首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Early NEC symptoms are non-specific and diagnostic tests lack discriminative power. Intestinal fatty acid-binding protein (I-FABP), mainly located in small bowel enterocytes, is released into the blood following NEC-associated enterocyte disruption. Aim of this prospective cohort trial was to determine the diagnostic value of I-FABP measured in plasma (I-FABPp) and urine (I-FABPu) for the presence of NEC, to evaluate I-FABP levels during NEC development, and to assess its prognostic value for the progression from suspected to complicated disease.

Methods

Between 2010 and 2012 we prospectively enrolled neonates with suspected NEC. We measured I-FABP levels eight-hourly from onset of suspected NEC for at least 48 hours, or until surgery. NEC diagnosis was confirmed radiologically or during operation. We defined NEC as complicated if it resulted in surgery and/or death. We determined disease course and diagnostic I-FABP cut-off points.

Results

The study comprised 37 neonates (24M, 13F), gestational age 28 (24–36) weeks, birth weight 1190 (570–2,400) grams. We found significantly higher I-FABPp and I-FABPu levels in NEC patients (n = 22) than in patients with other diagnoses (n = 15). Cut-off values for diagnosing NEC were 9 ng/mL I-FABPp and 218 ng/mL I-FABPu, with corresponding likelihood ratios (LRs) of 5.6 (95% CI 0.89–35) and 5.1 (95% CI 0.73–36), respectively. I-FABP levels were highest in the first eight hours after symptom onset and gradually decreased over time. Cut-off values for complicated disease were 19 ng/mL I-FABPp and 232 ng/mL I-FABPu, with LRs of 10 (95% CI 1.6–70) and 11 (95% CI 1.6–81), respectively.

Conclusions

Both plasma and urinary I-FABP levels specifically identify NEC in preterm infants prior to appearance of diagnostic radiological signs suggestive for NEC. Moreover, serial I-FABP measurements accurately predict development of complicated disease.  相似文献   

2.
Although intestinal (I) and liver (L) fatty acid binding proteins (FABP) have been widely studied, the physiological significance of the presence of the two FABP forms (I- and L-FABP) in absorptive cells remains unknown as do the differences related to their distribution along the crypt-villus axis, regional expression, ontogeny and regulation in the human intestine. Our morphological experiments supported the expression of I- and L-FABP as early as 13 weeks of gestation. Whereas cytoplasmic immunofluorescence staining of L-FABP was barely detectable in the lower half of the villus and in the crypt epithelial cells, I-FABP was visualized in epithelial cells of the crypt-villus axis in all intestinal segments until the adult period in which the staining was maximized in the upper part of the villus. Immunoelectron microscopy revealed more intense labeling of L-FABP compared with I-FABP, accompanied with a heterogeneous distribution in the cytoplasm, microvilli and basolateral membranes. By western blot analysis, I- and L-FABP at 15 weeks of gestation appeared predominant in jejunum compared with duodenum, ileum, proximal and distal colon. Exploration of the maturation aspect documented a rise in L-FABP in adult tissues. Permanent transfections of Caco-2 cells with I-FABP cDNA resulted in decreased lipid export, apolipoprotein (apo) biogenesis and chylomicron secretion. Additionally, supplementation of Caco-2 with insulin, hydrocortisone and epidermal growth factor differentially modulated the expression of I- and L-FABP, apo B-48 and microsomal triglyceride transfer protein (MTP), emphasizing that these key proteins do not exhibit a parallel modulation. Overall, our findings indicate that the two FABPs display differences in localization, regulation and developmental pattern.  相似文献   

