首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seed storage-protein variation at theGlu-A1,Glu-B1 andGli-B1/Glu-B3 loci in the tetraploid wild progenitor of wheat,T. dicoccoides, was studied electrophoretically in 315 individuals representing nine populations from Jordan and three from Turkey. A total of 44 different HMW-glutenin patterns were identified, resulting from the combination of 15 alleles in the A genome and 19 in the B genome. Twenty-seven new allelic variants, 12 at theGlu-A1 locus and 15 at theGlu-B1 locus, were identified by comparing the mobilities of their subunits to those previously found in bread and durum wheats. The novel variants include six alleles at theGlu-A1 locus showing both x and y subunits. The genes coding for the 1Bx and 1By subunits showed no or very little (3%) inactivity, the 1Ax gene showed a moderate degree (6.3%) of inactivity whereas the gene coding for lAy showed the highest degree of inactivity (84.8%). A high level of polymorphism was also present for the omega- and gamma-gliadins and LMW-glutenin subunits encoded by genes at the linkedGli-B1 andGlu-B3 loci (19 alleles). Some Jordanian accessions were found to contain omega-gliadin 35, gamma-gliadin 45, and LMW-2 also present in cultivated durum wheats and related to good gluten viscoelasticity. The newly-discovered alleles enhance the genetic variability available for improving the technological quality of wheats. Additionally some of them may facilitate basic research on the relationship between industrial properties and the number and functionality of HMW- and LMW-glutenin subunits.  相似文献   

2.
Summary An F1 plant fromSecale cereale ssp.ancestrale xtelocentric substitution lines3R of the cultivated rye Petkus spring was used as female in a cross with the inbred line Riodeva (I28), which has the standard chromosome arrangement. Single plants from this backcross progeny were analyzed for chromosome constitution, storage protein, and isozymic patterns. The seed protein loci were identified asSec-1a andSec-1b loci controlling 40-K-secalins and-secalins, respectively. These loci are located on the short arm of chromosome1R. TheSec-3 locus controlling high-molecular-weight secalins is located on the long arm of chromosome1R. A further seed protein locus,Pr-3 (55-K protein), was located on the short arm of chromosome1R. A linkage was found between the6Pgd-2 isozyme locus controlling 6-phosphogluconate dehydrogenase isozymes located on the long arm of chromosome1R and the four seed protein loci. The results favor the gene order:6Pgd-2 ...Sec-3 ... [centromere] ...Pr-3 ...Sec-1b ...Sec-1a. Other linkages detected werePer-3a andPer-3b (0.33±0.33 cM),Est-8 andEst-12 (0.33±0.33 cM), andGot-3 and centromere (20.57±2.42 cM). The proxidase (Per), glutamate oxaloacetate transaminase (Got), and esterase (Est) loci were located on chromosome arms2RS,3RL, and6RL, respectively. The distances and the maps obtained are compared with data available in the literature.  相似文献   

3.
Summary The zymogram phenotypes of glucose-phosphate isomerase (GPI), alcohol dehydrogenase-1 (ADH-1), glutamate oxaloacetate transaminase (GOT), superoxide dismutase (SOD), lipoxygenase (LPX), esterase (EST) and the banding patterns of gliadin and glutenin seed storage proteins were determined for Triticum aestivum cv. Chinese Spring (CS), Dasypyrum villosum, the octoploid amphiploid T. aestivum cv. Chinese Spring D. villosum (CS × v) (2n=8x=56; AABBDDVV), and for five CS-D. villosum disomic addition lines. The genes Gpi-V1, Adh-V1, Got-V2, and Sod-V2 coding for GPI-1, ADH-1, GOT-2, and SOD-2 isozymes were located in D. villosum on chromosome 1V, 4V, 6V, and 7V, respectively. Genes coding for gliadin- and glutenin-like subunits are located in D. villosum chromosomes 1V. There are no direct evidence for chromosomal location of genes coding for GOT-3, EST-1 and LPX-2 isozymes. The linkage between genes coding for glutenin-like proteins and GPI-1 isozymes in chromosome 1V is evidence of homoeology between chromosome 1V and the chromosomes of homoeologous group 1 in wheat.Research supported by the National Research Council (Italy) and National Science Foundation (USA). International cooperative project, Grant No. 85.01504.06 (CNR)  相似文献   

