首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pharmacophore mapping studies were undertaken for a series of molecules belonging to pyrrolopyrimidines, indolopyrimidines and their congeners as multidrug resistance-associated protein (MRP1) modulators. A five-point pharmacophore with two hydrogen bond acceptors (A), one lipophilic/hydrophobic group (H), one positive ionic feature (P) and one aromatic ring (R) as pharmacophoric features was developed. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a correlation coefficient of r 2 = 0.799 for training set molecules. The model generated showed excellent predictive power, with a correlation coefficient Q 2 = 0.679 for an external test set of 20 molecules. The pharmacophore was further validated using four structurally diverse compounds with MRP1 modulatory activity. These compounds mapped well onto four of the five features of the pharmacophore. The pharmacophore proposed here was then utilised for the successful retrieval of active molecules with diverse chemotypes from database search. The geometry and features of pharmacophore are expected to be useful for the design of selective MRP1 inhibitors. Figure Alignment of multidrug resistance-associated protein (MRP1) inhibitors with the developed pharmacophore. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Multidrug resistance transporter MRP1 could be effectively inhibited by some flavonoids. The influence of the two pairs of isoflavones: formononetin/daidzein and biochanin A/genistein on the efflux of fluorescent substrate of MRP1-like protein from erythrocytes and biophysical properties of lipid membranes has been compared. Compounds in each pair differ by the substituent in position 4' of B ring of isoflavone molecule. In the process of O-demethylation, CH(3) group (present in formonetin and biochanin A) is replaced by hydrogen (daidzein, genistein). Inhibition of MRP1-like protein transport activity by methylated and demethylated isoflavones was very similar. Their influence on lipid thermotropic properties and fluidity of lipid bilayer was not also significantly different.  相似文献   

3.
利用pSIREN-RetroQ载体构建了3个沉默多药耐药相关蛋白(MRP1)基因表达质粒pSI REN-siRNAs.并通过限制性内切酶酶切鉴定和DNA测序鉴定,将截断MRP和全长MRP1 cDNA分别克隆到真核表达载体pEGFP-N2和pcDNA3.1中,产生了pEGFP-MRP1T和pcDNA-MRP1表达质粒.质粒pEGFP-MRP1T分别与3个pSIREN-siRNAs共转染HEK293细胞沉默MRP1T-GFP靶基因,pSIREN-siRNA1作为阴性对照.荧光显微镜下显示结果表明,与pSIREN-siRNA1相比,pSIREN-siRNA2和pSIREN-siRNA3产生的siRNA能够有效沉默MRP1T-GFP融合蛋白的表达.为了沉默全长MRP1基因的表达,pcDNA-MRP1分别与3个pSIREN-siRNAs共转染HEK293细胞.Western印迹和MTT分析表明,pSIREN-siRNA2和pSIREN- siRNA3能有效抑制190 kD MRP1在HEK293细胞中的表达,而pSIREN-siRNA1则不能.pSIREN-siRNA2和pSIREN-siRNA3能逆转MRP1转染HEK293细胞产生的多药耐药性.RNA二级结构预测结果分析表明,siRNA1靶序列mRNA局部自由能热动力参数ΔG低于siRNA2和siRNA3靶序列mRNA局部自由能热动力参数,siRNA1的GC含量和Tm值高于siRNA2和siRNA3.这些数据提示,siRNA和局部靶结构可能影响siRNA对MRP1 mRNA表达的沉默作用.  相似文献   

4.
Ivermectin is a potent antiparasitic drug from macrocyclic lactone (ML) family, which interacts with the ABC multidrug transporter P-glycoprotein (Pgp). We studied the interactions of ivermectin with the multidrug resistance proteins (MRPs) by combining cellular and subcellular approaches. The inhibition by ivermectin of substrate transport was measured in A549 cells (calcein or 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, BCECF) and in HL60-MRP1 (calcein). Ivermectin induced calcein and BCECF retention in A549 cells (IC(50) at 1 and 2.5microM, respectively) and inhibited calcein efflux in HL60-MRP1 (IC(50)=3.8microM). The action of ivermectin on the transporters ATPase activity was followed on membranes from Sf9 cells overexpressing human Pgp, MRP1, 2 or 3. Ivermectin inhibited the Pgp, MRP1, 2 and 3 ATPase activities after stimulation by their respective activators. Ivermectin showed a rather good affinity for MRPs, mainly MRP1, in the micromolar range, although it was lower than that for Pgp. The transport of BODIPY-ivermectin was followed in cells overexpressing selectively Pgp or MRP1. In both cell lines, inhibition of the transporter activity induced intracellular retention of BODIPY-ivermectin. Our data revealed the specific interaction of ivermectin with MRP proteins, and its transport by MRP1. Although Pgp has been considered until now as the sole active transporter for this drug, the MRPs should be taken into account for the transport of ivermectin across cell membrane, modulating its disposition in addition to Pgp. This could be of importance for optimizing clinical efficacy of ML-based antiparasitic treatments. This offers fair perspectives for the use of ivermectin or non-toxic derivatives as multidrug resistance-reversing agents.  相似文献   