3.
Intestinal and liver fatty acid binding proteins (I- and L-FABP) are thought to play a role in enterocyte fatty acid (FA) trafficking. Their modulation by cell differentiation and various potential effectors was investigated in the human Caco-2 cell line. With the acquisition of enterocytic features, Caco-2 cells seeded on plastic progressively increased L-FABP quantities, whereas I-FABP was not detectable even very late in the maturation process. On permeable filters that improved differentiation markers (sucrase, alkaline phosphatase, transepithelial resistance), Caco-2 cells furthered their L-FABP content and expressed I-FABP. Western blot analysis showed a significant increase in I- and L-FABP expression following an 8-hour incubation period with butyric acid, oleic acid, and phosphatidylcholine. However, in all cases, I-FABP levels were higher than L-FABP concentrations regardless of the lipid substrates added. Similarly, hydrocortisone and insulin enhanced the cellular content of I- and L-FABP whereas leptin triggered I-FABP expression only after an 8-hour incubation. Finally, tumor necrosis factor-alpha was more effective in increasing the cytosolic amount of I-FABP levels. In conclusion, our data demonstrate that I-FABP expression is limited to fully differentiated Caco-2 cells and can be more easily regulated than L-FABP by lipids, hormones, and cytokines.  相似文献   

4.
Enterocytes in the small intestinal mucosa contain abundant quantities of two homologous cytosolic proteins known as intestinal and liver fatty acid-binding proteins (I- and L-FABP, respectively). To elucidate structure-function relationships for these proteins, the interactions between 13C-enriched palmitate and oleate and Escherichia coli-expressed rat I- and L-FABP were systematically compared using 13C NMR spectroscopy. NMR spectra of samples containing fatty acids (FA) and I-FABP at different molar ratios (all at pH 7.2 and 37 degrees C) exhibited a single carboxyl resonance corresponding to FA bound to I-FABP (181.4 ppm, peak I) and an additional carboxyl resonance corresponding to unbound FA in a bilayer phase (179.6 ppm). Peak I reached a maximum intensity corresponding to 1 mol of bound FA/mol of I-FABP under all sample conditions examined. NMR spectra for samples containing FA and L-FABP also exhibited a single carboxyl resonance corresponding to FA bound to L-FABP but at a different chemical shift value (182.2 ppm, peak L). Its maximum intensity varied depending on the physical state of the unbound FA (liquid crystalline or crystalline), the FA used (palmitate or oleate), and the sample pH. In the presence of a liquid crystalline (bilayer) phase, up to 1 (oleate) or 2 (palmitate) mol of FA were bound/mol of L-FABP, but in the presence of a crystalline phase (1:1 acid-soap), up to 3 mol of palmitate were bound/mol of L-FABP (all at pH 7.2). Peak I exhibited little or no ionization shift over a wide pH range (pH 3.0-11.0), and its chemical shift was unaffected by the ionization of Lys and His residues. Hence, the carboxylate group of FA bound to I-FABP was solvent inaccessible and most likely involved in an ion-pair electrostatic interaction with the delta-guanidinium moiety of an Arg residue. In contrast, peak L exhibited an ionization shift and an estimated apparent pKa value similar to that obtained for monomeric FA in water, suggesting that the carboxylate groups of FA bound to L-FABP were solvent accessible and located at or near the protein solvent interface. With decreasing pH, FA dissociated from L-FABP but not I-FABP, as monitored by NMR peak intensities. Concurrently, a large decrease in circular dichroism molar ellipticity was observed with L-FABP but not I-FABP. In conclusion, I-FABP and L-FABP are distinct with regards to their FA-binding stoichiometries, binding mechanisms, and sensitivity to pH.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Rat intestinal fatty acid-binding protein (I-FABP) is an abundant, 15,124-Da polypeptide found in the cytosol of small intestinal epithelial cells (enterocytes). It is homologous to rat liver fatty acid-binding protein (L-FABP), a 14,273-Da cytosolic protein which is found in enterocytes as well as hepatocytes. It is unclear why the small intestinal epithelium contains two abundant fatty acid-binding proteins. A systematic comparative analysis of the ligand binding characteristics of the two FABPs has not been reported. To undertake such a study we expressed the coding region of a full length I-FABP cDNA in Escherichia coli and purified large quantities of the protein. We also purified rat L-FABP from a similar, previously described expression system (Lowe, J. B., Strauss, A. W., and Gordon, J. I. (1984) J. Biol. Chem. 259, 12696-12704). Analysis of fatty acids associated with each of the homogeneous E. coli-derived FABPs suggested that the two proteins differed in their ligand binding specificity and capacity. All of the fatty acids associated with I-FABP were saturated while 30% of the E. coli fatty acids bound to L-FABP were unsaturated (16:1, 18:1, 18:2). We directly analyzed the ability of I- and L-FABP to bind fatty acids of different chain length and degree of saturation using a hydroxyalkoxypropyl dextran-based assay. Scatchard analysis revealed that each mole of L-FABP can bind up to 2 mol of long chain fatty acid while each mole of I-FABP can bind only 1 mole of fatty acid. L-FABP exhibited a relatively higher affinity for unsaturated fatty acids (oleate, arachidonate) than for saturated fatty acid (palmitate). By contrast, we were not able to detect a significant difference in the affinity of I-FABP for palmitate, oleate, and arachidonate. Neither protein exhibited any appreciable affinity for fatty acids whose chain length was less than C16. The observed differences in ligand affinities and capacities suggest that these proteins may have distinct roles in metabolism and/or compartmentalization of fatty acids within enterocytes.  相似文献   

