首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li B  Wei XJ  Sun JL  Xu SY 《Carbohydrate research》2006,341(9):1135-1146
A fucoidan, obtained from the hot-water extract of the brown seaweed, Hizikia fusiforme, was separated into five fractions by DEAE Sepharose CL-6B and Sepharose CL-6B column chromatography. All five fractions contained predominantly fucose, mannose and galactose and also contained sulfate groups and uronic acid. The fucoidans had MWs from 25 to 950 kDa. The structure of fraction F32 was investigated by desulfation, carboxyl-group reduction, partial hydrolysis, methylation analysis and NMR spectroscopy. The results showed that the sugar composition of F32 was mainly fucose, galactose, mannose, xylose and glucuronic acid; sulfate was 21.8%, and the MW was 92.7 kDa. The core of F32 was mainly composed of alternating units of -->2)-alpha-D-Man(1--> and -->4)-beta-D-GlcA(1-->, with a minor portion of -->4)-beta-D-Gal(1--> units. The branch points were at C-3 of -->2)-Man-(1-->, C-2 of -->4)-Gal-(1--> and C-2 of -->6)-Gal-(1-->. About two-thirds of the fucose units were at the nonreducing ends, and the remainder were (1-->4)-, (1-->3)- and (1-->2)-linked. About two-thirds of xylose units were at the nonreducing ends, and the remainder were (1-->4)-linked. Most of the mannose units were (1-->2)-linked, and two-thirds of them had a branch at C-3. Galactose was mainly (1-->6)-linked. The absolute configurations of the sugar residues were alpha-D-Manp, alpha-L-Fucp, alpha-D-Xylp, beta-D-Galp and beta-D-GlcpA. Sulfate groups in F32 were at C-6 of -->2,3)-Man-(1-->, C-4 and C-6 of -->2)-Man-(1-->, C-3 of -->6)-Gal-(1-->, C-2, C-3 or C-4 of fucose, while some fucose had two sulfate groups. There were no sulfate groups in either the GlcA or xylose residues.  相似文献   

2.
Four fucoidan fractions from brown alga Costaria costata, collected at different life-stages: vegetative, May (5F2 and 5F3) and generative, July (7F1 and 7F2) collections were characterized. It was found that seaweed synthesizes different set of fucoidans - one with high fucose content and substantial percentage of hexoses and uronic acid and lower sulfate content (7F1, 5F2 and 5F3) and other - highly sulfated galactofucan (7F2). Structural features of fractions 7F2 and 5F3 were predominantly determined by mass spectrometric analysis of low-molecular-weight (LMW) oligosaccharide fragments, obtained by autohydrolysis of 7F2 and mild acid hydrolysis of 5F3 fucoidans. It was found that oligosaccharides from 7F2 fractions were mainly built up of sulfated at C-2 and/or at C-2/C-4 (1→3)-linked α-l-fucopyranose residues. d-Galactose residues, sulfated either at C-2 or C-6, were found as parts of mixed di- and trisaccharides at both termini and, probably, internal. Fucose residues in 5F3 fucoidan fragments were sulfated at C-2 and sometimes at C-4. Galactose residues were sulfated at C-4 and less frequently at C-2. Resistant to hydrolysis fraction was probably a core, built up with fucose, mannose and glucuronic acid. Presumably, oligosaccharide fragments were branches at C-4 of GlcA. They were sulfated at C-2 and sometimes at C-4 (1→3)- and/or (1→4)-linked fucooligosaccharides (sometimes terminated with (1→3)-linked galactose) and sulfated at C-4 or C-2 (1→4)- or, probably, (1→6)-linked galactooligosaccharides, probably, with own branches, formed by (1→2)-linked galactose residues. Unsulfated xylose residues were probably terminal in chains built up of fucose. It was confirmed, that monosaccharide content and structure of fucoidans of vegetative algae changed following its life stage. Generative alga in general produced highly sulfated galactofucan having lower MW along with less sulfated mannoglucuronofucan with higher MW, which was extensively synthesized by vegetative algae.  相似文献   