5.
6.
Colinearity in gene content and order between rice and closely related cereal crops has been a powerful tool for gene identification. Using a comparative genomic approach, we have identified the rice genomic region syntenous to the region of the short arm of wheat chromosome 2D, on which quantitative trait loci (QTLs) for Fusarium head blight (FHB) resistance and for controlling accumulation of the mycotoxin deoxynivalenol (DON) are closely located. Utilizing markers known to reside near the FHB resistance QTL and data from several wheat genetic maps, we have limited the syntenous region to 6.8 Mb of the short arm of rice chromosome 4. From the 6.8-Mb sequence of rice chromosome 4, we found three putative rice genes that could have a role in detoxification of mycotoxins. DNA sequences of these putative rice genes were used in BLAST searches to identify wheat expressed sequence tags (ESTs) exhibiting significant similarity. Combined data from expression analysis and gene mapping of wheat homologues and results of analysis of DON accumulation using doubled haploid populations revealed that a putative gene for multidrug resistance-associated protein (MRP) is a possible candidate for the FHB resistance and/or DON accumulation controlling QTLs on wheat chromosome 2DS and can be used as a molecular marker to eliminate the susceptible allele when the Chinese wheat variety Sumai 3 is used as a resistance source. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
This study investigated a high-throughput assay to measure multidrug resistance-associated protein (MRP1)-mediated uptake into membrane vesicles. Typically, a rapid filtration technique using a 12-filter vacuum manifold is used. We report here the development of a 96-well microtiter dish assay. MRP1-transfected HeLa cells (HeLa-T5) were used for the membrane vesicle preparations. The uptake of 50nM [3H]leukotriene C(4) (LTC(4)) was measured in a 96-well microtiter dish with rapid filtration onto a Perkin Elmer unifilter GF/B plate using a Perkin Elmer Filtermate 196. Counting of the isotype was conducted with a Perkin Elmer Top Count NXT. Uptake was adenosine 5'-triphosphate-dependent and linear over a 120-s time course. Uptake was inhibited by the leukotriene D(4) antagonist, MK 571, with a k(i) of 0.67 microM, and by the anti-MRP1 monoclonal antibody QCRL-3 but not by QCRL-1. Inhibition by estradiol-17-beta-glucuronide was 35-fold greater than inhibition by estradiol-3-beta-glucuronide. The kinetic parameters for LTC(4) uptake were determined to be a K(m) of 157nM with a V(max) of 344pmol/min/mg protein. The properties of MRP1-mediated transport of LTC(4) are consistent with those previously reported. The microtiter dish assay is a more expedient method for measuring transport into membrane vesicles and will have applications to other transporters.  相似文献   

8.
Nucleotide Binding Domains (NBDs) are responsible for the ATPase activity of the multidrug resistance protein 1 (MRP1). A series of NBD1-linker-NBD2 chimeric fusion proteins were constructed, expressed and purified, and their ATPase activities were analyzed. We report here that a GST linked NBD1642-890-GST-NBD21286-1531 was able to hydrolyze ATP at a rate of about 4.6 nmol/mg/min (Km = 2.17 mM, Vmax = 12.36 nmol/mg/min), which was comparable to the purified and reconstituted MRP1. In contrast, neither a mixture of NBD1 and GST-NBD2 nor the NBD1-GST-NBD1 fusion protein showed detectable ATPase activity. Additionally, the E1455Q mutant was found to be nonfunctional. Measurements by both MIANS labeling and circular dichroism spectroscopy revealed significant conformational differences in the NBD1-GST-NBD2 chimeric fusion protein compared to the mixture of NBD1 and GST-NBD2. The results suggest a direct interaction mediated by GST between the two NBDs of MRP1 leading to conformational changes which would enhance its ATPase activity.  相似文献   