6.
It was shown previously that the intestinal fatty acid binding protein (I-FABP) is not essential for the absorption of dietary fat. One notable feature of I-FABP deficiency was the enhancement of body weight gain in male mice but not in female mice. To explore a possible cause for this gender dimorphic effect, we examined the changes in expression of genes that encode liver fatty acid binding protein (L-FABP) and ileal lipid binding protein in the small intestine resulting from I-FABP deficiency. The results indicate that both L-FABP and ilbp levels are modestly increased in the small intestine of chow-fed mice lacking I-FABP. There was no discernible alteration of overall morphology or histology in the small intestine but changes in liver histology were evident in I-FABP deficient male mice. Glucose tolerance was also investigated in aged mice. I-FABP deficiency had no effect on glucose tolerance in male mice but it appeared to be improved in female mice. Thus, male and female mice clearly respond differently to the loss of I-FABP from the small intestine but the observed changes in the abundance of L-FABP and ilbp protein do not readily account for this phenomenon. (Mol Cell Boichem xxx: 1–8, 2005)  相似文献   

7.
8.
Necrotizing enterocolitis (NEC) is an inflammatory disease of the newborn bowel, primarily affecting premature infants. Early intestinal colonization has been implicated in the pathogenesis of NEC. The objective of this prospective case-control study was to evaluate differences in the intestinal microbiota between infants who developed NEC and unaffected controls prior to disease onset. We conducted longitudinal analysis of the 16S rRNA genes of 312 samples obtained from 12 NEC cases and 26 age-matched controls with a median frequency of 7 samples per subject and median sampling interval of 3 days. We found that the microbiome undergoes dynamic development during the first two months of life with day of life being the major factor contributing to the colonization process. Depending on when the infant was diagnosed with NEC (i.e. early vs. late onset), the pattern of microbial progression was different for cases and controls. The difference in the microbiota was most overt in early onset NEC cases and controls. In proximity to NEC onset, the abundances of Clostridium sensu stricto from Clostridia class were significantly higher in early onset NEC subjects comparing to controls. In late onset NEC, Escherichia/Shigella among Gammaproteobacteria, showed an increasing pattern prior to disease onset, and was significantly higher in cases than controls six days before NEC onset. Cronobacter from Gammaproteobacteria was also significantly higher in late onset NEC cases than controls 1-3 days prior to NEC onset. Thus, the specific infectious agent associated with NEC may vary by the age of infant at disease onset. We found that intravenously administered antibiotics may have an impact on the microbial diversity present in fecal material. Longitudinal analysis at multiple time points was an important strategy utilized in this study, allowing us to appreciate the dynamics of the premature infant intestinal microbiome while approaching NEC at various points.  相似文献   