4.
Precise mapping of a locus affecting grain protein content in durum wheat   总被引:12,自引:0,他引:12  
Grain protein content (GPC) is an important factor in pasta and breadmaking quality, and in human nutrition. It is also an important trait for wheat growers because premium prices are frequently paid for wheat with high GPC. A promising source for alleles to increase GPC was detected on chromosome 6B of Triticum turgidum var. dicoccoides accession FA-15-3 (DIC). Two previous quantitative trait locus (QTL) studies found that the positive effect of DIC-6B was associated to a single locus located between the centromere and the Nor-B2 locus on the short arm of chromosome 6B. Microsatellite markers Xgwm508 and Xgwm193 flanking the QTL region were used in this study to develop 20 new homozygous recombinant substitution lines (RSLs) with crossovers between these markers. These 20 RSLs, plus nine RSLs developed in previous studies were characterized with four new RFLP markers located within this chromosome segment. Grain protein content was determined in three field experiments organized as randomized complete block designs with ten replications each. The QTL peaks for protein content were located in the central region of a 2.7-cM interval between RFLP markers Xcdo365 and Xucw67 in the three experiments. Statistical analyses showed that almost all lines could be classified unequivocally within low- and high- protein groups, facilitating the mapping of this trait as a single Mendelian locus designated Gpc-6B1. The Gpc-6B1 locus was mapped 1.5-cM proximal to Xcdo365 and 1.2-cM distal to Xucw67. These new markers can be used to reduce the size of the DIC chromosome segment selected in marker-assisted selection programs. Markers Nor-B2 and Xucw66 flanking the previous two markers can be used to select against the DIC segment and reduce the linkage drag during the transfer of Gpc-6B1 into commercial bread and pasta wheat varieties. The precise mapping of the high GPC gene, the high frequency of recombinants recovered in the targeted region, and the recent development of a tetraploid BAC library including the Gpc-6B1 DIC allele are the first steps towards the map-based cloning of this gene.Communicated by J. Dvorak  相似文献   

5.
Previous estimates of the size ofDrosophila melanogaster chromosome4 have indicated that it is 1% to 4% of the genome or 6 Mb. We have used pulsed field gel electrophoresis (PFGE) to separate megabase-sized molecules ofD. melanogaster chromosomal DNA. Southern blots of these gels were probed with DNA fragments from thecubitus interruptus andzfh-2 genes, which are located on chromosome4. They each identify the same-sized distinct band that migrates at approximately 5.2 Mb in DNA preparations from the Kc cell line. We interpret this band to be intact chromosome4. In DNA obtained from embryos of variousD. melanogaster wild-type strains, this chromosome band showed strain-specific size variation that ranged from 4.5 to 5.2 Mb. TheD. melanogaster chromosome4 probes also identified a single, 2.4 Mb band in embryonic DNA fromDrosophila simulans. We conclude thatD. simulans chromosome4 is substantially smaller than that ofD. melanogaster, presumably owing to diffirences in the amount of heterochromatic DNA sequences. Our simple DNA preparation from embryos and PFGE conditions should permit preparative isolation of chromosome4 DNA and will facilitate the molecular mapping of this chromosome.  相似文献   

