of DEVD-specific caspase activation and substrate cleavage. A reduction in mitochondrial transmembrane potential (Deltapsim) occurred considerably later than cytochrome c translocation and caspase activation, and was not necessary for DNA fragmentation. Although zVAD-fmk substantially blocked caspase activity, a reduction in Deltapsim and cell death, it failed to prevent the passage of cytochrome c from mitochondria to the cytosol. Thus the translocation of cytochrome c from mitochondria to cytosol does not require a mitochondrial transmembrane depolarization.  相似文献   

4.
Experimental sarcoplasmic reticulum damage induced by 3 microM thapsigargin or 1 microg/ml tunicamycin provoked viability loss of the cell population in approximately 72 h. Release of cytochrome c from mitochondria was an early event and Bax translocation to the mitochondria preceded or was simultaneous with cytochrome c release. The release of cytochrome c was not related with mitochondria depolarization or caspase activation. Irreversible stress in the sarcoplasmic reticulum, detected by the early activation of caspase 12, was functionally linked to the mitochondrial apoptotic pathway. Caspase 3 processing was blocked by cells preincubation with a selective inhibitor of either caspase 9 or caspase 8 whereas caspase 8 activation was inhibited by a selective caspase 9 inhibitor. This was consistent with the involvement of caspase 8 in a positive feedback loop leading to amplify the caspase cascade. Caspase inhibition did not protect against cell death indicating the existence of alternative caspase-independent mechanisms.  相似文献   

5.
The pro-apoptotic protein, Bax, has been reported to translocate from cytosol to mitochondria following exposure of cells to apoptotic stresses including cytokine withdrawal and treatment with glucocorticoids and cytotoxic drugs. These observations, coupled with reports showing that Bax causes the release of mitochondrial cytochrome c, implicate Bax as a central mediator of the apoptotic process. In this report we demonstrate by subcellular fractionation a significant shift in Bax localization from cytosol to cellular membranes in two human tumor cell lines exposed to staurosporine or etoposide. Immunofluorescence studies confirmed that Bax specifically relocalized to the mitochondria. This redistribution of Bax occurred in concert with, or just prior to, proteolytic processing of procaspase-3, activation of DEVD-specific cleavage activity and degradation of poly(ADP-ribose) polymerase. However, Bax membrane translocation was independent of caspase activity as determined using the broad-range caspase inhibitor z-VAD-fmk. High level overexpression of the anti-apoptotic protein Bcl-2 prevented Bax redistribution to the mitochondria, caspase activation and apoptosis following exposure to staurosporine or etoposide. These data confirm the role of Bax in mitochondrial cytochrome c release, and indicate that prevention of Bax translocation to the mitochondrial membrane represents a novel mechanism by which Bcl-2 inhibits drug-induced apoptosis.  相似文献   

6.
Mitochondria serve as a pivotal component of the apoptotic cell death machinery. However, cells that lack mitochondrial DNA (rho(0) cells) retain apparently normal apoptotic signaling. In the present study, we examined mitochondrial mechanisms of apoptosis in rho(0) osteosarcoma cells treated with staurosporine. Immunohistochemistry revealed that rho(0) cells maintained a normal cytochrome c distribution in mitochondria even though these cells were deficient in respiration. Upon staurosporine treatment, cytochrome c was released concomitantly with activation of caspase 3 and loss of mitochondrial membrane potential (Deltapsi(m)). After mitochondrial loss of cytochrome c, rho(0) cells underwent little change in glutathione (GSH) redox potential whereas a dramatic oxidation in GSH/glutathione disulfide (GSSG) pool occurred in parental rho(+) cells. These results show that mitochondrial signaling of apoptosis via cytochrome c release was preserved in cells lacking mtDNA. However, intracellular oxidation that normally accompanies apoptosis was lost, indicating that the mitochondrial respiratory chain provides the major source of redox signaling in apoptosis.  相似文献   

7.
Recent work suggests a participation of mitochondria in apoptotic cell death. This role includes the release of apoptogenic molecules into the cytosol preceding or after a loss of mitochondrial membrane potential DeltaPsim. The two uncouplers of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 2, 4-dinitrophenol (DNP) reduce DeltaPsim by direct attack of the proton gradient across the inner mitochondrial membrane. Here we show that both compounds enhance the apoptosis-inducing capacity of Fas/APO-1/CD95 signaling in Jurkat and CEM cells without causing apoptotic changes on their own account. This amplification occurred upstream or at the level of caspases and was not inhibited by Bcl-2. The effect could be blocked by the cowpox protein CrmA and is thus likely to require caspase 8 activity. Apoptosis induction by staurosporine in Jurkat cells as well as by Fas in SKW6 cells was unaffected by CCCP and DNP. The role of cytochrome c during Fas-DNP signaling was investigated. No early cytochrome c release from mitochondria was detected by Western blotting. Functional assays with cytoplasmic preparations from Fas-DNP-treated cells also indicated that there was no major contribution by cytochrome c or caspase 9 to the activation of effector caspases. Furthermore, an increase of rhodamine-123 uptake into intact cells, which has been explained by mitochondrial swelling, occurred considerably later than the caspase activation and was blocked by Z-VAD-fmk. These data show that uncouplers of oxidative phosphorylation can presensitize some but not all cells for a Fas death signal and provide information about the existence of separate pathways in the induction of apoptosis.  相似文献   