9.
Necrotizing enterocolitis (NEC) is the most common intestinal disease of premature infants. Although increased mucosal permeability and altered epithelial structure have been associated with many intestinal disorders, the role of intestinal barrier function in NEC pathogenesis is currently unknown. We investigated the structural and functional changes of the intestinal barrier in a rat model of NEC. In addition, the effect of EGF treatment on intestinal barrier function was evaluated. Premature rats were divided into three groups: dam fed (DF), formula fed (NEC), or fed with formula supplemented with 500 ng/ml EGF (NEC + EGF); all groups were exposed to asphyxia/cold stress to develop NEC. Intestinal permeability, goblet cell density, mucin production, and composition of tight junction (TJ) proteins were evaluated in the terminal ileum, the site of NEC injury, and compared with the proximal jejunum, which was unaffected by NEC. Animals with NEC had significantly increased intestinal paracellular permeability compared with DF pups. Ileal goblet cell morphology, mucin production, and TJ composition were altered in animals with NEC. EGF treatment significantly decreased intestinal paracellular permeability, increased goblet cell density and mucin production, and normalized expression of two major TJ proteins, occludin and claudin-3, in the ileum. In conclusion, experimental NEC is associated with disruption of the intestinal barrier. EGF treatment maintains intestinal integrity at the site of injury by accelerating goblet cell maturation and mucin production and normalizing expression of TJ proteins, leading to improved intestinal barrier function.  相似文献   

10.
Necrotizing enterocolitis (NEC) is a devastating intestinal disease of premature infants. Although end-stage NEC is characterized histopathologically as extensive necrosis, apoptosis may account for the initial loss of epithelium before full development of disease. We have previously shown that epidermal growth factor (EGF) reduces the incidence of NEC in a rat model. Although EGF has been shown to protect intestinal enterocytes from apoptosis, the mechanism of EGF-mediated protection against NEC is not known. The aim of this study was to investigate if EGF treatment elicits changes in expression of apoptotic markers in the ileum during the development of NEC. With the use of a well-established neonatal rat model of NEC, rats were divided into the following three experimental groups: dam fed (DF), milk formula fed (NEC), or fed with formula supplemented with 500 ng/ml EGF (NEC+EGF). Changes in ileal morphology, gene and protein expression, and histological localization of apoptotic regulators were evaluated. Anti-apoptotic Bcl-2 mRNA levels were markedly reduced and pro-apoptotic Bax mRNA levels were markedly elevated in the NEC group compared with DF controls. Supplementation of EGF into formula significantly increased anti-apoptotic Bcl-2 mRNA, whereas pro-apoptotic Bax was significantly decreased. The Bax-to-Bcl-2 ratio for mRNA and protein was markedly decreased in NEC+EGF animals compared with the NEC group. The presence of caspase-3-positive epithelial cells was markedly reduced in EGF-treated rats. These data suggest that alteration of the balance between pro-and anti-apoptotic proteins in the site of injury is a possible mechanism by which EGF maintains intestinal integrity and protects intestinal epithelium against NEC injury.  相似文献   