6.
The conservation of the linear order (colinearity) of genetic markers along large chromosome segments in wheat and rice is well established, but less is known about the microcolinearity between both genomes at subcentimorgan distances. In this study we focused on the microcolinearity between a 2.6-cM interval flanked by markers Xcdo365 and Xucw65 on wheat chromosome 6B and rice chromosome 2. A previous study has shown that this wheat segment includes the Gpc-6B1 locus, which is responsible for large differences in grain protein content (GPC) and is the target of a positional cloning effort in our laboratories. Twenty-one recombination events between Xcdo365 and Xucw65 were found in a large segregating population (935 gametes) and used to map 17 genes selected from rice chromosome 2 in the wheat genetic map. We found a high level of colinearity between a 2.1-cM region flanked by loci Xucw75 and Xucw67 on wheat chromosome 6B and a 350-kb uninterrupted sequenced region in rice chromosome arm 2S. Colinearity between these two genomes was extended to the region proximal to Xucw67 (eight colinear RFLP markers), but was interrupted distal to Xucw75 (six non-colinear RFLP markers). Analysis of different comparative studies between rice and wheat suggests that microcolinearity is more frequently disrupted in the distal region of the wheat chromosomes. Fortunately, the region encompassing the Gpc-6B1 locus showed an excellent conservation between the two genomes, facilitating the saturation of the target region of the wheat genetic map with molecular markers. These markers were used to map the Gpc-6B1 locus into a 0.3-cM interval flanked by PCR markers Xucw79 and Xucw71, and to identify five candidate genes within the colinear 64-kb region in rice.  相似文献   

7.
Drosophila nasutoides has an extraordinary genome since 62% of its DNA resides in chromosome4. This element mainly consists of constitutive heterochromatin which does not polytenize. Earlier studies of heterochromatin attributed little attention to the fact that condensed chromosomes often vary in condensation. This paper reports that chromosomes of the same complement display different degrees and kinetics of condensation. InD. nasutoides, even sex specific differences can be observed. The results of a comparative microphotometric study on neuroblast metaphases in both sexes revealed the following picture. The process of chromosome condensation is not restricted to mitotic prophase but continues into the metaphase. The mean condensation is not equal for all chromosomes. In the metaphase of the female, Feulgen density increases from theX chromosome, via3 and2, to chromosome4. In the male, the order isX, 2, 3, Y, and4. During the metaphase of the male, chromosomes condense with similar kinetics. In contrast, chromosomes of the female display asynchrony as monitored by area and length determinations. TheX chromosomes of the female probably have enhanced shortening during prophase. This would explain the metaphase of the female where theX chromosomes shorten less than the autosomes, and why each of theX chromosomes is 15% shorter than theX chromosome in the metaphase of the male. Further differences were observed in the longitudinal and lateral compaction of the chromosomes in males and females. The sex chromosomes and chromosome3 condense by shortening, while chromosomes2 and4 preferentially reduce their diameter. The large amount of DNA engaged in heteropycnosis and the isochromosome nature allow the identification of chromosome4 during interphase. At this stage, a new category of extreme DNA packaging was detected. The interphase density of chromosome4 can exceed that of metaphase by a factor of up to 8. Two events account for this high degree of condensation:(1) the homologues are particularly associated due to somatic pairing and (2) the arms are further tightened as a result of pericentric folding. The features of the isochromosome suggest that the interaction of chromatids during interphase is essentially caused by specific DNA sequences. The data confirm that heteropycnosis not only interferes with gene expression but also strongly inhibits DNA synthesis in endocycles.  相似文献   

8.
9.
Summary C-banding patterns and nucleolar activity were analyzed in Dasypyrum villosum, its added chromosomes to hexaploid wheat and the hexaploid amphiploid Triticum dicoccum-D. villosum. Two different populations of the allogamous species D. villosum (2n= 14, VV) from Greece and Italy were analyzed showing a similar polymorphism for C-banding pattern. Six of the seven addition lines were identified by their characteristic C-banding pattern. No polymorphism between both members of each added alien chromosome was found. Furthermore, nucleolar activity and competition were studied by using silver staining procedure. In D. villosum only one chromosome pair, A, was found to be responsible for organizing nucleoli. The results obtained in the amphiploid and in the addition lines demonstrate that nucleolar activity is restricted to SAT-chromosomes 1B and 6B of wheat, while those of D. villosum remain inactive.  相似文献   

