首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Kuzuhara A 《Biopolymers》2006,81(6):506-514
To investigate the influence of bleaching treatments on keratin fibers, the structure of cross-sections at various depths of bleached human hair (black and white human hair) was directly analyzed without isolating the cuticle and cortex, using Raman spectroscopy. The S-S band intensity existing from the cuticle region to the center of cortex region of virgin white human hair decreased, while the S-O band intensity at 1040 cm(-1), assigned to cysteic acid, increased by performing the bleaching treatment. Especially, the S-O band intensity of the cuticle region increased remarkably compared with that of the cortex region. Also, the amide III (unordered) band intensity in the cortex region increased, indicating that some of the proteins existing throughout the cortex region changed to the random coil form. Moreover, it has been found that the S-S band intensity existing from the cuticle region to the center of the cortex region of the virgin black human hair decreased remarkably, while the S-O band intensity increased significantly compared with that of the virgin white human hair by performing the bleaching treatment. From these experiments, we concluded that the melanin granules including metal ions act as a decomposition accelerator for the oxidizing agent, thereby leading to a higher level of disulfide (-SS-) group cleavage in the black human hair compared with that of the white human hair.  相似文献   

2.
Kuzuhara A 《Biopolymers》2005,79(4):173-184
For the purpose of investigating in detail the influence of chemical modification using 2-iminothiolane hydrochloride (2-IT) on keratin fibers, the structure of cross-sections at various depths of white human hair, treated with 2-IT and then oxidized, was directly analyzed without isolating the cuticle and cortex, using Raman spectroscopy. In particular, the beta-sheet and/or random coil content (beta/R) and the alpha-helix (alpha) content in human hair fibers were estimated by amide I band analysis. The S-S band intensity, amide III (unordered) band intensity, and beta/R content existing from the cuticle region to the center of cortex region of virgin white human hair remarkably increased by performing the chemical modification using 2-IT. On the other hand, not only the S-S band intensity, but also S-O band intensity existing throughout the cortex region of the bleached (damaged) white human hair increased by performing chemical modification using 2-IT. In particular, beta/R content existing throughout the cortex region of the bleached white human hair decreased, while the skeletal C-C stretch (alpha) band intensity at 935 cm(-1) and the alpha content remarkably increased. This indicates a secondary structural change from the random coil form to the alpha-helix form in the proteins existing throughout the cortex region. From these experiments, we concluded that the formation of new disulfide (-SS-) groups resulting from chemical modification using 2-IT induced the secondary structural changes of proteins existing throughout the cortex region.  相似文献   

3.
Kuzuhara A 《Biopolymers》2007,85(3):274-283
To investigate the mechanism leading to the reduction in tensile strength of permanent waved human hair, the structure of cross-sections at various depths of permanent waved white human hair was directly analyzed without isolating the cuticle and cortex, using Raman spectroscopy. The beta-sheet and/or random coil content (beta/R) and the Amide III(unordered) band intensity existing throughout the cortex region of virgin white human hair remarkably increased, while the alpha-helix (alpha) content slightly decreased by performing the permanent waving treatment. This suggests a secondary structural change from the alpha-helix form to the random coil form in the proteins existing in the microfibril of the cortex region. On the other hand, the S-S band intensity existing in the matrix of the cortex region almost did not change, despite the reduction in the tensile strength of the white human hair following the permanent waving treatment. Moreover, the transmission electron microscope observation shows that the macrofibril (the microfibril and matrix) existing in the cortex region of the virgin white human hair was remarkably disturbed, while the cuticle region was almost unchanged by performing the permanent waving treatment. From these experiments, the authors concluded that some of proteins existing in the cortex region (the microfibril and matrix) of the virgin white human hair were changed, thereby leading to the remarkable reduction in the tensile strength of the white human hair after the permanent waving treatment.  相似文献   

