首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D'Amico S  Gerday C  Feller G 《Gene》2000,253(1):95-105
The alpha-amylase sequences contained in databanks were screened for the presence of amino acid residues Arg195, Asn298 and Arg/Lys337 forming the chloride-binding site of several specialized alpha-amylases allosterically activated by this anion. This search provides 38 alpha-amylases potentially binding a chloride ion. All belong to animals, including mammals, birds, insects, acari, nematodes, molluscs, crustaceans and are also found in three extremophilic Gram-negative bacteria. An evolutionary distance tree based on complete amino acid sequences was constructed, revealing four distinct clusters of species. On the basis of multiple sequence alignment and homology modeling, invariable structural elements were defined, corresponding to the active site, the substrate binding site, the accessory binding sites, the Ca(2+) and Cl(-) binding sites, a protease-like catalytic triad and disulfide bonds. The sequence variations within functional elements allowed engineering strategies to be proposed, aimed at identifying and modifying the specificity, activity and stability of chloride-dependent alpha-amylases.  相似文献   

2.
We have genetically engineered the Arg200----Lys mutant, the Glu144Arg145----GlnLys double mutant, and the Glu144Arg145Arg200----GlnLysLys triple mutant of the EcoRI endonuclease in extension of previously published work on site-directed mutagenesis of the EcoRI endonuclease in which Glu144 had been exchanged for Gln and Arg145 for Lys [Wolfes et al. (1986) Nucleic Acids Res. 14, 9063]. All these mutants carry modifications in the DNA binding site. Mutant EcoRI proteins were purified to homogeneity and characterized by physicochemical techniques. All mutants have a very similar secondary structure composition. However, whereas the Lys200 mutant is not impaired in its capacity to form a dimer, the Gln144Lys145 and Gln144Lys145Lys200 mutants have a very much decreased propensity to form a dimer or tetramer depending on concentration as shown by gel filtration and analytical ultracentrifugation. This finding may explain the results of isoelectric focusing experiments which show that these two mutants have a considerably more basic pI than expected for a protein in which an acidic amino acid was replaced by a neutral one. Furthermore, while wild-type EcoRI and the Lys200 mutant are denatured in an irreversible manner upon heating to 60 degrees C, the thermal denaturation process as shown by circular dichroism spectroscopy is fully reversible with the Gln144Lys145 double mutant and the Gln144Lys145Lys200 triple mutant. All EcoRI endonuclease mutants described here have a residual enzymatic activity with wild-type specificity, since Escherichia coli cells overexpressing the mutant proteins can only survive in the presence of EcoRI methylase. The detailed analysis of the enzymatic activity and specificity of the purified mutant proteins is the subject of the accompanying paper [Alves et al. (1989) Biochemistry (following paper in this issue)].  相似文献   

3.
The structure of amylosucrase from Neisseria polysaccharea in complex with beta-D-glucose has been determined by X-ray crystallography at a resolution of 1.66 A. Additionally, the structure of the inactive active site mutant Glu328Gln in complex with sucrose has been determined to a resolution of 2.0 A. The D-glucose complex shows two well-defined D-glucose molecules, one that binds very strongly in the bottom of a pocket that contains the proposed catalytic residues (at the subsite -1), in a nonstrained (4)C(1) conformation, and one that binds in the packing interface to a symmetry-related molecule. A third weaker D-glucose-binding site is located at the surface near the active site pocket entrance. The orientation of the D-glucose in the active site emphasizes the Glu328 role as the general acid/base. The binary sucrose complex shows one molecule bound in the active site, where the glucosyl moiety is located at the alpha-amylase -1 position and the fructosyl ring occupies subsite +1. Sucrose effectively blocks the only visible access channel to the active site. From analysis of the complex it appears that sucrose binding is primarily obtained through enzyme interactions with the glucosyl ring and that an important part of the enzyme function is a precise alignment of a lone pair of the linking O1 oxygen for hydrogen bond interaction with Glu328. The sucrose specificity appears to be determined primarily by residues Asp144, Asp394, Arg446, and Arg509. Both Asp394 and Arg446 are located in an insert connecting beta-strand 7 and alpha-helix 7 that is much longer in amylosucrase compared to other enzymes from the alpha-amylase family (family 13 of the glycoside hydrolases).  相似文献   