10.
The high-molecular-weight (HMW) glute-nin subunit composition of seven species from the Cylindropyrum and Vertebrata sections of the Aegilops genus was studied using SDS-PAGE and Western blot analysis. Two subunits were detected in Ae. caudata and three in Ae. cylindrica. In both species, subunits showing electrophoretic mobility similar to that of 1Dx2 were present. Western blot analysis using a monoclonal antibody (IFRN 1602) specific for the 1Ax and 1Dx subunits of bread wheat showed that the 1Dx-like subunit of Ae. caudata gave only a weak reaction. This indicates that Ae. caudata expresses subunits which are more distantly related to the 1Dx subunits. Two subunits were detected in each of the 60 accessions of Ae. tauschii, including several 1Dtx subunits showing different electrophoretic mobilities from those of the 1Dx subunits commonly found in bread wheat. All of the 1Dtx subunits reacted strongly with IFRN 1602, confirming their close relationship to the 1Dx subunits of bread wheat. Three subunits were found in Ae. crassa (6 x), four in Ae. ventricosa and Ae. juvenalis and five in Ae. vavilovii. In these four species, the subunits that showed electrophoretic mobility similar, or close, to that of 1Dx2 all reacted with IFRN 1602. In addition, Ae. ventricosa contained a subunit showing electrophoretic mobility slower than that of 1Dx2.2, which also reacted with IFRN 1602. These results suggest that the D-genome component in the multiploid Aegilops species express at least one HMW glutenin subunit that is structurally related to the 1Dx subunits of bread wheat. Received: 5 November 1999 / Accepted: 12 February 2000  相似文献   

11.
A homogeneous array of 80 tandem repeats of the Bari1 transposon is located in the pericentromeric h39 region of chromosome 2 of Drosophila melanogaster. Here, we report that the Bari1 cluster is interrupted by an 8556-bp insertion. DNA sequencing and database searches identified this insertion as a previously unannotated retrotransposon that we have named MAX. MAX possesses two ORFs; ORF1 putatively encodes a polyprotein comprising GAG and RT domains, while ORF2 could encode a 288-amino acid protein of unknown function. Alignment with the RT domains of known LTR retrotransposons shows that MAX belongs to the BEL-Pao family, which remarkable for its widespread presence in different taxa, including lower chordates. We have analyzed the distribution of MAX elements within representative species of the Sophophora subgroup and found that they are restricted to the species of the melanogaster complex, where they are heavily represented in the heterochromatin of all autosomes and on the Y chromosome.Communicated by G. P. Georgiev  相似文献   

12.
Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin   总被引:1,自引:0,他引:1  
Summary Analysis of intergeneric substitution lines in hexaploid wheats by a two-step electrophoretic method of protein separation revealed that low-molecular-weight (LMW) subunits of glutelin in Triticum longissimum, T. Umbelullatum, Elytrigia elongata (2 x) were controlled by chromosomes/chromosome arms 1S l , 1U, and 1ES, respectively. A LMW glutelin band in Secale montanum was detected but its chromosomal location could not be determined. Genes controlling gliadins and HMW subunits of glutelin were also located on chromosome 1S l in T. longissimum.The term glutelin refers to the polymeric prolamins of cereals, e.g., glutenins in wheat, HMW, and 75-k secalins in rye  相似文献   

13.
The F2 progeny of a cross between a chromosome 2 multiple marker stock and an adapted cultivar of barley were analyzed for four morphological markers and electrophoretic patterns of eight leaf isozymes. TheIdh-2 locus was linked to thePer-5 locus (27.96±5.07 cM) and to thee locus (10.26±3.13 cM). Also, thePer-5 ande loci were located on the short arm of chromosome 2. In additionIdh-2 was also located on barley chromosome 2 and was linked to thev locus (13.18±3.56 cM), which is located on the long arm of chromosome 2. Two other marker genes,li andwst,,B, were linked (26.50±5.24 cM) on chromosome 2 but segregate independently of the other loci evaluated. This project was supported by funds from the U.S.-Spain Joint Committee for Scientific and Technological Cooperation.  相似文献   