8.
HL-60 cell differentiation into neutrophil like cells is associated with their induction of apoptosis. We investigated the cellular events that occur pre and post mitochondrial permeability transition to determine the role of the mitochondria in the induction of differentiation induced apoptosis. Pro-apoptotic Bax was translocated to and cleaved at the mitochondrial membrane in addition to t-Bid activation. These processes contributed to mitochondrial membrane disruption and the release of cytochrome c and Smac/DIABLO. The release of cytochrome c was caspase independent, as the caspase inhibitor Z-VAD.fmk, which inhibited apoptosis, did not block the release of cytochrome c. In contrast, the release of Smac/DIABLO was partially inhibited by caspase inhibition indicating differential release pathways for these mitochondrial pro-apoptotic factors. In addition to caspase inhibition we assessed the effects of the Bcl-2 anti-apoptotic family on differentiation induced apoptosis. BH4-Bcl-xl-TAT recombinant protein did not delay apoptosis, but did block the release of cytochrome c and Smac/DIABLO. Bcl-2 over-expression also inhibited differentiation induced apoptosis but was associated with the inhibition of the differentiation process. Differentiation mediated mitochondrial release of cytochrome c and Smac/DIABLO, may not trigger the induction of apoptosis, as BH4-Bclxl-TAT blocks the release of pro-apoptotic factors from the mitochondria, but does not prevent apoptosis.  相似文献   

9.
During apoptosis, cytochrome c is released into the cytosol as the outer membrane of mitochondria becomes permeable, and this acts to trigger caspase activation. The consequences of this release for mitochondrial metabolism are unclear. Using single-cell analysis, we found that when caspase activity is inhibited, mitochondrial outer membrane permeabilization causes a rapid depolarization of mitochondrial transmembrane potential, which recovers to original levels over the next 30-60 min and is then maintained. After outer membrane permeabilization, mitochondria can use cytoplasmic cytochrome c to maintain mitochondrial transmembrane potential and ATP production. Furthermore, both cytochrome c release and apoptosis proceed normally in cells in which mitochondria have been uncoupled. These studies demonstrate that cytochrome c release does not affect the integrity of the mitochondrial inner membrane and that, in the absence of caspase activation, mitochondrial functions can be maintained after the release of cytochrome c.  相似文献   

10.
Apoptosis is mediated by members of the caspase family of proteases which can be activated by release of mitochondrial cytochrome c. Additional members of the caspase family are activated at the cell surface in response to direct stimulus from the external environment such as by activation of the Fas receptor. It has been suggested that these upstream caspases directly activate the downstream caspases which would obviate a role for cytochrome c in apoptosis induced by the Fas receptor. We demonstrate that cytochrome c is released from mitochondria of Jurkat cells in response to both staurosporine and an agonistic anti-Fas antibody and that only the latter is inhibited by the caspase inhibitor z-VAD-FMK. This suggests that an upstream caspase such as caspase-8 is required for the Fas-mediated release of mitochondrial cytochrome c. The protein phosphatase inhibitor calyculin A prevented cytochrome c release and apoptosis induced by both agents, suggesting that release of cytochrome c is required in both models. Zinc, once thought of as an endonuclease inhibitor, has previously been shown to prevent the activation of caspase-3. We show that zinc prevents the activation of downstream caspases and apoptosis induced by both insults, yet does not prevent release of mitochondrial cytochrome c. The ability of calyculin A and zinc to prevent DNA digestion implies that the mitochondrial pathway is important for induction of apoptosis by both agents. These results do not support an alternative pathway in which caspase-8 directly activates caspase-3. These results also demonstrate that a critical protein phosphatase regulates the release of cytochrome c and apoptosis induced by both insults.  相似文献   

11.
BACKGROUND: Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested. METHODS: Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy. RESULTS: AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell. CONCLUSIONS: The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.  相似文献   