4.
Alteromonas haloplanctis is a bacterium that flourishes in Antarctic sea-water and it is considered as an extreme psychrophile. We have determined the crystal structures of the alpha-amylase (AHA) secreted by this bacterium, in its native state to 2.0 angstroms resolution as well as in complex with Tris to 1.85 angstroms resolution. The structure of AHA, which is the first experimentally determined three-dimensional structure of a psychrophilic enzyme, resembles those of other known alpha-amylases of various origins with a surprisingly greatest similarity to mammalian alpha-amylases. AHA contains a chloride ion which activates the hydrolytic cleavage of substrate alpha-1,4-glycosidic bonds. The chloride binding site is situated approximately 5 angstroms from the active site which is characterized by a triad of acid residues (Asp 174, Glu 200, Asp 264). These are all involved in firm binding of the Tris moiety. A reaction mechanism for substrate hydrolysis is proposed on the basis of the Tris inhibitor binding and the chloride activation. A trio of residues (Ser 303, His 337, Glu 19) having a striking spatial resemblance with serine-protease like catalytic triads was found approximately 22 angstroms from the active site. We found that this triad is equally present in other chloride dependent alpha-amylases, and suggest that it could be responsible for autoproteolytic events observed in solution for this cold adapted alpha-amylase.  相似文献   

5.
A computer-assisted analysis of the molecule of Escherichia coli pyrophosphatase was earlier used to localize the site capable of binding free pyrophosphate or methylene diphosphonate, a PPi analogue, and thereby activating the enzyme. A cluster of positively charged amino acid residues (Lys146, Lys148, Lys115, and Arg43) was revealed, and Lys115Ala, Lys148Gln, and Arg43Gln mutant pyrophosphatases (PPases) were obtained. It was shown that the kinetics of hydrolysis of the magnesium pyrophosphate (MgPPi) substrate by these mutant variants does not obey the Michaelis-Menten equation, which is expressed in two slopes in the double-reciprocal plot of the enzyme reaction rate vs. substrate concentration. The two regions on the curves correspond to the ranges of high and low MgPPi concentrations. This suggests that, in all mutant variants of the enzyme, the binding of PPi at the effector site becomes worse, whereas the affinity of MgPPi for the active site remains practically unchanged. Other properties of the enzymes, such as its oligomeric state, resistance to thermal denaturation, and resistance to the denaturing agent guanidine hydrochloride, were thoroughly studied. The constants of binding of Mg2+ to mutant enzymes in the absence of the substrate and to enzyme-substrate complexes were determined. The introduction of amino acid substitutions was shown to stabilize the protein globule. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.  相似文献   

6.
A mechanistic study of the essential allosteric activation of human pancreatic alpha-amylase by chloride ion has been conducted by exploring a wide range of anion substitutions through kinetic and structural experiments. Surprisingly, kinetic studies indicate that the majority of these alternative anions can induce some level of enzymatic activity despite very different atomic geometries, sizes, and polyatomic natures. These data and subsequent structural studies attest to the remarkable plasticity of the chloride binding site, even though earlier structural studies of wild-type human pancreatic alpha-amylase suggested this site would likely be restricted to chloride binding. Notably, no apparent relationship is observed between anion binding affinity and relative activity, emphasizing the complexity of the relationship between chloride binding parameters and the activation mechanism that facilitates catalysis. Of the anions studied, particularly intriguing in terms of observed trends in substrate kinetics and their novel atomic compositions were the nitrite, nitrate, and azide anions, the latter of which was found to enhance the relative activity of human pancreatic alpha-amylase by nearly 5-fold. Structural studies have provided considerable insight into the nature of the interactions formed in the chloride binding site by the nitrite and nitrate anions. To probe the role such interactions play in allosteric activation, further structural analyses were conducted in the presence of acarbose, which served as a sensitive reporter molecule of the catalytic ability of these modified enzymes to carry out its expected rearrangement by human pancreatic alpha-amylase. These studies show that the largest anion of this group, nitrate, can comfortably fit in the chloride binding pocket, making all the necessary hydrogen bonds. Further, this anion has nearly the same ability to activate human pancreatic alpha-amylase and leads to the production of the same acarbose product. In contrast, while nitrite considerably boosts the relative activity of human pancreatic alpha-amylase, its presence leads to changes in the electrostatic environment and active site conformations that substantially modify catalytic parameters and produce a novel acarbose rearrangement product. In particular, nitrite-substituted human pancreatic alpha-amylase demonstrates the unique ability to cleave acarbose into its acarviosine and maltose parts and carry out a previously unseen product elongation. In a completely unexpected turn of events, structural studies show that in azide-bound human pancreatic alpha-amylase, the normally resident chloride ion is retained in its binding site and an azide anion is found bound in an embedded side pocket in the substrate binding cleft. These results clearly indicate that azide enzymatic activation occurs via a mechanism distinct from that of the nitrite and nitrate anions.  相似文献   