14.
The protein named T1, present in Triticum tauschii, was previously characterized as a high-molecular-weight (HMW) glutenin subunit with a molecular size similar to that of the y-type glutenin subunit-10 of Triticum aestivum. This protein was present along with other HMW glutenin subunits named 2t and T2, and was considered as part of the same allele at the Glu-D t 1 locus of T. tauschii. This paper describes a re-evaluation of this protein, involving analyses of a collection of 173 accessions of T. tauschii, by SDS-PAGE of glutenin subunits after the extraction of monomeric protein. No accessions were found containing the three HMW glutenin subunits. On the other hand, 17 lines with HMW glutenin subunits having electrophoretic mobilities similar to subunits 2t and T2 were identified. The absence of T1 protein in these gel patterns has shown that protein T1 is not a component of the polymeric protein. Rather, the T1 protein is an ω-gliadin with an unusually high-molecular-weight. This conclusion is based on acidic polyacrylamide gel electrophoresis (A-PAGE), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and two-dimensional gel electrophoresis (A-PAGE+ SDS-PAGE), together with analysis of its N-terminal amino-acids sequence. The inheritance of ω-gliadin T1 was studied through analyses of gliadins and HMW glutenins in 106 F2 grains of a cross between synthetic wheat, L/18913, and the wheat cv Egret. HMW glutenin subunits and gliadins derived from T. tauschii (Glu-D t 1 and Gli-D t 1) segregated as alleles of the Glu-D1 and Gli-D1 loci of bread wheat. A new locus encoding the ω-gliadin T1 was identified and named Gli-DT1. The genetic distance between this new locus and those of endosperm proteins encoded at the 1D chromosome were calculated. The Gli-DT1 locus is located on the short arm of chromosome 1D and the map distance between this locus and the Gli-D1 and Glu-D1 loci was calculated as 13.18 cM and 40.20 cM, respectively. Received: 13 October 2000 / Accepted: 18 April 2001  相似文献   

15.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases worldwide. Pyramiding different resistance genes into single cultivar has been proposed as one remedy to provide durable resistance. Powdery mildew resistance genes Pm12 (T6BS-6SS.6SL), transferred from Aegilops speltoides to wheat cv. Wembley, and Pm21 (T6VS.6AL), introduced from Dasypyrum villosum to wheat cv. Yangmai5, conferred broad-spectrum resistance to B. graminis f. sp. tritici. Both Pm12 and Pm21 genes are located on the short arms of homologous group six involved translocated chromosomes 6SS.6BL and 6VS.6AL, respectively. Simple sequence repeat motifs of wheat simple sequence repeat (SSR) and expressed sequence tag (EST) sequences on the short arm of homologous group six chromosomes were analyzed to develop molecular markers for discriminating chromosome arms 6AS, 6BS, 6DS, 6VS, and 6SS. One EST–SSR marker, Xcau127, was polymorphic, and therefore can be used to distinguish the two resistance genes and the respective susceptible alleles. This marker allowed us to develop an efficient “one-marker-for-two-genes” procedure for identifying powdery mildew resistance genes Pm12 and Pm21 for marker-assisted selection and gene pyramiding in wheat breeding programs. Wei Song and Chaojie Xie contributed equally to this work  相似文献   