9.
We employed human red blood cells as a model system to check the affinity of MRP1 (Multidrug Resistance-associated Protein 1) towards fluorescein and a set of its carboxyl derivatives: 5/6-carboxyfluorescein (CF), 2,7-bis-(2-carboxyethyl)-5/6-carboxyfluorescein (BCECF) and calcein (CAL). We found significant differences in the characteristics of transport of the dyes tested across the erythrocyte membrane. Fluorescein is transported mainly in a passive way, while active efflux systems at least partially contribute to the transport of the other compounds. Inside-out vesicle studies revealed that active transport of calcein is masked by another, ATP-independent, transport activity. Inhibitor profiles of CF and BCECF transport are typical for substrates of organic anion transporters. BCECF is transported mainly via MRP1, as proven by the use of QCRL3, a monoclonal antibody known to specifically inhibit MRP1-mediated transport. Lack of effect of QCRL3 on CF uptake excludes the possibility of MRP1 being a transporter of this dye. No inhibition of CF accumulation by cGMP, thioguanine and 6-mercaptopurine suggests also that this fluorescent marker is not a substrate for MRP5, another ABC transporter identified in the human erythrocyte membrane.  相似文献   

10.
The active outward translocation of phospholipid analogues from the inner to the outer membrane leaflet of human erythrocytes by the multi-drug resistance protein MRP1 (ABCC1) depends on intracellular reduced glutathione (GSH). Entrapment of ATP and increasing amounts of GSH inside resealed ghosts prepared from erythrocytes resulted in an up to six-fold increase of the translocation rate. Entrapped oxidized glutathione (GSSG) acted inhibitory but produced stimulation after addition of the disulphide-reducing reagent dithioerythritol. Modification of GSH by esterification of the C-terminal carboxylate of Gly, removal of the N-terminal Glu or substitution of the SH group by an anionic S-dicarboxyethyl or sulphonate group abolished stimulation. The effect of S-alkylation of GSH depended on the length of the alkyl group. S-methyl GSH was somewhat more effective than GSH, but maximal stimulation was similar. S-butyl GSH acted poorly stimulatory while S-hexyl GSH was essentially ineffective. Analyses of the kinetic data of translocation revealed Km values for GSH and methyl-GSH of respectively 7.4±2.4 and 4.9±1.1 mmol l?1. At high GSH levels and defined constant ATP levels using an ATP-regenerating system, the Km for ATP of the outward translocation was 0.16±0.02 mmol l?1. In the same system lacking GSH, the Km for ATP of the inward translocation by the aminophospholipid flippase was 0.53±0.23 mmol l?1.  相似文献   

11.
Multidrug resistance protein 1 (MRP1/ABCC1) is a 190 kDa member of the ATP-binding cassette (ABC) superfamily of transmembrane transporters that is clinically relevant for its ability to confer multidrug resistance by actively effluxing anticancer drugs. Knowledge of the atomic structure of MRP1 is needed to elucidate its transport mechanism, but only low resolution structural data are currently available. Consequently, comparative modeling has been used to generate models of human MRP1 based on the crystal structure of the ABC transporter Sav1866 from Staphylococcus aureus. In these Sav1866-based models, the arrangement of transmembrane helices differs strikingly from earlier models of MRP1 based on the structure of the bacterial lipid transporter MsbA, both with respect to packing of the twelve helices and their interactions with the nucleotide binding domains. The functional importance of Tyr324 in transmembrane helix 6 predicted to project into the substrate translocation pathway was investigated.  相似文献   

12.
MRP1 transports glutathione-S-conjugated solutes in an ATP-dependent manner by utilizing its two NBDs to bind and hydrolyze ATP. We have found that ATP binding to NBD1 plays a regulatory role whereas ATP hydrolysis at NBD2 plays a dominant role in ATP-dependent LTC4 transport. However, whether ATP hydrolysis at NBD1 is required for the transport was not clear. We now report that ATP hydrolysis at NBD1 may not be essential for transport, but that the dissociation of the NBD1-bound nucleotide facilitates ATP-dependent LTC4 transport. These conclusions are supported by the following results. The substitution of the putative catalytic E1455 with a non-acidic residue in NBD2 greatly decreases the ATPase activity of NBD2 and the ATP-dependent LTC4 transport, indicating that E1455 participates in ATP hydrolysis. The mutation of the corresponding D793 residue in NBD1 to a different acidic residue has little effect on ATP-dependent LTC4 transport. The replacement of D793 with a non-acidic residue, such as D793L or D793N, increases the rate of ATP-dependent LTC4 transport. Along with their higher transport activities, their Michaelis constant Kms (ATP) are also higher than that of wild-type. Coincident with their higher Kms (ATP), their Kds derived from ATP binding are also higher than that of wild-type, implying that the rate of dissociation of the bound nucleotide from the mutated NBD1 is faster than that of wild-type. Therefore, regardless of whether the bound ATP at NBD1 is hydrolyzed or not, the release of the bound nucleotide from NBD1 may bring the molecule back to its original conformation and facilitate the protein to start a new cycle of ATP-dependent solute transport.  相似文献   