7.
C S Park  C Miller 《Biochemistry》1992,31(34):7749-7755
Electrostatic interactions between charybdotoxin (CTX), a specific peptide pore blocker of K+ channels, and a Ca(2+)-activated K+ channel were investigated with a genetically manipulable recombinant CTX. Point mutations at certain charged residues showed only small effects on the binding affinity of the toxin molecule: Lys11, Glu12, Arg19, His21, Lys31, and Lys32. Replacement by Gln at Arg25, Lys27, or Lys34 strongly decreased the affinity of the toxin. These affinity changes were mainly due to large increases of toxin dissociation rates without much effect on association rates, as if close-range interactions between the toxin and its receptor site of the channel were disrupted. We also found that the neutralization of Lys27 to Gln removed the toxin's characteristic voltage dependence in dissociation rate. Mutation and functional mapping of charged residues revealed a molecular surface of CTX which makes direct contact with the extracellular mouth of the K+ channel.  相似文献   

8.
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase is a key enzyme of the gluconeogenic pathway and catalyzes the decarboxylation of oxaloacetate and transfer of the gamma-phosphoryl group of ATP to yield PEP, ADP, and CO2 in the presence of a divalent metal ion. Previous experiments indicate that mutation of amino acid residues at metal site 1 decrease the enzyme catalytic efficiency and the affinity of the protein for PEP, evidencing the relevance of hydrogen-bond interactions between PEP and water molecules of the first coordination sphere of the metal ion for catalysis [Biochemistry 41 (2002) 12763]. To further understand the function of amino acid residues located in the PEP binding site, we have now addressed the catalytic importance of Arg70, whose guanidinium group is close to the PEP carboxyl group. Arg70 mutants of PEP carboxykinase were prepared, and almost unaltered kinetic parameters were found for the Arg70Lys PEP carboxykinase, while a decrease in 4-5 orders of magnitude for the catalytic efficiency was detected for the Arg70Gln and Arg70Met altered enzymes. To evaluate the enzyme interaction with PEP, the phosphopyridoxyl-derivatives of wild type, Arg70Lys, Arg70Gln, and Arg70Met S. cerevisiae PEP carboxykinase were prepared, and the change in the fluorescence emission of the probe upon PEP binding was used to obtain the dissociation equilibrium constant of the corresponding derivatized enzyme-PEP-Mn2+ complex. The titration experiments showed that a loss in 2.1 kcal/mol in PEP binding affinity is produced in the Arg70Met and Arg70Gln mutant enzymes. It is proposed that the electrostatic interaction between the guanidinium group of Arg70 and the carboxyl group of PEP is important for PEP binding and for further steps in catalysis.  相似文献   