16.
Summary Restriction enzyme digestion of the ribosomal RNA genes of the nucleolar organisers of wheat has revealed fragment length polymorphisms for the nucleolar organiser on chromosome 1B and the nucleolar organiser on 6B. Variation between genotypes for these regions has also been demonstrated. This variation has been exploited to determine the recombination frequency between the physically defined nucleolar organiser on 1B (designatedNor1) and other markers; two loci,Glu-B1 andGli-B1 which code for endosperm storage proteins andRf3, a locus restoring fertility to male sterility conditioned byT. timopheevi cytoplasm.Gli-B1 andRf3 were located on the short-arm satellite but recombine with the nucleolar organiser giving a gene order ofNor1 — Rf3 — Gli-B1. Glu-B1 is located on the long arm of 1B but shows relatively little recombination withNor1, which is, in physical distance, distal on the short arm. This illustrates the discrepancy between map distance and physical distance on wheat chromosomes due to the distal localisation of chiasmata. The recombination betweenNor1 andRf3 indicates that, contrary to previous suggestions, fertility restoration is not a property of the nucleolar organiser but of a separate locus.  相似文献   

17.
Stem rust (Puccinia graminis f. sp. tritici Eriks. & E. Henn.) (the causal agent of wheat stem rust) race Ug99 (also designated TTKSK) and its derivatives have defeated several important stem rust resistance genes widely used in wheat (Triticum aestivum L.) production, rendering much of the worldwide wheat acreage susceptible. In order to identify new resistance sources, a large collection of wheat relatives and genetic stocks maintained at the Wheat Genetic and Genomic Resources Center was screened. The results revealed that most accessions of the diploid relative Dasypyrum villosum (L.) Candargy were highly resistant. The screening of a set of wheat–D. villosum chromosome addition lines revealed that the wheat–D. villosum disomic addition line DA6V#3 was moderately resistant to race Ug99. The objective of the present study was to produce and characterize compensating wheat–D. villosum whole arm Robertsonian translocations (RobTs) involving chromosomes 6D of wheat and 6V#3 of D. villosum through the mechanism of centric breakage-fusion. Seven 6V#3-specific EST–STS markers were developed for screening F2 progeny derived from plants double-monosomic for chromosomes 6D and 6V#3. Surprisingly, although 6D was the target chromosome, all recovered RobTs involved chromosome 6A implying a novel mechanism for the origin of RobTs. Homozygous translocations (T6AS·6V#3L and T6AL·6V#3S) with good plant vigor and full fertility were selected from F3 families. A stem rust resistance gene was mapped to the long arm 6V#3L in T6AS·6V#3L and was designated as Sr52. Sr52 is temperature-sensitive and is most effective at 16°C, partially effective at 24°C, and ineffective at 28°C. The T6AS·6V#3L stock is a new source of resistance to Ug99, is cytogenetically stable, and may be useful in wheat improvement.  相似文献   

18.
TheNor-loci of polyploid wheats and their putative diploid progenitor species were assayed by probing isolated nuclear DNA with ribosomal DNA spacer sequences (spacer rDNA sequences, isolated by cloning), from theNor-loci of genomes B (Triticum aestivum), G (T. timopheevi), B (syn. S,T. speltoides), A (T. monococcum) and V (Dasypyrum villosum). DNA samples for analysis were digested with the restriction endonuclease Taq 1 and assayed by DNA-DNA hybridization under standard (37°C) and high stringency (64°C) conditions. The assay procedure emphasized differences between the divergent spacer sequences of the polyploid species and allowed relative homologies to the respective sequences in diploid species to be established. — The studies indicated thatT. timopheevi andT. speltoides contain different sets of spacer rDNA sequences which were readily distinguishable and, in the case ofT. timopheevi, assigned toNor-loci on different chromosomes. This contrast with the spacer rDNA sequences of the majorNor-loci on chromosomes 1 B and 6 B inT. aestivum, which were difficult to distinguish and were deduced to contain very similar sequences. Among the diploid progenitor species only the spacer rDNA fromT. speltoides shared close homology with polyploid wheat species. OneNor-locus inT. timopheevi (on chromosome 6 G) did not show close homology with any of the rDNA spacer probes available. — The data suggestsT. speltoides was the origin of someNor-loci for both theT. timopheevi andT. turgidum lines of tetraploid wheats. The possibility that the 6GNor-locus inT. timopheevi may have derived from an unknown diploid species by introgressive hybridization is discussed. The spacer rDNA sequence probe fromT. monococcum shared good homology with some accessions ofD. villosum and a line ofT. dicoccoides; the implications of this finding for evolution of present-day wheats are discussed.  相似文献   