3.
Structure of a fucoidan from the brown seaweed Fucus serratus L   总被引:1,自引:0,他引:1  
A fucoidan consisting of L-fucose, sulfate and acetate in a molar proportion of 1:1:0.1 and small amounts of xylose and galactose were isolated from the brown seaweed Fucus serratus L. The fucoidan structure was investigated by 1D and 2D 1H and 13C NMR spectroscopy of its desulfated and de-O-acetylated derivatives as well as by methylation analysis of the native and desulfated polysaccharides. A branched structure was suggested for the fucoidan with a backbone of alternating 3- and 4-linked alpha-L-fucopyranose residues, -->3)-alpha-L-Fucp-(1-->4)-alpha-L-Fucp-(1-->, about half of the 3-linked residues being substituted at C-4 by trifucoside units alpha-L-Fucp-(1-->4)-alpha-L-Fucp-(1-->3)-alpha-L-Fucp-(1-->. Minor chains built up of 4-linked alpha-fucopyranose and beta-xylose residues were also detected, but their location, as well as the position of galactose residues, remained unknown. Sulfate groups were shown to occupy mainly C-2 and sometimes C-4, although 3,4-diglycosylated and some terminal fucose residues may be nonsulfated. Acetate was found to occupy C-4 of 3-linked Fuc and C-3 of 4-linked Fuc in a ratio of about 7:3.  相似文献   

4.
The brown seaweed Adenocystis utricularis (family Adenocystaceae, order Ectocarpales sensu lato) was extracted in parallel with three solvents usually utilized for obtaining fucoidans: distilled water, 2% calcium chloride solution and diluted hydrochloric acid (pH 2) solution. In each case, the extraction was effected at room temperature and then at 70 degrees C. The extraction yields and characteristics of the products were similar in the three cases, with only minor differences. The analytical features of the products indicate that two different types of fucoidans are present in this seaweed. One of them, mostly extracted at room temperature, is composed mainly of L-fucose, D-galactose and ester sulfate (the 'galactofucan'). The other product (the 'uronofucoidan') is the major component of the extracts obtained at 70 degrees C. It is composed mainly of fucose, accompanied by other monosaccharides (mostly Man, but also Glc, Xyl, Rha and Gal), significant amounts of uronic acids and low proportions of sulfate ester. Fractionation with the cationic detergent cetrimide has allowed achieving a better separation of the galactofucan and uronofucoidan components. The galactofucans show a high inhibitory activity against herpes simplex virus 1 and 2, with no cytotoxicity, whereas the uronofucoidans carry no antiviral activity. Structural studies on the galactofucan fractions were carried out by methylation analysis, desulfation and NMR spectroscopy. The fucan constituent is mainly composed of 3-linked alpha-L-fucopyranosyl backbone, mostly sulfated at C-4, and branched at C-2 with non-sulfated fucofuranosyl and fucopyranosyl units, and 2-sulfated fucopyranosyl units. The galactan moiety is more heterogeneous, with predominant D-galactopyranose units linked on C-3 and C-6, and sulfation mostly on C-4, even in terminal non-reducing units. It may be inferred that at least some of these galactose units carry the alpha-configuration.  相似文献   

5.
Cryptonemia crenulata biosynthesizes a family of dl-hybrid galactans that are based on the classical 3-linked beta-d-galactopyranosyl-->4-linked alpha-galactopyranosyl alternating sequence (A-units-->B-units). The dispersion of structures in these galactans is based on four factors, namely: (a) the amount and position of substituent groups as sulfate (major), pyruvic acid ketals, methoxyl and side substituents of beta-D-xylose and/or beta-D-galactose; (b) the ratio galactose/3,6-anhydrogalactose in the B-units; (c) the ratio D-/L-galactoses and 3,6-anhydrogalactoses also in the B-units and (d) the sequence of the diads in the linear backbone. Alkali treatment carried out on the major fraction produced a nearly quantitative formation of 3,6-anhydrogalactose units from precursor units (alpha-galactose 6-sulfate (major) and alpha-galactose 2,6-sulfate, minor). Kinetic studies show a rate constant, for the diad G2S-D(L) 6-S, of 1.7 x 10(4)s(-1) indicating a reaction faster than in lambda-carrageenans but slower than in porphyrans.  相似文献   