4.
Kuzuhara A  Hori T 《Biopolymers》2005,79(6):324-334
In order to investigate the reduction mechanism of L-cysteine (Cys) on keratin fibers, cross-sectional samples of virgin white human hair treated with Cys were prepared. The heterogeneous reaction between Cys and keratin fibers involving the diffusion of Cys into human hair was analyzed at the molecular level using microspectrophotometry and Raman spectroscopy. The diffusion pattern of Cys into human hair showed non-Fickian type characteristics, thus indicating the free amino groups of electrostatically interacted with the anionic ions of the fiber surface. The disconnected relative concentration of -SS- groups at various depths of the hair samples with pH 9.0 was less than the Cys relative concentration, indicating that the reaction rate (the disconnection of -SS- groups) was slower than the diffusion rate of Cys into human hair. From these experiments, we concluded that the free amino groups of Cys electrostatically interacted with the anionic ions of the fiber surface, thereby decreasing the reaction rate (the disconnection of -SS- groups) of Cys at pH 9.0.  相似文献   

5.
6.
《The Journal of cell biology》1990,111(6):2587-2600
The major histological components of the hair follicle are the hair cortex and cuticle. The hair cuticle cells encase and protect the cortex and undergo a different developmental program to that of the cortex. We report the molecular characterization of a set of evolutionarily conserved hair genes which are transcribed in the hair cuticle late in follicle development. Two genes were isolated and characterized, one expressed in the human follicle and one in the sheep follicle. Each gene encodes a small protein of 16 kD, containing greater than 50 cysteine residues, ranging from 31 to 36 mol% cysteine. Their high cysteine content and in vitro expression data identify them as ultra-high-sulfur (UHS) keratin proteins. The predicted proteins are composed almost entirely of cysteine-rich and glycine-rich repeats. Genomic blots reveal that the UHS keratin proteins are encoded by related multigene families in both the human and sheep genomes. Tissue in situ hybridization demonstrates that the expression of both genes is localized to the hair fiber cuticle and occurs at a late stage in fiber morphogenesis.  相似文献   

7.
The human type II hair keratin subfamily consists of six individual members and can be divided into two groups. The group A members hHb1, hHb3, and hHb6 are structurally related, whereas group C members hHb2, hHb4, and hHb5 are rather distinct. Specific antisera against the individual hair keratins were used to establish the two-dimensional catalog of human type II hair keratins. In this catalog, hHb5 showed up as a series of isoelectric variants, well separated from a lower, more acidic, and complex protein streak containing isoelectric variants of hair keratins hHb1, hHb2, hHb3, and hHb6. Both in situ hybridization and immunohistochemistry on anagen hair follicles showed that hHb5 and hHb2 defined early stages of hair differentiation in the matrix (hHb5) and cuticle (hHb5 and hHb2), respectively. Although cuticular differentiation proceeded without the expression of further type II hair keratins, cortex cells simultaneously expressed hHb1, hHb3, and hHb6 at an advanced stage of differentiation. In contrast, hHb4, which is undetectable in hair follicle extracts and sections, could be identified as the largest and most alkaline member of this subfamily in cytoskeletal extracts of dorsal tongue. This hair keratin was localized in the posterior compartment of the tongue filiform papillae. Comparative analysis of type II with the previously published type I hair keratin expression profiles suggested specific, but more likely, random keratin-pairing principles during trichocyte differentiation. Finally, by combining the previously published type I hair keratin catalog with the type II hair keratin catalog and integrating both into the existing catalog of human epithelial keratins, we present a two-dimensional compilation of the presently known human keratins.  相似文献   

8.
Kuzuhara A  Fujiwara N  Hori T 《Biopolymers》2007,87(2-3):134-140
To investigate the internal structure changes in virgin black human hair keratin fibers due to aging, the structure of cross-sections at various depths of virgin black human hair (sections of new growth hair: 2 mm from the scalp) from a group of eight Japanese females in their twenties and another group of eight Japanese females in their fifties were analyzed using Raman spectroscopy. For the first time, we have succeeded in recording the Raman spectra of virgin black human hair, which had been impossible due to high melanin granule content. The key points of this method are to cross-section hair samples to a thickness of 1.50-microm, to select points at various depths of the cortex with the fewest possible melanin granules, and to optimize laser power, cross slit width as well as total acquisition time. The reproducibility of the Raman bands, namely the alpha-helix (alpha) content, the beta-sheet and/or random coil (beta/R) content, the disulfide (--SS--) content, and random coil content of two adjoining cross-sections of a single hair keratin fiber was clearly good. The --SS-- content of virgin black human hair from the Japanese females in their fifties for the cortex region decreased compared with that of the Japanese females in their twenties. On the other hand, the beta/R and alpha contents of the cortex region did not change.  相似文献   

