首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quantitative physiological characterization and isotopic tracer experiments revealed that pyruvate kinase mutants of Bacillus subtilis produced significantly more CO(2) from glucose in the tricarboxylic acid cycle than is explained by the remaining conversion of phosphoenolpyruvate (PEP) to pyruvate catalyzed by the phosphotransferase system. We show here that this additional catabolic flux into the tricarboxylic acid cycle was catalyzed by the PEP carboxykinase. In contrast to its normal role in gluconeogenesis, PEP carboxykinase can operate in the reverse direction from PEP to oxaloacetate upon knockout of pyruvate kinase in a riboflavin-producing B. subtilis strain and in wild-type 168. At least in the industrial strain, we demonstrate the additional capacity of PEP carboxykinase to function as a substitute anaplerotic reaction when the normal pyruvate carboxylase is inactivated. Presumably as a consequence of the unfavorable kinetics of an ATP-synthesizing anaplerotic PEP carboxykinase reaction, such pyruvate carboxylase mutants grow slowly or, as in the case of wild-type 168, not at all.  相似文献   

2.
Two novel procedures have been used to regulate, in vivo, the formation of phosphoenolpyruvate (PEP) from glycolysis in Streptococcus lactis ML3. In the first procedure, glucose metabolism was specifically inhibited by p-chloromercuribenzoate. Autoradiographic and enzymatic analyses showed that the cells contained glucose 6-phosphate, fructose 6-phosphate, fructose-1,6-diphosphate, and triose phosphates.Dithiothreitol reversed the p-chloromercuribenzoate inhibition, and these intermediates were rapidly and quantitatively transformed into 3- and 2-phosphoglycerates plus PEP. The three intermediates were not further metabolized and constituted the intracellular PEP potential. The second procedure simply involved starvation of the organisms. The starved cells were devoid of glucose 6-phosphate, fructose 6-phosphate, fructose- 1,6-diphosphate, and triose phosphates but contained high levels of 3- and 2-phosphoglycerates and PEP (ca. 40 mM in total). The capacity to regulate PEP formation in vivo permitted the characterization of glucose and lactose phosphotransferase systems in physiologically intact cells. Evidence has been obtained for "feed forward" activation of pyruvate kinase in vivo by phosphorylated intermediates formed before the glyceraldehyde-3-phosphate dehydrogenase reaction in the glycolytic sequence. The data suggest that pyruvate kinase (an allosteric enzyme) plays a key role in the regulation of glycolysis and phosphotransferase system functions in S. lactis ML3.  相似文献   

3.
Regulation of sugar transport and metabolism in lactic acid bacteria   总被引:6,自引:0,他引:6  
Abstract The phosphoenolpyruvate (PEP)-dependent lactose: phosphotransferase system (PTS), P-β-galactosidase, and enzymes of the d -tagatose-6P pathway, are prerequisite for rapid homolactic fermentation of lactose by Group N ('starter') streptococci. Moreover, the reactions of transport and catabolism constitute an open cycle in which ATP and lactic acid are metabolic products. The efficient and controlled operation of this cycle requires 'fine-control' mechanisms to ensure: (i) tight coupling between transport and energy-yielding reactions, (ii) co-metabolism of both glucose and galactose moieties of the disaccharide, and (iii) coordination of the rate of sugar transport to the rate of sugar catabolism. The elucidation of these fine-control mechanisms in intact cells of Streptococcus lactis has required the isolation of glucokinase (GK) and mannose-PTS defective mutants, the synthesis of novel lactose analogs, and the use of high resolution [31P]NMR spectroscopy. It has been established that PEP provides the crucial link between transport and energy-yielding reactions of the PTS: glycolysis cycle, and that both ATP-dependent glucokinase and PEP-dependent mannose-PTS can participate in the phosphorylation of intracellular glucose. Finally, evidence has been obtained in vivo, for modulation of pyruvate kinase activity in response to fluctuation in, concentrations of positive (FDP), and negative (Pi) effectors of the allosteric enzyme. Fine-control of pyruvate kinase activity may in turn regulate: (i) the distribution of PEP to either the PTS or ATP synthesis, (ii) overall activity of the PTS: glycolysis cycle, and (iii) the formation of the endogenous PEP-potential in starved organisms. The accumulation of non-metabolizable PTS sugars (e.g., 2-deoxy- d -glucose) by growing cells can perturb these fine-control mechanisms and, by establishment of a PEP-dissipating futile cycle, may result in bacteriostasis.  相似文献   