6.
The composition, molecular weight (MW), anticoagulant activity and nuclear magnetic resonance spectra of various low-molecular-weight fucans (LMWFs) obtained by partial hydrolysis or radical depolymerization of a crude fucoidan extracted from the brown seaweed Ascophyllum nodosum are compared. Fucose units were found mainly sulfated at O-2, to a lesser extent at O-3, and only slightly at O-4, contrary to previously published results for fucoidans from other brown seaweeds, and fucose 2, 3-O-disulfate residues were observed for the first time. As the sulfation pattern excluded an alpha-(1-->2)-linked fucose backbone and a high proportion of alpha-(1-->4) linkages was found, it would appear that the concept of fucoidan structure needs to be revised. Anticoagulant activity is apparently related not only to MW and sulfation content, as previously determined, but also (and more precisely) to 2-O-sulfation and 2,3-O-disulfation levels.  相似文献   

7.
岩藻多糖(fucoidans, FU)主要来源于海洋褐藻和海洋无脊椎动物,是一种复杂的硫酸化多糖。FU主要单糖组成为岩藻糖,含有大量硫酸基团,是一种多聚阴离子同型杂多糖。FU具有广泛的潜在健康功效及治疗作用,包括抗肿瘤、调节免疫、抗病毒、降血糖等。FU的化学结构及硫酸基团含量对功能活性具有重要影响,不同提取方法影响FUs的结构组成,而化学改性可以进一步提高其生物活性。因此,本文旨在概述FU的提取、化学改性方法及降血糖活性和机理,展望了FU提取、化学改性、结构及降血糖活性及其他生物活性构效关系方面未来研究方向,为今后的加工和创新利用提供理论参考。  相似文献   

8.
Two sulfated fucoidan fractions (Lj3 and Lj5) were extracted from Saccharina japonica and then subjected to acid hydrolysis to obtain Lj3h and Lj5h. Lj3h and Lj5h were characterized using IR, methylation analysis, and mass spectrometry. It was found that Lj3h and Lj5h were homogeneous low molecular weight fucoidans. Specifically, Lj3h was composed of the main chain of 1,3‐linked α‐L‐fucopyranose residues with sulfate at C‐2 and/or C‐4 and three different monosaccharides (galactose, glucose, mannose) branched at C‐2 and/or C‐4 of fucose residue. Lj5h contained backbones of alternating galactopyranose residues and fucopyranose residues attached via a 1→3 linkage (galactofucan) and 1→6 linked galactan. The sulfation pattern was mainly located at C2/C4 fucose or galactose residues and more branches occupied at C‐4 of fucose residue and C‐2, C‐3 or/and C‐6 of galactose residue. In vitro assay indicated that, among the four fucoidans tested, only Lj5 showed potent α‐glucosidase inhibitory activity with IC50 of 153.27±22.89 μg/mL, and the two parent fucoidans, Lj3 and Lj5, showed better antioxidant activity than their derivatives. These findings highlight the structure and bioactivity diversity of Saccharina japonica‐derived fucoidans.  相似文献   

9.
Platelet factor 4 (PF-4) is a platelet-derived alpha-chemokine that binds to and activates human neutrophils to undergo specific functions like exocytosis or adhesion. PF-4 binding has been shown to be independent of interleukin-8 receptors and could be inhibited by soluble chondroitin sulfate type glycosaminoglycans or by pretreatment of cells with chondroitinase ABC. Here we present evidence that surface-expressed neutrophil glycosaminoglycans are of chondroitin sulfate type and that this species binds to the tetrameric form of PF-4. The glycosaminoglycans consist of a single type of chain with an average molecular mass of approximately 23 kDa and are composed of approximately 85-90% chondroitin 4-sulfate disaccharide units type CSA (-->4GlcAbeta1-->3GalNAc(4-O-sulfate)beta1-->) and of approximately 10-15% di-O-sulfated disaccharide units. A major part of these di-O-sulfated disaccharide units are CSE units (-->4GlcAbeta1-->3GalNAc(4,6-O-sulfate)beta1-->). Binding studies revealed that the interaction of chondroitin sulfate with PF-4 required at least 20 monosaccharide units for significant binding. The di-O-sulfated disaccharide units in neutrophil glycosaminoglycans clearly promoted the affinity to PF-4, which showed a Kd approximately 0.8 microM, as the affinities of bovine cartilage chondroitin sulfate A, porcine skin dermatan sulfate, or bovine cartilage chondroitin sulfate C, all consisting exclusively of monosulfated disaccharide units, were found to be 3-5-fold lower. Taken together, our data indicate that chondroitin sulfate chains function as physiologically relevant binding sites for PF-4 on neutrophils and that the affinity of these chains for PF-4 is controlled by their degree of sulfation.  相似文献   