9.
The structure of human pancreatic alpha-amylase has been determined to 1.8 A resolution using X-ray diffraction techniques. This enzyme is found to be composed of three structural domains. The largest is Domain A (residues 1-99, 169-404), which forms a central eight-stranded parallel beta-barrel, to one end of which are located the active site residues Asp 197, Glu 233, and Asp 300. Also found in this vicinity is a bound chloride ion that forms ligand interactions to Arg 195, Asn 298, and Arg 337. Domain B is the smallest (residues 100-168) and serves to form a calcium binding site against the wall of the beta-barrel of Domain A. Protein groups making ligand interactions to this calcium include Asn 100, Arg 158, Asp 167, and His 201. Domain C (residues 405-496) is made up of anti-parallel beta-structure and is only loosely associated with Domains A and B. It is notable that the N-terminal glutamine residue of human pancreatic alpha-amylase undergoes a posttranslational modification to form a stable pyrrolidone derivative that may provide protection against other digestive enzymes. Structure-based comparisons of human pancreatic alpha-amylase with functionally related enzymes serve to emphasize three points. Firstly, despite this approach facilitating primary sequence alignments with respect to the numerous insertions and deletions present, overall there is only approximately 15% sequence homology between the mammalian and fungal alpha-amylases. Secondly, in contrast, these same studies indicate that significant structural homology is present and of the order of approximately 70%. Thirdly, the positioning of Domain C can vary considerably between alpha-amylases. In terms of the more closely related porcine enzyme, there are four regions of polypeptide chain (residues 237-250, 304-310, 346-354, and 458-461) with significantly different conformations from those in human pancreatic alpha-amylase. At least two of these could play a role in observed differential substrate and cleavage pattern specificities between these enzymes. Similarly, amino acid differences between human pancreatic and salivary alpha-amylases have been localized and a number of these occur in the vicinity of the active site.  相似文献   

10.
11.
Digits JA  Hedstrom L 《Biochemistry》1999,38(46):15388-15397
IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+) to NADH. This reaction is the rate-limiting step in de novo guanine nucleotide biosynthesis. Mycophenolic acid (MPA) is a potent inhibitor of mammalian IMPDHs but a poor inhibitor of microbial IMPDHs. MPA inhibits IMPDH by binding in the nicotinamide half of the dinucleotide site and trapping the covalent intermediate E-XMP. The MPA binding site of resistant IMPDH from the parasite Tritrichomonas foetuscontains two residues that differ from human IMPDH. Lys310 and Glu431 of T. foetus IMPDH are replaced by Arg and Gln, respectively, in the human type 2 enzyme. We characterized three mutants of T. foetusIMPDH: Lys310Arg, Glu431Gln, and Lys310Arg/Glu431Gln in order to determine if these substitutions account for the species selectivity of MPA. The mutation of Lys310Arg causes a 10-fold decrease in the K(i) for MPA inhibition and a 8-13-fold increase in the K(m) values for IMP and NAD(+). The mutation of Glu431Gln causes a 6-fold decrease in the K(i) for MPA. The double mutant displays a 20-fold increase in sensitivity to MPA. Pre-steady-state kinetics were performed to obtain rates of hydride transfer, NADH release, and hydrolysis of E-XMP for the mutant IMPDHs. The Lys310Arg mutation results in a 3-fold increase in the accumulation level of E-XMP, while the Glu431Gln mutation has only a minimal effect on the kinetic mechanism. These experiments show that 20 of the 450-fold difference in sensitivity between the T. foetus and human IMPDHs derive from the residues in the MPA binding site. Of this, 3-fold can be attributed to a change in kinetic mechanism. In addition, we measured MPA binding to enzyme adducts with 6-Cl-IMP and EICARMP. Neither of these adducts proved to be a good model for E-XMP.  相似文献   

12.
We have used site-specific mutagenesis to study the contribution of Glu 74 and the active site residues Gln 38, Glu 41, Glu 54, Arg 65, and His 85 to the catalytic activity and thermal stability of ribonuclease Sa. The activity of Gln38Ala is lowered by one order of magnitude, which confirms the involvement of this residue in substrate binding. In contrast, Glu41Lys had no effect on the ribonuclease Sa activity. This is surprising, because the hydrogen bond between the guanosine N1 atom and the side chain of Glu 41 is thought to be important for the guanine specificity in related ribonucleases. The activities of Glu54Gln and Arg65Ala are both lowered about 1000-fold, and His85Gln is totally inactive, confirming the importance of these residues to the catalytic function of ribonuclease Sa. In Glu74Lys, k(cat) is reduced sixfold despite the fact that Glu 74 is over 15 A from the active site. The pH dependence of k(cat)/K(M) is very similar for Glu74Lys and wild-type RNase Sa, suggesting that this is not due to a change in the pK values of the groups involved in catalysis. Compared to wild-type RNase Sa, the stabilities of Gln38Ala and Glu74Lys are increased, the stabilities of Glu41Lys, Glu54Gln, and Arg65Ala are decreased and the stability of His85Gln is unchanged. Thus, the active site residues in the ribonuclease Sa make different contributions to the stability.  相似文献   