4.
In Salmonella typhimurium, glucose, mannose, and fructose are normally transported and phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system. We have investigated the transport of these sugars and their non-metabolizable analogs in mutant strains lacking the phospho-carrier proteins of the phosphoenolpyruvate:sugar phosphotransferase system, the enzymes I and HPr, to determine whether the sugar-specific, membrane-bound components of the phosphonenolpyruvate: sugar phosphotransferase system, the enzymes II, can catalyze the uptake of these sugars in the absence of phosphorylation. This process does not occur. We have also isolated mutant strains which lack enzyme I and HPr, but have regained the ability to grow on mannose or fructose. These mutants contained elevated levels of mannokinase (fructokinase). In addition, growth on mannose required constitutive synthesis of the galactose permease. When strains were constructed which lacked the galactose permease, they were unable to grow even on high concentrations of mannose, although elevated levels of mannokinase (fructokinase) were present. These results substantiate the conclusion that the enzymes II of the phosphoenolpyruvate:sugar phosphotransferase system are unable to carry out facilitated diffusion.  相似文献   

5.
Phosphorylation of free galactose by lactic streptococci was mediated by an adenosine triphosphate (ATP)-dependent kinase. The phosphoenolpyruvate (PEP) phosphotransferase system (PTS) was involved to a limited extent in transport of the sugar. The conversion of free galactose to glucose also was demonstrated, and uridine diphosphogalactose-4-epimerase was demonstrated to account for this change. Galactose, supplied as lactose, was phosphorylated during transport by means of the PTS with PEP as the phosphate donor. Data also indicated that galactose derived from lactose was catabolized by the glycolytic pathway. Results showed the participation of ATP or PEP, or both, in the phosphorylation of five growth sugars for lactic streptococci, namely, galactose, glucose, lactose, maltose, and mannose. Free galactose was phosphorylated exclusively by ATP except when cells were grown on galactose; in this case, slight involvement of PEP in phosphorylation also was noted. Lactose phosphorylation was much more effective with PEP except when cells were grown on lactose, in which case ATP was equally effective. Glucose was phosphorylated to about the same degree by either ATP or PEP.  相似文献   

6.
Group N streptococci, which have the lactose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) and phospho-beta-d-galactosidase (beta-Pgal), grew rapidly on lactose and converted more than 90% of the sugar to l-lactate. In contrast, Streptococcus lactis 7962, which does not have a beta-Pgal, grew slowly on lactose and converted only 15% of the sugar to l-lactate. With glucose and galactose, this strain had growth rates and fermentation patterns similar to those of other S. lactis strains, suggesting that the rapid and homolactic fermentation of lactose that is characteristic of group N streptococci is dependent upon a functional PEP-dependent PTS and the presence of beta-Pgal. Seventeen strains of group N streptococci were examined for the activator specificities of pyruvate kinase and lactate dehydrogenase. The properties of each enzyme from all the strains, including S. lactis 7962, were similar. Pyruvate kinase had a broad activator specificity, whereas activation of lactate dehydrogenase was specific for ketohexose diphosphate. All intermediates of lactose metabolism from the hexose phosphates to the triose phosphates activated pyruvate kinase. No activation was obtained with adenosine 5'-monophosphate. K and Mg were required for pyruvate kinase activity but could be replaced by NH(4) and Mn, respectively. Lactate dehydrogenase was activated equally by fructose-1,6-diphosphate and tagatose-1,6-diphosphate, the activation characteristics being pH dependent. The roles of pyruvate kinase and lactate dehydrogenase in the regulation of lactose fermentation by group N streptococci are discussed.  相似文献   