11.
Binding and proximity relationships of fatty acids with recombinant rat liver fatty acid-binding protein (L-FABP) and intestinal fatty acid-binding protein (I-FABP) were studied with absorption and fluorescence spectroscopy. Protein aromatic amino acids were examined in the absence and presence of bound fatty acid. Second derivative absorbance spectroscopy of the apo- and holoproteins suggested that fatty acid binding altered the conformation of L-FABP, but not of I-FABP. Fatty acid binding also blocked the accessibility of L-FABP tyrosine and I-FABP tryptophan to Stern-Volmer quenching by acrylamide, indicating that these amino acids were present in the fatty acid-binding pocket. Forster energy transfer from I-FABP tryptophan to bound cis-parinaric acid resulted in quenching of tryptophan lifetime and appearance of sensitized lifetime of bound cis-parinaric acid. The calculated donor-acceptor distances were 16.9 +/- 0.6 and 19.2 +/- 0.3 A for I-FABP and L-FABP, respectively. Absorbance spectral shifts and ratios of fluorescence excitation maxima indicated that the parinaric acid microenvironment in the fatty acid-binding site of I-FABP was much less polar than that of L-FABP. Parinaric acids displayed similar rotational correlation time and limiting anisotropy when bound to I-FABP and to L-FABP. These results are consistent with a close proximity of bound fatty acids to the tyrosine and tryptophan residues and with immobilization of the polyene fatty acids in the fatty acid-binding site(s) of L-FABP and I-FABP. The two proteins differ in that only L-FABP has two fatty acid-binding sites and appears to undergo significant conformational change upon fatty acid binding.  相似文献   

12.
Human liver fatty acid binding protein (L-FABP) cDNA clones were identified in a liver cDNA library. The two longest clones were completely sequenced. The nucleotide sequence predicts a protein of 127 amino acid residues. Identity of the clones was confirmed by limited amino acid sequence analysis of purified human L-FABP peptides and Edman degradation of radiolabeled in vitro translated FABP. Statistical analysis of the amino acid and mRNA sequences of human L-FABP, rat L-FABP, rat intestinal (I-) FABP, and mouse 422 protein indicates that the human and rat L-FABPs are highly homologous and that L-FABP and I-FABP diverged a long time ago (approximately 650-690 million years ago), although they are more closely related to each other than either of them is to 422 protein. Secondary structure predictions from the primary sequence of human and rat L-FABP reveal a region (residues 12-30) that might be the putative fatty acid binding domain of the two L-FABPs. Knowledge of the primary amino acid sequence of L-FABP and possible functional domains will be pivotal in further defining and understanding the mechanism of ligand binding and transfer by this protein.  相似文献   

13.
To identify early markers of necrotizing enterocolitis (NEC), we hypothesized that continuous abdominal near-infrared spectroscopy (A-NIRS) measurement of splanchnic tissue oxygen saturation and intermittent plasma intestinal fatty-acid binding protein (pI-FABP) measured every 6 hours can detect NEC prior to onset of clinical symptoms. Premature piglets received parenteral nutrition for 48-hours after delivery, followed by enteral feeds every three hours until death or euthanasia at 96-hours. Continuous A-NIRS, systemic oxygen saturation (SpO2), and heart rate were measured while monitoring for clinical signs of NEC. Blood samples obtained at 6-hour intervals were used to determine pI-FABP levels by ELISA. Piglets were classified as fulminant-NEC (f-NEC), non-fulminant-NEC (nf-NEC) and No-NEC according to severity of clinical and histologic features. Of 38 piglets, 37% (n=14) developed nf-NEC, 18% (n=7) developed f-NEC and 45% (n=17) had No-NEC. There were significant differences in baseline heart rate (p=0.008), SpO2 (p<0.001) and A-NIRS (p<0.001) among the three groups. A-NIRS values of NEC piglets remained lower throughout the study with mean for f-NEC of 69±3.8%, 71.9±4.04% for nf-NEC, and 78.4±1.8% for No-NEC piglets (p<0.001). A-NIRS <75% predicted NEC with 97% sensitivity and 97% specificity. NEC piglets demonstrated greater variability from baseline in A-NIRS than healthy piglets (10.1% vs. 6.3%; p=0.04). Mean pI-FABP levels were higher in animals that developed NEC compared to No-NEC piglets (0.66 vs. 0.09 ng/mL;p<0.001). In f-NEC piglets, pI-FABP increased precipitously after feeds (0.04 to 1.87 ng/mL;p<0.001). pI-FABP levels increased in parallel with disease progression and a value >0.25ng/mL identified animals with NEC (68% sensitivity and 90% specificity). NIRS is a real-time, non-invasive tool that can serve as a diagnostic modality for NEC. In premature piglets, low A-NIRS in the early neonatal period and increased variability during initial feeds are highly predictive of NEC, which is then confirmed by rising plasma I-FABP levels. These modalities may help identify neonates with NEC prior to clinical manifestations of disease.  相似文献   