13.
Phosphite dehydrogenase (PTDH) catalyzes the unusual oxidation of phosphite to phosphate with the concomitant reduction of NAD(+) to NADH. PTDH shares significant amino acid sequence similarity with D-hydroxy acid dehydrogenases (DHs), including strongly conserved catalytic residues His292, Glu266, and Arg237. Site-directed mutagenesis studies corroborate the essential role of His292 as all mutants of this residue were completely inactive. Histidine-selective inactivation studies with diethyl pyrocarbonate provide further evidence regarding the importance of His292. This residue is most likely the active site base that deprotonates the water nucleophile. Kinetic analysis of mutants in which Arg237 was changed to Leu, Lys, His, and Gln revealed that Arg237 is involved in substrate binding. These results agree with the typical role of this residue in D-hydroxy acid DHs. However, Glu266 does not play the typical role of increasing the pK(a) of His292 to enhance substrate binding and catalysis as the Glu266Gln mutant displayed an increased k(cat) and unchanged pH-rate profile compared to those of wild-type PTDH. The role of Glu266 is likely the positioning of His292 and Arg237 with which it forms hydrogen bonds in a homology model. Homology modeling suggests that Lys76 may also be involved in substrate binding, and this postulate is supported by mutagenesis studies. All mutants of Lys76 display reduced activity with large effects on the K(m) for phosphite, and Lys76Cys could be chemically rescued by alkylation with 2-bromoethylamine. Whereas a positively charged residue is absolutely essential for activity at the position of Arg237, Lys76 mutants that lacked a positively charged side chain still had activity, indicating that it is less important for binding and catalysis. These results highlight the versatility of nature's catalytic scaffolds, as a common framework with modest changes allows PTDH to catalyze its unusual nucleophilic displacement reaction and d-hydroxy acid DHs to oxidize alcohols to ketones.  相似文献   

14.
Angiotensin (Ang) I-converting enzyme (ACE) is a Zn(2+) metalloprotease with two homologous catalytic domains. Both the N- and C-terminal domains are peptidyl dipeptidases. Hydrolysis by ACE of its decapeptide substrate Ang I is increased by Cl(-), but the molecular mechanism of this regulation is unclear. A search for single substitutions to Gln among all conserved basic residues (Lys/Arg) in human ACE C-domain identified R1098Q as the sole mutant that lacked Cl(-) dependence. Cl(-) dependence is also lost when the equivalent Arg in the N-domain, Arg(500), is substituted with Gln. The Arg(1098) to Lys substitution reduced Cl(-) binding affinity by approximately 100-fold. In the absence of Cl(-), substrate binding affinity (1/K(m)) of and catalytic efficiency (k(cat)/K(m)) for Ang I hydrolysis are increased 6.9- and 32-fold, respectively, by the Arg(1098) to Gln substitution, and are similar (<2-fold difference) to the respective wild-type C-domain catalytic constants in the presence of optimal [Cl(-)]. The Arg(1098) to Gln substitution also eliminates Cl(-) dependence for hydrolysis of tetrapeptide substrates, but activity toward these substrates is similar to that of the wild-type C-domain in the absence of Cl(-). These findings indicate that: 1) Arg(1098) is a critical residue of the C-domain Cl(-)-binding site and 2) a basic side chain is necessary for Cl(-) dependence. For tetrapeptide substrates, the inability of R1098Q to recreate the high affinity state generated by the Cl(-)-C-domain interaction suggests that substrate interactions with the enzyme-bound Cl(-) are much more important for the hydrolysis of short substrates than for Ang I. Since Cl(-) concentrations are saturating under physiological conditions and Arg(1098) is not critical for Ang I hydrolysis, we speculate that the evolutionary pressure for the maintenance of the Cl(-)-binding site is its ability to allow cleavage of short cognate peptide substrates at high catalytic efficiencies.  相似文献   