7.
Trehalose Metabolism by Bacillus popilliae   总被引:8,自引:4,他引:4       下载免费PDF全文
Trehalose was found to be utilized more readily than glucose for the growth of Bacillus popilliae NRRL B-2309MC. The pathway of degradation of trehalose was elucidated and found to differ from that reported for other organisms. Trehalase and trehalose phosphorylase activities could not be detected. Rather, trehalose was found to undergo phosphoenolpyruvate (PEP)-dependent phosphorylation, and the resulting trehalose 6-phosphate was cleaved by a phosphotrehalase to equimolar amounts of glucose and glucose 6-phosphate. The phosphotrehalase was purified 34-fold and shown to have a pH optimum of 6.5 to 7.0 and a K(m) for trehalose 6-phosphate of 1.8 mM. A mutant missing the phosphotrehalase failed to grow on trehalose but grew normally on other sugars. The mutant accumulated [(14)C]trehalose as [(14)C]trehalose 6-phosphate. Phosphorylation of trehalose by dialyzed extracts was at least 25 times faster with PEP than with adenosine 5'-triphosphate, and the phosphorylation activity was associated primarily with the particulate fraction. These data and the results of studies of [(14)C]trehalose uptake suggest that trehalose is transported into the cell as trehalose 6-phosphate by a PEP:sugar phosphotransferase system. Cell extracts of other strains of B. popilliae were also found to produce [(14)C]sugar phosphate from [(14)C]trehalose and to have phosphotrehalase activity.  相似文献   

8.
A model for the regulation of the activity of Escherichia coli adenylate cyclase is presented. It is proposed that Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) interacts in a regulatory sense with the catalytic unit of adenylate cyclase. The phosphoenolpyruvate (PEP)-dependent phosphorylation of Enzyme I is assumed to be associated with a high activity state of adenylate cyclase. The pyruvate or sugar-dependent dephosphorylation of Enzyme I is correlated with a low activity state of adenylate cyclase. Evidence in support of the proposed model involves the observation that Enzyme I mutants have low cAMP levels and that PEP increases cellular cAMP levels and, under certain conditions, activates adenylate cyclase, Kinetic studies indicate that various ligands have opposing effects on adenylate cyclase. While PEP activates the enzyme, either glucose or pyruvate inhibit it. The unique relationships of PEP and Enzyme I to adenylate cyclase activity are discussed.  相似文献   

9.
Abstract Sugar phosphates are formed in cell-free extracts of Streptomyces aureofaciens RIA57 from glucose or fructose in the presence of phosphoenolpyruvate. In contrast to the phosphorylation by adenosine 5'-triphosphate the kinetics of formation of glucose 6-phosphate via phosphoenolpyruvate (PEP) is nonlinear. The product of fructose phosphorylation (only fructose 6-phosphate was determined by paper chromatography) and the absence of 1-phosphofructokinase indicate that fructose metabolism in S. aureofaciens does not proceed via the phosphoenolpyruvate:sugar phosphotransferase system (PTS).  相似文献   

10.
HPr of the bacterial phosphotransferase system is a histidine-containing phospho-carrier protein. It is phosphorylated at a single histidyl residue with phosphoenolpyruvate (PEP) and enzyme I and transfers the histidyl-bound phosphoryl group to a variety of factor III proteins. Recently, we described an HPr phosphorylated at a seryl residue (P-Ser-HPr), which is formed in an adenosine 5'-triphosphate dependent reaction catalyzed by a protein kinase [Deutscher, J., & Saier, M.-H., Jr. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6790-6794]. Now we demonstrate that this P-Ser-HPr is an altered substrate of phosphorylated enzyme I and factor III proteins compared to unphosphorylated HPr. Thus, P-Ser-HPr of Streptococcus lactis is phosphorylated about 5000 times slower by PEP and enzyme I than HPr. The slow phosphorylation by PEP and enzyme I can be overcome when factor III protein specific for gluconate (factor III(Gct)) of Streptococcus faecalis is added. Most likely, a complex of P-Ser-HPr and factor III(Gct) is formed which then becomes phosphorylated as fast as free HPr. Factor III protein specific for lactose (factor III(Lac)) of Staphylococcus aureus also enhances the phosphorylation of P-Ser-HPr by enzyme I and PEP, but its effect is lower. Thus, P-Ser-HPr is phosphorylated 70-100-fold slower in the presence of factor III(Lac) than in the presence of factor III(Gct). The described interaction of P-Ser-HPr with enzyme I in the presence of different factor III proteins could account for the regulation of sugar uptake within the phosphotransferase system. Some of the phosphoenolpyruvate-dependent phosphotransferase system sugars like glucose are known to be taken up in preference to others, for example, lactose.  相似文献   