14.
Mammalian intestinal fatty acid-binding protein (I-FABP) is a small cytosolic protein and is thought to play a crucial role of intracellular fatty acid trafficking and metabolism in gut. To establish an in vivo system for investigating its tissue-specific regulation during zebrafish intestinal development, we isolated 5'-flanking sequences of the zebrafish L-FABP gene and used a transgenic strategy to generate gut-specific transgenic zebrafish with green/red fluorescent intestine. The 4.5-kb 5'-flanking sequence of zebrafish I-FABP gene was sufficient to direct fluorescent expression in intestinal tube, first observed in 3 dpf embryos and then continuously to the adult stage. This pattern of transgenic expression is consistent with the expression pattern of the endogenous gene. In all five transgenic lines 45-52% of the F2 inheritance rates were consistent with the ratio of Mendelian segregation. These fish can also provide a valuable resource of labeled adult intestinal cells for in vivo or in vitro studies. Finally, it is possible to establish an in vivo system using these fish for screening genes required for gut development. genesis 38:26-31, 2004.  相似文献   

15.
Necrotizing enterocolitis (NEC) in preterm infants develops very rapidly from a mild intolerance to enteral feeding into intestinal mucosal hemorrhage, inflammation, and necrosis. We hypothesized that immediate feeding-induced gut responses precede later clinical NEC symptoms in preterm pigs. Fifty-six preterm pigs were fed total parenteral nutrition (TPN) for 48 h followed by enteral feeding for 0, 8, 17, or 34 h with either colostrum (Colos, n = 20) or formula (Form, n = 31). Macroscopic NEC lesions were detected in Form pigs throughout the enteral feeding period (20/31, 65%), whereas most Colos pigs remained protected (1/20, 5%). Just 8 h of formula feeding induced histopathological lesions, as evidenced by capillary stasis and necrosis, epithelial degeneration, edema, and mucosal hemorrhage. These immediate formula-induced changes were paralleled by decreased digestive enzyme activities (lactase and dipeptidylpeptidase IV), increased nutrient fermentation, and altered expression of innate immune defense genes such as interleukins (IL-1α, IL-6, IL-18), nitric oxide synthetase, tight junction proteins (claudins), Toll-like receptors (TLR-4), and TNF-α. In contrast, the first hours of colostrum feeding induced no histopathological lesions, increased maltase activity, and induced changes in gene expressions related to tissue development. Total bacterial density was high after 2 days of parenteral feeding and was not significantly affected by diet (colostrum, formula) or length of enteral feeding (8-34 h), except that a few bacterial groups (Clostridium, Enterococcus, Streptococcus species) increased with time. We conclude that a switch from parenteral to enteral nutrition rapidly induces diet-dependent histopathological, functional, and proinflammatory insults to the immature intestine. Great care is required when introducing enteral feeds to TPN-fed preterm infants, particularly when using formula, because early feeding-induced insults may predispose to NEC lesions that are difficult to revert by later dietary or medical interventions.  相似文献   