12.
During the last years, several reports described an apoptosis-like programmed cell death process in yeast in response to different environmental aggressions. Here, evidence is presented that hyperosmotic stress caused by high glucose or sorbitol concentrations in culture medium induces in Saccharomyces cerevisiae a cell death process accompanied by morphological and biochemical indicators of apoptotic programmed cell death, namely chromatin condensation along the nuclear envelope, mitochondrial swelling and reduction of cristae number, production of reactive oxygen species and DNA strand breaks, with maintenance of plasma membrane integrity. Disruption of AIF1 had no effect on cell survival, but lack of Yca1p drastically reduced metacaspase activation and decreased cell death indicating that this death process was associated to activation of this protease. Supporting the involvement of mitochondria and cytochrome c in caspase activation, the mutant strains cyc1Deltacyc7Delta and cyc3Delta, both lacking mature cytochrome c, displayed a decrease in caspase activation associated to increased cell survival when exposed to hyperosmotic stress. These findings indicate that hyperosmotic stress triggers S. cerevisiae into an apoptosis-like programmed cell death that is mediated by a caspase-dependent mitochondrial pathway partially dependent on cytochrome c.  相似文献   

13.
The synthetic retinoid-related molecule CD437-induced apoptosis in human epithelial airway respiratory cells: the 16HBE bronchial cell line and normal nasal epithelial cells. CD437 caused apoptosis in S-phase cells and cell cycle arrest in S phase. Apoptosis was abolished by caspase-8 inhibitor z-IETD-fmk which preserved S-phase cells but was weakly inhibited by others selective caspase-inhibitors, indicating that caspase-8 activation was involved. z-VAD and z-IETD prevented the nuclear envelope fragmentation but did not block the chromatin condensation. The disruption of mitochondrial transmembrane potential was also induced by CD437 treatment. The translocation of Bax to mitochondria was demonstrated, as well as the release of cytochrome c into the cytosol and of apoptosis-inducing factor (AIF) translocated into the nucleus. z-VAD and z-IETD did not inhibit mitochondrial depolarization, Bax translocation or release of cytochrome c and AIF from mitochondria. These results suggest that CD437-induced apoptosis is executed by two converging pathways. AIF release is responsible for chromatin condensation, the first stage of apoptotic cell, via a mitochondrial pathway independent of caspase. But final stage of apoptosis requires the caspase-8-dependent nuclear envelope fragmentation. In addition, using SP600125, JNK inhibitor, we demonstrated that CD437 activates the JNK-MAP kinase signaling pathway upstream to mitochondrial and caspase-8 pathways. Conversely, JNK pathway inhibition, which suppresses S-phase apoptosis, did not prevent cell cycle arrest within S phase, confirming that these processes are triggered by distinct mechanisms.  相似文献   

14.
Cytochrome c is released from mitochondria into the cytosol in cells undergoing apoptosis. The temporal relationship between cytochrome c release and loss of mitochondrial membrane potential was monitored by laser-scanning confocal microscopy in single living pheochromocytoma-6 cells undergoing apoptosis induced by staurosporine. Mitochondrial membrane potential monitored by tetramethylrhodamine methyl ester decreased abruptly in individual cells from 2 to 7 h after treatment with staurosporine. Depolarization was accompanied by cytochrome c release documented by release of transfected green fluorescent protein-tagged cytochrome c in these cells. The results show that mitochondrial depolarization accompanies cytochrome c release in pheochromocytoma-6 cells undergoing apoptosis.  相似文献   

15.
Although previous studies demonstrated that genistein-induced apoptosis of various cell types including RPE-J cells, the involvement of mitochondrial events in such types of apoptosis has not been demonstrated to date. In this investigation of genistein-induced apoptosis of RPE-J cells, genistein induced the reduction of the mitochondrial membrane potential and the release of cytochrome c to cytosol. A mitochondrial permeability transition pore (PTP) blocker bongkrekic acid prevented the reduction of the mitochondrial membrane potential and cytochrome c release, and consequently abolished caspase-3 activation, nuclear condensation, and DNA fragmentation. On the other hand, zVAD-fmk did not inhibit the mitochondrial event such as the reduction of the mitochondrial membrane potential and cytochrome c release although it prevented caspase-3 activation, nuclear condensation, and DNA fragmentation. Taken together, genistein induces apoptosis of RPE-J cells by opening the mitochondrial PTP, and the mitochondrial event in this type of apoptosis is caused independently of caspase.  相似文献   