11.
12.
Fructose and mannitol are fermented by Clostridium thermocellum in a medium containing salts and 0.5% yeast extract. The initial reaction in the catabolism of fructose was found to be the formation of fructose l-phosphate by phosphoenolpyruvate (PEP):fructose phosphotransferase which resembles the Kundig-Roseman phosphotransferase system. The phosphorylation of fructose l-phosphate to form fructose-1, 6-diphosphate is catalyzed by fructose l-phosphate kinase. Fructose-1, 6-diphosphate can be further metabolized by the Embden-Meyerhof pathway. The formation of both PEP:fructose phosphotransferase and fructose l-phosphate kinase is induced by growth in fructose medium. Mannitol catabolism was found to proceed by the phosphorylation of mannitol by PEP:mannitol phosphotransferase to form mannitol l-phosphate. Mannitol l-phosphate is converted to fructose 6-phosphate by a nicotinamide adenine dinucleotide-specific mannitol l-phosphate dehydrogenase. The fructose 6-phosphate formed in the reaction can enter the glycolytic scheme. The formation of both PEP:mannitol phosphotransferase and mannitol l-phosphate dehydrogenase is induced by growth in mannitol medium. Evidence is presented for the induction by mannitol of PEP:mannitol phosphotransferase and mannitol l-phosphate dehydrogenase in suspensions of fructose-grown cells.  相似文献   

13.
14.
15.
Mutants of Escherichia coli K12 have been isolated that grow on media containing pyruvate of proline as sole carbon sources despite the presence of 10 or 50 mM-sodium fluoroacetate. Such mutants lack either acetate kinase [ATP: acetate phosphotransferase; EC 2.7.2.1] or phosphotransacetylase [acetyl-CoA: orthophosphate acetyltransferase; EC 2.3.1.8] activity. Unlike wild-type E. coli, phosphotransacetylase mutants do not excrete acetate when growing aerobically or anaerobically on glucose; their anaerobic growth on this sugar is slow. The genes that specify acetate kinase (ack) and phosphotransacetylase (pta) activities are cotransducible with each other and with purF and are thus located at about min 50 on the E. coli linkage map. Although Pta- and Ack- mutants are greatly impaired in their growth on acetate, they incorporate [2-14C]acetate added to cultures growing on glycerol, but not on glucose. An inducible acetyl-CoA synthetase [acetate: CoA ligase (AMP-forming); EC 6.2.1.1] effects this uptake of acetate.  相似文献   

16.
Sorbitol metabolism in Aerobacter aerogenes   总被引:3,自引:2,他引:1       下载免费PDF全文
Sorbitol (d-glucitol) metabolism in Aerobacter aerogenes PRL-R3 is shown to proceed via the pathway: sorbitol --> sorbitol 6-phosphate --> d-fructose 6-phosphate. Sorbitol phosphorylation is mediated by a phosphoenolpyruvate (PEP):sorbitol 6-phosphotransferase system, and sorbitol 6-phosphate oxidation by a pyridine-nucleotide-linked dehydrogenase. Mutants deficient in sorbitol 6-phosphate dehydrogenase or a component (enzyme I) of the phosphotransferase system did not grow on sorbitol, whereas revertants which had regained these enzymatic activities grew normally. Extracts of the enzyme I-deficient mutant failed to catalyze the phosphorylation of sorbitol in the presence of PEP, and adenosine 5'-triphosphate could not replace the PEP requirement for sorbitol phosphorylation in extracts of the wild-type strain.  相似文献   

17.
Transport and phosphorylation of glucose via enzymes II-A/II-B and II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system are tightly coupled in Salmonella typhimurium. Mutant strains (pts) that lack the phosphorylating proteins of this system, enzyme I and HPr, are unable to transport or to grow on glucose. From ptsHI deletion strains of S. typhimurium, mutants were isolated that regained growth on and transport of glucose. Several lines of evidence suggest that these Glc+ mutants have an altered enzyme II-BGlc as follows. (i) Insertion of a ptsG::Tn10 mutation (resulting in a defective II-BGlc) abolished growth on and transport of glucose in these Glc+ strains. Introduction of a ptsM mutation, on the other hand, which abolishes II-A/II-B activity, had no effect. (ii) Methyl alpha-glucoside transport and phosphorylation (specific for II-BGlc) was lowered or absent in ptsH+,I+ transductants of these Glc+ strains. Transport and phosphorylation of other phosphoenolpyurate:sugar phosphotransferase system sugars were normal. (iii) Membranes isolated from these Glc+ mutants were unable to catalyze transphosphorylation of methyl alpha-glucoside by glucose 6-phosphate, but transphosphorylation of mannose by glucose 6-phosphate was normal. (iv) The mutation was in the ptsG gene or closely linked to it. We conclude that the altered enzyme II-BGlc has acquired the capacity to transport glucose in the absence of phosphoenolpyruvate:sugar phosphotransferase system-mediated phosphorylation. However, the affinity for glucose decreased at least 1,000-fold as compared to the wild-type strain. At the same time the mutated enzyme II-BGlc lost the ability to catalyze the phosphorylation of its substrates via IIIGlc.  相似文献   