9.
Little is known about the mechanisms underlying the generation of various cell types in the hair follicle. To investigate the role of the Notch pathway in this process, transgenic mice were generated in which an active form of Notch1 (Notch(DeltaE)) was overexpressed under the control of the mouse hair keratin A1 (MHKA1) promoter. MHKA-Notch(DeltaE) is expressed only in one precursor cell type of the hair follicle, the cortex. Transgenic mice could be easily identified by the phenotypes of curly whiskers and wavy, sheen pelage hair. No effects of activated Notch on proliferation were detected in hair follicles of the transgenic mice. We find that activating Notch signaling in the cortex caused abnormal differentiation of the medulla and the cuticle, two neighboring cell types that did not express activated Notch. We demonstrate that these non-autonomous effects are likely caused by cell-cell interactions between keratinocytes within the hair follicle and that Notch may function in such interactions either by directing the differentiation of follicular cells or assisting cells in interpreting a gradient emanating from the dermal papilla.  相似文献   

10.
《The Journal of cell biology》1986,103(6):2593-2606
Although numerous hair proteins have been studied biochemically and many have been sequenced, relatively little is known about their in situ distribution and differential expression in the hair follicle. To study this problem, we have prepared several mouse monoclonal antibodies that recognize different classes of human hair proteins. Our AE14 antibody recognizes a group of 10-25K hair proteins which most likely corresponds to the high sulfur proteins, our AE12 and AE13 antibodies define a doublet of 44K/46K proteins which are relatively acidic and correspond to the type I low sulfur keratins, and our previously described AE3 antibody recognizes a triplet of 56K/59K/60K proteins which are relatively basic and correspond to the type II low sulfur keratins. Using these and other immunological probes, we demonstrate the following. The acidic 44K/46K and basic 56-60K hair keratins appear coordinately in upper corticle and cuticle cells. The 10-25K, AE14-reactive antigens are expressed only later in more matured corticle cells that are in the upper elongation zone, but these antigens are absent from cuticle cells. The 10-nm filaments of the inner root sheath cells fail to react with any of our monoclonal antibodies and are therefore immunologically distinguishable from the cortex and cuticle filaments. Nail plate contains 10-20% soft keratins in addition to large amounts of hair keratins; these soft keratins have been identified as the 50K/58K and 48K/56K keratin pairs. Taken together, these results suggest that the precursor cells of hair cortex and nail plate share a major pathway of epithelial differentiation, and that the acidic 44K/46K and basic 56-60K hard keratins represent a co- expressed keratin pair which can serve as a marker for hair/nail-type epithelial differentiation.  相似文献   

11.
The sites of the incorporation of labeled cystine into keratinizing structures were studied in electron microscopic autoradiographs. The tracer used was cystine labeled with S35 emitting long-range ionizing particles. During exposure for 1 to 2 months, according to our method of electron microscopic autoradiography, emulsion-coated specimens were exposed to a static magnetic field which appeared to result in a marked increase in the number of reacted silver grains. In young Swiss mice receiving intraperitoneal injections at 1, 3, and 6 hours before biopsy, conventional autoradiography demonstrated that S35-cystine was intensely localized in the keratogenous zone of anagen hair follicles, and that the radioactivity there increased in intensity progressively with time while the radioactivity in the hair bulb always remained very low. Our observations with electron microscopic autoradiography in a magnetic field appeared to indicate that at 3 and 6 hours after injection the S35-cystine was directly and specifically incorporated into tonofibrils in the hair cortex and into amorphous keratin granules of the hair cuticle layer, possibly without any particular concentration of this substance in the other cellular components. There seemed to be an appreciable concentration of cystine in tonofibrils of the cuticle of the inner root sheath. However, trichohyalin granules in the hair medulla and inner root sheath failed to show any evidence of cystine concentration. The improved sensitivity of the electron microscopic autoradiography with S35-cystine appeared to be partly due to the application of a static magnetic field. However, the reason for this could not be explained theoretically.  相似文献   