16.
Upon apoptosis induction, the proapoptotic protein Bax is translocated from the cytosol to mitochondria, where it promotes release of cytochrome c, a caspase‐activating protein. However, the molecular mechanisms by which Bax triggers cytochrome c release are unknown. Here we report that before the initiation of apoptotic execution by etoposide or staurosporin, an active calpain activity cleaves Bax at its N‐terminus, generating a potent proapoptotic 18‐kDa fragment (Bax/p18). Both the calpain‐mediated Bax cleavage activity and the Bax/p18 fragment were found in the mitochondrial membrane‐enriched fraction. Cleavage of Bax was followed by release of mitochondrial cytochrome c, activation of caspase‐3, cleavage of poly(ADP‐ribose) polymerase, and fragmentation of DNA. Unlike the full‐length Bax, Bax/p18 did not interact with the antiapoptotic Bcl‐2 protein in the mitochondrial fraction of drug‐treated cells. Pretreatment with a specific calpain inhibitor calpeptin inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and caspase‐3 activation. In contrast, transfection of a cloned Bax/p18 cDNA into multiple human cancer cell lines targeted Bax/p18 to mitochondria, which was accompanied by release of cytochrome c and induction of caspase‐3‐mediated apoptosis that was not blocked by overexpression of Bcl‐2 protein. Therefore, Bax/p18 has a cytochrome c–releasing activity that promotes cell death independent of Bcl‐2. Finally, Bcl‐2 overexpression inhibited etoposide‐induced calpain activation, Bax cleavage, cytochrome c release, and apoptosis. Our results suggest that the mitochondrial calpain plays an essential role in apoptotic commitment by cleaving Bax and generating the Bax/p18 fragment, which in turn mediates cytochrome c release and initiates the apoptotic execution. J. Cell. Biochem. 80:53–72, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

17.
18.
Microinjection of cytochrome c induced apoptosis in all the cell types we tested (IPC-81, Swiss 3T3, Clone 8 fibroblasts, NRK, H295, Y1, HEK 293). The apoptotic phenotype induced by injected cytochrome c was characterized by externalization of phosphatidyl serine, cell detachment from substratum and from neighbor cells, and had the classic ultrastructural features of membrane budding, chromatin condensation and cell shrinkage. Depending on the cell type and concentration of cytochrome c, the induction of apoptosis was remarkably rapid. The development of apoptosis was prevented by the caspase inhibitor Z-VAD.fmk. Four of the cell types (Clone 8, Swiss 3T3, NRK, Y1) were transfected with bcl-2 and these all showed a markedly decreased sensitivity towards injected cytochrome c. Our data suggest that extramitochondrial cytochrome c is a general apoptogen in cells with a functioning caspase system. They also indicate that, in preventing apoptosis, Bcl-2 acts not only at the level of regulation of cytochrome c release from mitochondria, but can also interfere with caspase activation induced by cytochrome c microinjected directly into the cytoplasm.  相似文献   

19.
Cytochrome c release is thought to play an important role in the initiation of apoptosis. The nature of the control exerted by Bcl-2 and Bcl-XL on such a pathway is not precisely known. We addressed this issue by square-wave pulse electroloading of exogenous cytochrome c into Jurkat cells. Three hours after cytochrome c loading into the cells, characteristic phenotypes of apoptosis were observed. However, a significant drop in the mitochondrial membrane potential (Deltapsim) was also observed, while cytochrome c was generally considered to act downstream from the mitochondria. Related to the Deltapsim drop, there was a release of proapoptotic proteins such as AIF and Smac from the mitochondria. This release, as well as NAD(P)H and cardiolipids oxidation, are linked to previous caspase activation. Cytochrome c-linked caspase activation also led to potassium efflux out of the cell. Overexpression of Bcl-2 and Bcl-XL or N-acetyl-DEVD-aldehyde treatment not only prevented the mitochondrial membrane potential decrease, but also protected cells from the apoptosis directly induced by cytochrome c electroloading. Bcl-2 and Bcl-XL protection is based on the inhibition of the caspase-dependent retroactive pathway affecting the mitochondrial compartment.  相似文献   

20.
We identified apoptosis as being a significant mechanism of toxicity following the exposure of HeLa cell cultures to abrin holotoxin, which is in addition to its inhibition of protein biosynthesis by N-glycosidase activity. The treatment of HeLa cell cultures with abrin resulted in apoptotic cell death, as characterized by morphological and biochemical changes, i.e., cell shrinkage, internucleosomal DNA fragmentation, the occurrence of hypodiploid DNA, chromatin condensation, nuclear breakdown, DNA single strand breaks by TUNEL assay, and phosphatidylserine (PS) externalization. This apoptotic cell death was accompanied by caspase-9 and caspase-3 activation, as indicated by the cleavage of caspase substrates, which was preceded by mitochondrial cytochrome c release. The broad-spectrum caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVADfmk), prevented abrin-triggered caspase activation and partially abolished apoptotic cell death, but did not affect mitochondrial cytochrome c release. These results suggest that the release of mitochondrial cytochrome c, and the sequential caspase-9 and caspase-3 activations are important events in the signal transduction pathway of abrin-induced apoptotic cell death in the HeLa cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号