13.
The permeation of the lipophilic ion dipicrylamine through planar lipid membranes formed from dipalmitoylphosphatidylcholine in n-decane shows an anomaly near the main phase transition of this system. Both the rate constant, ki, of ion translocation across the membrane interior and the interfacial concentration, N, of this ion have a maximum at about 36°C. Analogous experiments were performed with tetraphenylborate. A considerably lesser effect of the phase transition was found. The addition of cholesterol leads to a broadening of the maxima for ki and N. The time course of the current following a voltage jump shows a characteristic change below a temperature of about 45°C, if the molar ratio cholesterol/ phosphatidylcholine in the membrane forming solution exceeds 1. While the current transient decays exponentially above 45°C, a sum of two exponential terms yields an adequate fit below that temperature. This is regarded as evidence for a lateral phase separation below 45°C into structurally different domains, which provide two different pathways for dipicrylamine.  相似文献   

14.
目的:观察RNA干扰沉默缺氧诱导因子1α(HIF-1α)对肺癌细胞耐药性的影响。方法:构建靶向HIF-1α小干扰RNA基因,并转染到人肺腺癌耐顺铂细胞株A549/DDP细胞中。逆转录聚合酶链反应RT—PCR)检测细胞的HIF-1α、多药耐药基因-(MDR-1)以多药耐药相关蛋白基因(MRP)mRNA变化,免疫细胞化学法观察干扰后HIF-1α、P-糖蛋白以及MRP蛋白的变化。MTT法检测不同浓度的顺铂作用下细胞死亡率。结果:HIF-1αsiRNA组中H1F-1α、MDR—1、MRPmRNA水平显著降低(P〈0.05)。且蛋白水平也显著下降(P〈0.05)。HIF-1αsiRNA组细胞死亡率较未转染组均明显增高(P〈0.05),转染siRNA阴性组不影响肿瘤细胞的耐药性。结论:HIF-1αsiRNA可显著降低A549/DDP细胞中H1F-1α、MDR-1、MRP表达,从而起到逆转肺腺癌A549/DDP细胞的耐药作用。  相似文献   

15.
Widespread resistance to chemotherapeutic agents is one of the biggest challenges facing human health and the agricultural industry, with resistance to all current anthelmintics now recorded and few new agents or vaccines available. Understanding the development of drug resistance in parasitic nematodes is critical to prolonging the efficacy of current anthelmintics, developing markers for monitoring drug resistance and is beneficial in the design of new chemotherapeutic agents or targets. This study describes the development of ivermectin-resistant strains of the model nematode Caenorhabditis elegans through step-wise exposure to increasing doses of ivermectin commencing with a non-toxic dose of 1 ng/ml. Resistant strains were developed that displayed a multidrug resistance phenotype with cross-resistance to the related drug moxidectin and to other anthelmintics, levamisole and pyrantel, but not albendazole. Resistance was associated with increased expression of the multidrug resistance proteins (MRPs) and P-glycoproteins. Resistance to ivermectin was reversible by the co-administration of MRP, P-glycoprotein and glutathione biosynthesis inhibitors, confirming the involvement of these proteins in resistance. In our model, resistance to low levels of ivermectin (相似文献   

16.
Lipid droplets (LDs) are ubiquitous in eukaryotic cells, while excess free fatty acids and glucose in plasma are converted to triacylglycerol (TAG) and stored as LDs. However, the mechanism for the generation and growth of LDs in cells is largely unknown. We show here that the LC3 lipidation system essential for macroautophagy is involved in LD formation. LD formation accompanied by accumulation of TAG induced by starvation was largely suppressed in the hepatocytes that cannot execute autophagy. Under starvation conditions, LDs in addition to autophagosomes were abundantly formed in the cytoplasm of these tissue cells. Moreover, LC3 was localized on the surface of LDs and LC3-II (lipidation form) was fractionated to a perilipin (LD marker)-positive lipid fraction from the starved liver. Taken together, these results indicate that the LC3 conjugation system is critically involved in lipid metabolism via LD formation.  相似文献   