15.
A series of novel (3′-amino-[1,1′-biphenyl]-4-yl) sulfamic acid derivatives were designed as nonphosphonate-based phosphotyrosy (pTyr) mimetics, synthesized and screened for use as HPTPβ inhibitors. Compounds C22 and C2 showed favorable HPTPβ inhibitory activity and better selectivity for HPTPβ than for PTP1B and SHP2. Docking results suggested that compounds C2 and C22 could not only efficiently fit into the catalytic site of the HPTPβ enzyme but also interact with the Lys1807, Arg1809 and Lys1811 residues of the secondary binding site, which was next to the catalytic center of the enzyme. The mode of interaction of the synthesized compound with the protein was different from the one found in a complex crystal of small molecules with HPTPβ (2I4H), in which the inhibitory molecule formed hydrogen bonds with the Gln1948 and Asn1735 residues of the secondary binding site.  相似文献   

16.
L A LeBrun  B V Plapp 《Biochemistry》1999,38(38):12387-12393
The rate of association of NAD(+) with wild-type horse liver alcohol dehydrogenase (ADH) is maximal at pH values between pK values of about 7 and 9, and the rate of NADH association is maximal at a pH below a pK of 9. The catalytic zinc-bound water, His-51 (which interacts with the 2'- and 3'-hydroxyl groups of the nicotinamide ribose of the coenzyme in the proton relay system), and Lys-228 (which interacts with the adenosine 3'-hydroxyl group and the pyrophosphate of the coenzyme) may be responsible for the observed pK values. In this study, the Lys228Arg, His51Gln, and Lys228Arg/His51Gln (to isolate the effect of the catalytic zinc-bound water) mutations were used to test the roles of the residues in coenzyme binding. The steady state kinetic constants at pH 8 for the His51Gln enzyme are similar to those for wild-type ADH. The Lys228Arg and Lys228Arg/His51Gln substitutions decrease the affinity for the coenzymes up to 16-fold, probably due to altered interactions with the arginine at position 228. As determined by transient kinetics, the rate constant for association of NAD(+) with the mutated enzymes no longer decreases at high pH. The pH profile for the Lys228Arg enzyme retains the pK value near 7. The His51Gln and Lys228Arg/His51Gln substitutions significantly decrease the rate constants for NAD(+) association, and the pH dependencies show that these enzymes bind NAD(+) most rapidly at a pH above pK values of 8. 0 and 9.0, respectively. It appears that the pK of 7 in the wild-type enzyme is shifted up by the H51Q substitutions, and the resulting pH dependence is due to the deprotonation of the catalytic zinc-bound water. Kinetic simulations suggest that isomerization of the enzyme-NAD(+) complex is substantially altered by the mutations. In contrast, the pH dependencies for NADH association with His51Gln, Lys228Arg, and Lys228Arg/His51Gln enzymes were the same as for wild-type ADH, suggesting that the binding of NAD(+) and the binding of NADH are controlled differently.  相似文献   

17.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha2beta2 tetramer, catalyzes the formation of 4-hydroxyproline in collagens. We converted 16 residues in the human alpha subunit individually to other amino acids, and expressed the mutant polypeptides together with the wild-type beta subunit in insect cells. Asp414Ala and Asp414Asn inactivated the enzyme completely, whereas Asp414Glu increased the K(m) for Fe2+ 15-fold and that for 2-oxoglutarate 5-fold. His412Glu, His483Glu and His483Arg inactivated the tetramer completely, as did Lys493Ala and Lys493His, whereas Lys493Arg increased the K(m) for 2-oxoglutarate 15-fold. His501Arg, His501Lys, His501Asn and His501Gln reduced the enzyme activity by 85-95%; all these mutations increased the K(m) for 2-oxoglutarate 2- to 3-fold and enhanced the rate of uncoupled decarboxylation of 2-oxoglutarate as a percentage of the rate of the complete reaction up to 12-fold. These and other data indicate that His412, Asp414 and His483 provide the three ligands required for the binding of Fe2+ to a catalytic site, while Lys493 provides the residue required for binding of the C-5 carboxyl group of 2-oxoglutarate. His501 is an additional critical residue at the catalytic site, probably being involved in both the binding of the C-1 carboxyl group of 2-oxoglutarate and the decarboxylation of this cosubstrate.  相似文献   