18.
Pyruvate kinase (ATP: pyruvate phosphotransferase (EC 2.7.1.40) was partially purified from both autotrophically and heterotrophycally grown Paracoccus denitrificans. The organism grown under heterotrophic conditions contains four times more pyruvate kinase than under autotrophic conditions. The enzyme isolated from both sources exhibited sigmoidal kinetics for both phosphoenolpyruvate (PEP) and ADP. The apparent M m for ADP and PEP in the autotrophic enzyme were 0.63 mM ADP and 0.25 mM PEP. The effect of several low molecular weight metabolites on the pyruvate kinase activity was investigated. Ribose-5-phosphate, glucose-6-phosphate and AMP stimulated the reaction at low ADP levels; this stimulation was brought about by an alteration in the apparent K m for ADP. The pyruvate kinases differ in their response to adenine nucleotides, but both preparations seem to be under adenylate control. The results are discussed in relation to the role of pyruvate kinase as a regulatory enzyme in P. denitrificans grown under both autotrophic and heterotrophic conditions.Non-Common Abbreviations PEP phosphoenolpyruvate - R-5-P ribose-5-phosphate - G-6-P glucose-6-phosphate - F-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate  相似文献   

19.
Starved cells of Streptococcus lactis ML3 grown previously on lactose, galactose, or maltose were devoid of adenosine 5'-triphosphate contained only three glycolytic intermediates: 3-phosphoglycerate, 2-phosphoglycerate, and phosphoenolpyruvate (PEP). The three metabolites (total concentration, ca 40 mM) served as the intracellular PEP potential for sugar transport via PEP-dependent phosphotransferase systems. When accumulation of [14C]lactose by iodoacetate-inhibited starved cells was abolished within 1 s of commencement of transport, a phosphorylated disaccharide was identified by autoradiography. The compound was isolated by ion-exchange (borate) chromatography, and enzymatic analysis showed that the derivative was 6-phosphoryl-O-beta-D-galactopyranosyl (1 leads to 4')-alpha-D-glucopyranose (lactose 6-phosphate). After maximum lactose uptake (ca. 15 mM in 15 s) the cells were collected by membrane filtration and extracted with trichloroacetic acid. Neither free nor phosphorylated lactose was detected in cell extracts, but enzymatic analysis revealed high levels of galactose 6-phosphate and glucose 6-phosphate. The starved organisms rapidly accumulated glucose, 2-deoxy-D-glucose, methyl-beta-D-thiogalactopyranoside, and o-nitrophenyl-beta-D-galactopyranoside in phosphorylated form to intracellular concentrations of 32, 32, 42, and 38.5 mM, respectively. In contrast, maximum accumulation of lactose (ca. 15 mM) was only 40 to 50% that of the monosaccharides. From the stoichiometry of PEP-dependent lactose transport and the results of enzymatic analysis, it was concluded that (i) ca. 60% of the PEP potential was utilized via the lactose phosphotransferase system for phosphorylation of the galactosyl moiety of the disaccharide, and (ii) the residual potential (ca. 40%) was consumed during phosphorylation of the glucose moiety.  相似文献   

20.
Mutants of Escherichia coli devoid of the membrane-spanning proteins PtsG and PtsMP, which are components of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) and which normally effect the transport into the cells of glucose and mannose, do not grow upon or take up either sugar. Pseudorevertants are described that take up, and grow upon, mannose at rates strongly dependent on the mannose concentration in the medium (apparent Km > 5 mM); such mutants do not grow upon glucose but are derepressed for the components of the fructose operon. Evidence is presented that mannose is now taken up via the fructose-PTS to form mannose 6-phosphate, which is further utilized for growth via fructose 6-phosphate and fructose 1,6-bisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号