17.
The neutral noncyclic imide and ether containing ionophore (AS701), a selective carrier for Li+ among alkali cations, was found to be capable of mediating the transport of NH4+ and of biogenic amines (catechols and indoles) across lipid bilayer membranes also. Ionophore-mediated electrical properties of planar lipid bilayers were studied under experimental conditions where the positively-charged amine species was dominant. The ionophore was found to act as a selective carrier of the biogenic amines, mediating their electrogenic transport across the membrane, forming 2:1 carrier-amine permeant complexes, carrying a net-charge of +1. Selectively among the amines corresponding to the following sequence: tryptamine (35) > Li+ (1) > serotonin (0.60) > dopamine (0.19) > norepinephrine (0.13) > epinephrine (0.05) > NH4+ (0.05). The molecular factors involved in determining these selectivities are assessed.  相似文献   

18.
Multidrug resistance (MDR) is the result of overexpression of membrane bound proteins that efflux chemotherapeutic drugs from the cells. Two proteins, P-glycoprotein (P-gp) and multidrug-resistance associated protein-1 (MRP-1) efflux chemotherapeutic agents out of the cancer cell that decrease intracellular drug accumulation, thereby decreasing the effectiveness of many chemotherapeutic agents. In the present study, the ethanolic extract of the roots of Stemona curtisii Hook. was tested for the potential ability to modulate the MDR phenotype and function of P-gp and MRP-1. The S. curtisii extract reversed the resistance to putative chemotherapeutic agents, including vinblastine, paclitaxel and colchicine of KB-V1 cells (MDR human cervical carcinoma with high P-gp expression) in a dose-dependent manner, but not in KB-3-1 cells (drug sensitive human cervical carcinoma, which lack P-gp expression). The root extract also increased the intracellular uptake and retention of (3)[H]-vinblastine in KB-V1 cells dose dependently. The extract did not influence MDR phenotype-mediated MRP-1 in MRP1-HEK293 (human embryonic kidney cells stably transfected with pcDNA3.1-MRP1-H10 which show high MRP-1 expression) and pcDNA3.1-HEK293 (wild type). In summary, the S. curtisii root extract modulated P-gp activity but not MRP-1 activity. The result obtained from this study strongly indicated that S. curtisii extract may play an important role as a P-gp modulator as used in vitro and may be effective in the treatment of multidrug-resistant cancers. The purified form of the active components of S. curtisii extract should be investigated in more details in order to explain the molecular mechanisms involved in P-gp modulation. This is the first report of new biological activity in this plant, which could be a potential source of a new chemosensitizer.  相似文献   

19.
The sculpting of membranes into highly curved vesicles is central to intracellular cargo trafficking, yet the mechanical activities of trafficking proteins remain poorly understood. Using an optical trap based assay that measures in vitro membrane response to imposed deformations, we examined the behavior of the two human paralogs of Sar1, a key component of the COPII family of vesicle coat proteins. Like their yeast counterpart, the human Sar1 proteins can lower the mechanical rigidity of the membranes to which they bind. Unlike the yeast Sar1, the rigidity is not a monotonically decreasing function of concentration. At high concentrations, we find increased bending rigidity and decreased protein mobility. These features imply a model in which protein clustering governs membrane mechanical properties.  相似文献   

20.
Multidrug resistance in human tumour cells is often associated with increased expression of the 190kDa multidrug resistance protein, MRP1, that belongs to the ATP-binding cassette superfamily of transport proteins. MRP1 is also an efficient transporter of many organic anions. In the present study, we have mapped the epitope of the MRP1-specific murine monoclonal antibody (MAb) MRPm5 to the decapeptide (1063)FFERTPSGNL(1072) located in the cytoplasmic loop (CL6) linking transmembrane helices 13 and 14 in the third membrane spanning domain of the protein. Several amino acids in the cytoplasmic loops of MRP1 have been reported to be important for its transport function; nevertheless, MAb MRPm5 does not inhibit vesicular uptake of the high affinity substrate leukotriene C(4). None of the other MRP1-reactive MAbs described to date map to CL6 of MRP1 which in turn enhances the utility of MAb MRPm5 for both clinical and experimental investigations of this transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号