16.
Intestinal enterocytes contain high concentrations of two cytosolic fatty acid-binding proteins (FABP), liver FABP (L-FABP) and intestinal FABP (I-FABP), which are hypothesized to play a role in cellular fatty acid trafficking. The mechanism(s) by which fatty acids move from membranes to each of these proteins is not known. Here we demonstrate that fluorescent anthroyloxy fatty acid analogues (AOFA) are transferred from phospholipid vesicles to L-FABP versus I-FABP by different mechanisms. For L-FABP a diffusion-mediated transfer process is demonstrated. The AOFA transfer rate from phosphatidylcholine-containing vesicles (POPC) to L-FABP is similar to that observed with another diffusional process, namely inter-membrane AOFA transfer. Furthermore, the AOFA transfer rate was modulated by buffer ionic strength and AOFA solubility, while the transfer rate remained relatively unchanged by the presence of anionic phospholipids in vesicles. In contrast, the data for I-FABP suggest that a transient collisional interaction of I-FABP with the phospholipid membrane occurs during AOFA extraction from the vesicles by the protein. In particular, the presence of the anionic phospholipid cardiolipin in donor vesicles increased the rate of AOFA transfer to I-FABP by 15-fold compared with transfer to POPC vesicles. The effects of ionic strength on transfer suggest that the interaction of I-FABP with cardiolipin-containing vesicles is likely to contain an electrostatic component. Finally, based on the regulation of AOFA transfer to I-FABP compared with transfer from I-FABP, it is hypothesized that apo- and holo-I-FABPs adopt conformations which may differentially promote I-FABP-membrane interactions.In summary, the results suggest that I-FABP, but not L-FABP, can directly extract fatty acids from membranes, supporting the concept that I-FABP may increase the cytosolic flux of fatty acids via intermembrane transfer.  相似文献   

17.
Mortality, necrotising enterocolitis (NEC), late onset sepsis (LOS) and feeding intolerance are significant issues for very preterm (< 32 weeks) and extremely preterm (< 28 weeks) infants. The complications of ≥ Stage II NEC [e.g. Resection of the gangrenous gut, survival with intestinal failure, recurrent infections, prolonged hospital stay, and long-term neurodevelopmental impairment (NDI)] impose a significant health burden. LOS also carries significant burden including long-term NDI due to adverse effects of inflammation on the preterm brain during the critical phase of development. Frequent stopping of feeds due to feeding intolerance is a significant iatrogenic contributor to postnatal growth failure in extremely preterm infants. Over 25 systematic reviews and meta-analyses of RCTs (~12 000 participants) have reported that probiotics significantly reduce the risk of all-cause mortality, NEC ≥ Stage II, LOS and feeding intolerance in preterm infants. Systematic reviews and meta-analysis of non-RCTs have also shown that the benefits after adopting probiotics as a standard prophylaxis for preterm infants are similar to those reported in RCTs. No intervention comes close to probiotics when it comes to significant reduction in death, NEC, LOS and feeding intolerance at a cost of less than a dollar a day irrespective of the setting and baseline incidence of NEC. The common controversies that are preventing the rapid uptake of probiotics for preterm infants are addressed in this paper.  相似文献   

18.
Neonatal necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease of preterm infants. Increased intestinal epithelium permeability is an early event in NEC pathogenesis. Autophagy and apoptosis are induced by multiple stress pathways which may impact the intestinal barrier, and they have been associated with pathogenesis of diverse gastrointestinal diseases including inflammatory bowel disease. Using both in vitro and in vivo models, this study investigates autophagy and apoptosis under experimental NEC stresses. Furthermore this study evaluates the effect of erythropoietin (Epo), a component of breast milk previously shown to decrease the incidence of NEC and to preserve intestinal barrier function, on intestinal autophagy and apoptosis. It was found that autophagy and apoptosis are both rapidly up regulated in NEC in vivo as indicated by increased expression of the autophagy markers Beclin 1 and LC3II, and by evidence of apoptosis by TUNEL and cleaved caspase-3 staining. In the rat NEC experimental model, autophagy preceded the onset of apoptosis in intestine. In vitro studies suggested that Epo supplementation significantly decreased both autophagy and apoptosis via the Akt/mTOR signaling pathway and the MAPK/ERK pathway respectively. These results suggest that Epo protects intestinal epithelium from excessive autophagy and apoptosis in experimental NEC.  相似文献   