12.
The human type I hair keratin subfamily comprises nine individual members, which can be subdivided into three groups. Group A (hHa1, hHa3-I, hHa3-II, hHa4) and B (hHa7, hHa8) each contains structurally related hair keratins, whereas group C members hHa2, hHa5, and hHa6 represent structurally rather unrelated hair keratins. Antibodies produced against these individual hair keratins, first analyzed for specificity by one- dimensional Western blots of total hair keratins, were used to establish the two-dimensional catalog of the human type I hair keratin subfamily. The catalog comprises two different series of type I hair keratins: a strongly expressed, Coomassie-stainable series containing hair keratins hHa1, hHa3-I/II, hHa4, and hHa5, and a weakly expressed, immunodetectable series harboring hHa2, hHa6 hHa7, and hHa8. In situ hybridization and immunohistochemical expression studies on scalp follicles show that two hair keratins, hHa2 and hHa5, define the early stage of hair differentiation, i.e. hHa5 expression in hair matrix and hHa5/hHa2 coexpression in the early hair cuticle cells. Whereas cuticular differentiation proceeds without the expression of further type I hair keratins, matrix cells embark on the cortical pathway by sequentially expressing hHa1, hHa3-I/II, and hHa4, which are supplemented by hHa6 at an advanced stage of cortical differentiation, and hHa8, which is expressed heterogeneously in cortex cells. Thus, six type I hair keratins are involved in the terminal differentiation of anagen hairs. The expression of hHa7 is conspicuously different from that of the other hair keratins in that it does not occur in the large anagen follicles of terminal scalp hairs but only in central cortex cells of the rare and small follicle type that gives rise to vellus hairs.  相似文献   

13.
Isoelectric focusing of extracted keratin not S-carboxymethylated followed by silver staining was used in this study with the attempt to identify head hair keratins from different racial groups: Guatuso and Caribbean (Costa Rica, America), Balanta (Guinea-Bissau, Africa) and Sardinian (Italy, Europe). Morphological analysis of hair and quantitation of solubilized total proteins were also performed. Keratins extracted from hair gave similar IEF patterns for all samples in the ranges of pH 4.5–5.0 and 5.4–7.4, differing only in the intensity and width of the bands. IEF patterns for Guatuso samples differ from all the others in the presence of some additional bands in the range of pH 4.0–4.5. Different electrophoretic patterns are not associated with detectable differences in the morphology of the fibers. It seems to us that electrophoretic techniques may be useful in the identification of hair from different racial groups.  相似文献   

14.
15.
S100A3, a unique protein among all members of the calcium-binding S100 family, is specifically expressed at the inner endocuticle of human hair fibers. Upon hair damage, S100A3 is released from hair fibers and possibly destabilizes the hair tissue architecture. This study describes the purification and characterization of native S100A3 isolated from human hair fibers. We extracted native S100A3 from cuticles and purified the protein by anion-exchange chromatography. The results of 2D gel electrophoresis showed that cuticle S100A3 has a slightly lower isoelectric point compared to the recombinant protein. Tandem mass spectrometry of the peptides resulting from endoproteinase digest of cuticle S100A3 revealed that the N-terminal methionine is replaced with an acetyl group. This is the first report on biochemical characteristics of S100A3 in hair cuticle.  相似文献   

16.
G. -W. Guse 《Protoplasma》1980,105(1-2):53-67
Summary The sensilla are associated with 6 enveloping cells. The innermost enveloping cell (e 1) secretes the dendritic sheath (=thecogen cell). All other enveloping cells are involved in the formation of the outer cuticular apparatus in secreting the cuticle of a definite region of the new hair shaft.The development of the new sensilla begins when an exuvial space expands between old cuticle and epithelium. The newly forming hair shafts lie folded back in an invagination of the epidermal tissue. Only a distal shaft part projects into the free exuvial space. The cuticle of the distal and middle shaft region is secreted by the three middle enveloping cells (e 2–e 4) (=trichogen cells), which are arranged around the dendritic sheath.The wall of the cylinder, in which the distal shaft is situated, is formed by the cuticle of the future proximal shaft region. It is secreted by the outer enveloping cells (e 5 and e 6). Furthermore, both enveloping cells form the hair socket (=trichogen-tormogen cells).The outer dendritic segments encased within a dendritic sheath run up through the newly formed hair shaft and continue to the old cuticular apparatus. The connection between sensory cells and old hair shaft is maintained until ecdysis. On ecdysis the old cuticle is shed and the newly formed shaft of the sensillum is everted like the invaginated finger of a glove. The dendritic sheath and the outer dendritic segments break off at the tip of the new hair shaft. Morphologically this moulting process ensures that the sensitivity of the receptors is maintained until ecdysis.The internal organization of the sensory cells shows no striking changes during the moulting cycle. An increased number of vesicles is accumulated distally within the inner dendritic segments and distributed throughout the outer segments of the dendrites. The cytoplasmic feature of the enveloping cells indicates that synthesis and release of substances for the cuticular apparatus of the new sensillum take place.  相似文献   