19.
Dasypyrum villosum (L.) Candargy (2n=14, V genome) is a wild, allogamous, diploid grass species that is a potential genetic resource for wheat improvement. The diversity of high-molecular-weight (HMW) glutenin subunits of the seed storage proteins of this species was examined in populations sampled in their natural habitats in Italy and Yugoslavia where the species is widely distributed. The results of selfed progeny tests confirmed that the allelic variation of HMW-glutenin subunits in D. villosum is controlled by a single locus (Glu-V1). Fourteen alleles at Glu-V1 were found among 982 individuals representing 12 populations from Italy and two from Yugoslavia, with a mean of seven alleles per population. Among the 14 Glu-V1 alleles, one produced no HMW-glutenin subunits, ten coded for a single subunit, and three for two subunits. The mobilities of all the subunits in SDS-PAGE gels were greater than that of reference subunit 7 of Triticum aestivum cv Chinese Spring. Eight of the alleles were relatively abundant (mean frequency over all populations ranged from 0.08 to 0.17) and distributed widely among the 14 populations (8 to 14); five of the alleles were rare (0.003 to 0.021) and found in only 1 to 5 populations. The frequencies of two alleles could not be individually estimated because of the similar electrophoretic mobility of their subunits. The multiple-allelic diversity at Glu-V1 was high (He ranged from 0.700 to 0.857) but similar from population to population. Overall, about 7% of the total allelic variation was distributed among populations (Gst=0.072), and more than 90% within populations. Whether the allelic variation at Glu-V1 is subject to natural selection is unknown, but the discovery of the homozygous null Glu-V1 alleles in the present study may be useful in pursuing this question. The multiple-allelic diversity in Glu-V1 presents the plant breeder with an opportunity to evaluate and select the most useful alleles for transfer to wheat. The importance of an evaluation genetic diversity in a wild species before interspecific gene transfers are attempted is well illustrated in this study.  相似文献   

20.
Summary The high-molecular-weight glutenin subunits (HMW glutenin), encoded by alleles at homoeologous lociGlu-A1,Glu-B1, andGlu-D1 on the long arms of chromosomes1A,1B, and1D of a set of F8 random recombinant inbred lines (RIL) derived from the bread wheat cross Anza × Cajeme 71, were classified by SDS-PAGE. Anza has poor breadmaking quality and HMW-glutenin subunits (Payne numbers) null (Glu-A1c), 7+8 (Glu-B1b), and 2+12 (Glu-D1a); Cajeme 71 has good quality and 1 (Glu-A1a), 17+18 (Glu-B1i), and 5+10 (Glu-D1d). The combinations of these alleles in the RIL were examined for associations with grain yield and four indicators of grain quality — protein content, yellowberry, pearling index, and SDS sedimentation volume. Data were obtained from a field experiment with three nitrogen fertilization treatments on 48 RIL and the parents. Orthogonal partitioning of the genetic variance associated with the three HMW glutenin subunit loci into additive and epistatic (digenic and trigenic) effects showed strong associations of these loci with grain yield and the indicators of quality; however, the associations accounted for no more than 25% of the differences between the parents. Genetic variance was detected among the RIL, which had the same HMW glutenin genotype for all traits. Epistatic effects were absent for grain yield and yellowberry, but were substantial for grain protein content, pearling index, and SDS sedimentation volume. All three loci had large single-locus additive effects for grain yield, protein, and SDS sedimentation volume. Yellowberry was largely influenced byGlu-B1 andGlu-D1, whereas pearling index was associated withGlu-A1 andGlu-B1. Even though the observed associations-of effects of HMW glutenin loci with the quantitative characters were small relative to the total genetic variability, they are of considerable importance in understanding the genetics of wheat quality, and are useful in the development of new wheat varieties with specific desired characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号