19.
Intestinal enterocytes contain two homologous fatty acid-binding proteins, intestinal fatty acid-binding protein (I-FABP)2 and liver fatty acid-binding protein (L-FABP). Since the functional basis for this multiplicity is not known, the fatty acid-binding specificity of recombinant forms of both rat I-FABP and rat L-FABP was examined. A systematic comparative analysis of the 18 carbon chain length fatty acid binding parameters, using both radiolabeled (stearic, oleic, and linoleic) and fluorescent (trans-parinaric and cis-parinaric) fatty acids, was undertaken. Results obtained with a classical Lipidex-1000 binding assay, which requires separation of bound from free fatty acid, were confirmed with a fluorescent fatty acid-binding assay not requiring separation of bound and unbound ligand. Depending on the nature of the fatty acid ligand, I-FABP bound fatty acid had dissociation constants between 0.2 and 3.1 microM and a consistent 1:1 molar ratio. The dissociation constants for L-FABP bound fatty acids ranged between 0.9 and 2.6 microM and the protein bound up to 2 mol fatty acid per mole of protein. Both fatty acid-binding proteins exhibited relatively higher affinity for unsaturated fatty acids as compared to saturated fatty acids of the same chain length. cis-Parinaric acid or trans-parinaric acid (each containing four double bonds) bound to L-FABP and I-FABP were displaced in a competitive manner by non-fluorescent fatty acid. Hill plots of the binding of cis- and trans- parinaric acid to L-FABP showed that the binding affinities of the two sites were very similar and did not exhibit cooperativity. The lack of fluorescence self-quenching upon binding 2 mol of either trans- or cis-parinaric acid/mol L-FABP is consistent with the presence of two binding sites with dissimilar orientation in the L-FABP. Thus, the difference in binding capacity between I-FABP and L-FABP predicts a structurally different binding site or sites.  相似文献   

20.
Chan KY  Leung FW  Lam HS  Tam YH  To KF  Cheung HM  Leung KT  Poon TC  Lee KH  Li K  Fok TF  Ng PC 《PloS one》2012,7(5):e36977
Necrotizing enterocolitis (NEC) and spontaneous intestinal perforation (SIP) are the most common acute surgical emergencies associated with high morbidity and mortality in preterm infants. We aimed to compare the profiles of immunoregulatory proteins and identify novel mediators in plasma of NEC and SIP infants. We also investigated the expression of target genes in resected intestinal tissues and an enterocyte cell line. Using Cytokine Antibody Array assay, we reported the first comparative profiles of immunoregulatory proteins in plasma of NEC and SIP infants, and showed that dysregulated proteins belonged to functionally diversified categories, including pro- and anti-inflammation, angiogenesis, cell growth, wound healing, anti-apoptosis, cell adhesion and extracellular matrix reorganization. Validation by ELISA confirmed significantly higher concentrations of interleukin (IL)-6, angiopoietin (Ang)-2, soluble type II interleukin-1 receptor (sIL-1RII), and soluble urokinase-type plasminogen activator receptor (suPAR) in NEC infants compared with gestational age-matched control, and a lower level of an epidermal growth factor receptor, secreted form of receptor tyrosine-protein kinase ErbB3 (sErbB3), compared with SIP infants. mRNA expressions of IL1-RII and uPAR were up-regulated in resected bowel tissues from NEC infants, indicating that immunoregulation also occurred at the cellular level. In FHs-74 Int cells, Ang-2, IL1-RII and uPAR mRNA expressions were significantly induced by the combined treatment with lipopolysaccharide (LPS) and platelet activating factor (PAF). Our study provided plasmatic signatures of immunoregulatory proteins in NEC and SIP infants, and demonstrated involvement of multiple functional pathways. The magnitude of changes in these proteins was significantly more extensive in NEC infants, reflecting the different nature of injury and/or severity of inflammation. We speculate that dysregulation of IL-6, Ang-2, IL-1RII and uPAR occurred at both systemic and cellular levels, and probably mediated via LPS and endogeneous PAF signals. Such exaggerated immunologic responses may account for the high morbidity and mortality in NEC compared with SIP patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号