17.
An animal trial was performed using mice with streptozotocine-induced diabetes, with investigation of velocity of prekeratin and keratin biosynthesis and degradation using 14C-glycine, and evaluation of the content of -SH and -S-S groups in epidermal prekeratin. It has been found out that velocity of epidermal prekeratin and keratin in diabetic animals is higher than that in healthy group. SS and SH groups ratio in prekeratin in diabetic animals is 10 times as high as that in the control group. In the hair of diabetic mice an increased keratin turnover was observed as compared with the norm. The data testify that experimental diabetes manifests itself in increased intensity of keratin metabolism in epidermis and hair. These results may be used as the criteria in elaboration of non-invasive methods for diabetes diagnosis.  相似文献   

18.
Cornification of developing claws in the brush possum has been analysed by electron microscopy and compared with the process in other tetrapods. Newborns from 3 to 60 days postparturition were studied. After formation of symmetric and round outgrowth in digits the epidermis becomes thicker in the dorsal with respect to the ventral digit tip. The claw elongates forming the unguis and a shorter subunguis. Spinosus keratinocytes in both unguis and subunguis accumulate tonofilaments that fill their cytoplasm. Keratohyaline‐like granules are formed in early stages of differentiation in both unguis and subunguis but they later disappear in highly cornified corneocytes. Tonofilaments become electron‐dense in keratinocytes of the precorneous layer in the large corneocytes of the unguis and in narrow corneocytes of the subunguis. Keratin bundles transform into an amorphous corneous material that embeds or masks the original keratin intermediate filaments. Nucleated corneocytes are accumulated in the unguis while thinner corneocytes are present in the subunguis. The latter contain a dense material, possibly containing high sulphur keratin associated proteins, as occurs during cornifcation of the cortex and cuticle hair cells and in the nail. The process of cornification of mammalian claws is compared with that of reptilian and avian claws.  相似文献   

19.
Brillouin microscopy is a new form of optical elastography and an emerging technique in mechanobiology and biomedical physics. It was applied here to map the viscoelastic properties of human hair and to determine the effect of bleaching on hair properties. For hair samples, longitudinal measurements (i.e. along the fibre axis) revealed peaks at 18.7 and 20.7 GHz at the location of the cuticle and cortex, respectively. For hair treated with a bleaching agent, the frequency shifts for the cuticle and cortex were 19.7 and 21.0 GHz, respectively, suggesting that bleaching increases the cuticle modulus and—to a minor extent—the cortex modulus. These results demonstrate the capability of Brillouin spectroscopy to address questions on micromechanical properties of hair and to validate the effect of applied treatments.  相似文献   

20.
The Raman spectra observed from barnacle muscle fibers are quite complex because the cytoplasm of these cells contains several proteins and solutes. An extraction procedure was used to separate organic solutes from the contractile proteins. Glycine, trimethylamine oxide, taurine, and alanine were found to contribute to the Raman spectra of barnacle muscle fibers, while spectra of lobster fibers reveal the presence of betaine in addition. We have observed that the increase in osmolarity of the intracellular fluid caused by the augmentation of the salinity of sea water (density, 1.023-1.030) in which the barnacles were kept, induces a reduction of intensity of the amide I band. To distinguish among the different parameters which are modified by the sea water salinity, observations were made on glycerinated barnacle muscle fibers. The reduction of intensity of the amide I band in the Raman spectra of glycerinated muscle fibers was also observed with the addition of taurine (0.08 M) in the external relaxing solution. Therefore, under these experimental conditions, the Raman scattering intensity in the amide I region assigned to the alpha-helix conformation (1645-1650 cm-1) is increased when the concentration of organic electrolytes is reduced. However, as no significant decrease of the scattering intensity in the 1660-1670 cm-1 region where the amide I bands of either beta-sheet or disordered conformations normally appear was observed, the increase of intensity of the amide I band centered at 1645 cm-1 is assigned to a change of orientation of alpha-helical segments of the myosin molecules. Our results suggest that organic solutes influence the position of the S-2 segments relative to the thick filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号