18.
A computer-assisted analysis of the molecule of Escherichia coli pyrophosphatase was earlier used to localize the site capable of binding free pyrophosphate (PPi) or methylenediphosphonate, a PPi analogue, and thereby activating the enzyme. A cluster of positively charged amino acid residues (Lys146, Lys148, Lys115, and Arg43) was revealed, and Lys115Ala, Lys148Gln, and Arg43Gln mutant pyrophosphatases (PPases) were obtained. It was shown that the kinetics of hydrolysis of the magnesium pyrophosphate (MgPPi) substrate by these mutant variants does not obey the Michaelis-Menten equation, which is expressed in two slopes in the double-reciprocal plots of the enzyme reaction rate vs. substrate concentration. The two regions on the curves correspond to the ranges of high and low MgPPi concentrations. This suggests that, in all mutant variants of the enzyme, the binding of PPi at the effector site weakens, whereas the affinity of MgPPi for the active site remains practically unchanged. Other properties of the enzymes, such as their oligomeric states, resistance to thermal denaturation, and resistance to the denaturing agent guanidine hydrochloride, were thoroughly studied. The constants of binding of Mg2+ to mutant enzymes in the absence of substrate and to enzyme-substrate complexes were determined. The introduction of amino acid substitutions was shown to stabilize the protein globule.__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 251–258.Original Russian Text Copyright © 2005 by Sitnik, Avaeva.  相似文献   

19.
Human soluble epoxide hydrolase (hsEH) has been shown to play a role in regulating blood pressure and inflammation. HsEH consists of an N-terminal phosphatase and a C-terminal epoxide hydrolase domain. In the present study, we examined the effects of polymorphisms in the hsEH gene on phosphatase activity, enzyme stability, and protein quaternary structure. The results showed that mutants Lys55Arg, Arg103Cys, Cys154Tyr, Arg287Gln, and the Arg103Cys/Arg287Gln (double mutant) have significantly lower phosphatase activity compared to the most frequent allele (MFA) of hsEH. In addition, the Lys55Arg, Arg103Cys, Cys154Tyr, Arg287Gln, and the double mutant have significantly lower kcat/Km values. The stabilities at 37 degrees C of purified Arg287Gln and Arg103Cys/Arg287Gln mutants were also significantly reduced compared to the MFA. HPLC size-exclusion studies showed that the MFA exists predominantly as a dimer. However, the Arg287Gln and Arg103Cys/Arg287Gln mutants show increased concentration of the monomer. We conclude that the Arg287Gln polymorphism disrupts putative intra- and inter-monomeric salt-bridges responsible for dimerization.  相似文献   

20.
The cDNA encoding Taka-amylase A (EC.3.2.1.1, TAA) was isolated to identify functional amino acid residues of TAA by protein engineering. The putative catalytic active-site residues and the substrate binding residue of TAA were altered by site-directed mutagenesis: aspartic acid-206, glutamic acid-230, aspartic acid-297, and lysine-209 were replaced with asparagine or glutamic acid, glutamine or aspartic acid, asparagine or glutamic acid, and phenylalanine or arginine, respectively. Saccharomyces cerevisiae strain YPH 250 was transformed with the expression plasmids containing the altered cDNA of the TAA gene. All the transformants with an expression vector containing the altered cDNA produced mutant TAAs that cross-reacted with the TAA antibody. The mutant TAA with alteration of Asp206, Glu230, or Asp297 in the putative catalytic site had no alpha-amylase activity, while that with alteration of Lys209 in the putative binding site to Arg or Phe had reduced activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号