10.
A linear sulfated fucan with a regular repeating sequence of [3)-alpha-L-Fucp-(2SO4)-(1-->3)-alpha-L-Fucp-(4SO4)-(1-->3)-alpha-L-Fucp-(2,4SO4)-(1-->3)-alpha-L-Fucp-(2SO4)-(1-->]n is an anticoagulant polysaccharide mainly due to thrombin inhibition mediated by heparin cofactor II. No specific enzymatic or chemical method is available for the preparation of tailored oligosaccharides from sulfated fucans. We employ an apparently nonspecific approach to cleave this polysaccharide based on mild hydrolysis with acid. Surprisingly, the linear sulfated fucan was cleaved by mild acid hydrolysis on an ordered sequence. Initially a 2-sulfate ester of the first fucose unit is selectively removed. Thereafter the glycosidic linkage between the nonsulfated fucose residue and the subsequent 4-sulfated residue is preferentially cleaved by acid hydrolysis, forming oligosaccharides with well-defined size. The low-molecular-weight derivatives obtained from the sulfated fucan were employed to determine the requirement for interaction of this polysaccharide with heparin cofactor II and to achieve complete thrombin inhibition. The linear sulfated fucan requires significantly longer chains than mammalian glycosaminoglycans to achieve anticoagulant activity. A slight decrease in the molecular size of the sulfated fucan dramatically reduces its effect on thrombin inactivation mediated by heparin cofactor II. Sulfated fucan with approximately 45 tetrasaccharide repeating units binds to heparin cofactor II but is unable to link efficiently the plasma inhibitor and thrombin. This last effect requires chains with approximately 100 or more tetrasaccharide repeating units. We speculate that the template mechanism may predominate over the allosteric effect in the case of the linear sulfated fucan inactivation of thrombin in the presence of heparin cofactor II.  相似文献   

11.
The sulfated agaran isolated by water extraction from the red seaweed, Acanthophora spicifera (Rhodomelaceae, Ceramiales), is made up of A-units highly substituted with sulfate groups on C-2 (28-30%), sulfates on C-2 and 4,6-O-(1'-carboxyethylidene) groups (9-15%), and only the C-2 sulfate groups (5-8%) with small amounts of C-6 sulfate, 6-O-methyl, and nonsubstituted residues. B-units are formed mainly by 3,6-anhydro-alpha-L-galactose (15-16%) and its precursor, alpha-L-galactose 6-sulfate (10-17%), together with lesser amounts of 3,6-anhydro-alpha-L-galactose 2-sulfate, alpha-L-galactose 2,6-disulfate, alpha-L-galactose 2,3,6-tri-sulfate, alpha-L-galactose 2,6-disulfate 3-xylose, 2-O-methyl-alpha-L-galactose, and unsubstituted alpha-L-galactose. Small, but significant quantities of beta-D-xylose were found in all the fractions, together with small amounts to traces of D-glucose. Some of the fractions have high antiviral activity. Attempts to correlate structure and antiviral activity in agarans are presented.  相似文献   

12.
《Process Biochemistry》2014,49(8):1352-1361
In this study, we isolated two fucosylated polysaccharide sulfates (ACP and HOP) from sea cucumber Acaudina molpadioidea and Holothuria nobilis, with an average molecular weight of 90.8 and 135.8 kDa, respectively. We investigated and compared their anticoagulant activities through anticoagulant assay. Our data showed that both polysaccharides possessed good anticoagulant activity, but HOP's activity was higher than that of ACP. Due to the different anticoagulant activities of ACP and HOP, we compared the preliminary structural characterizations of these two sulfated polysaccharides, and found that both ACP and HOP consisted of β-d-glucuronic acid, β-d-N-acetyl-galactosamine, α-l-fucose and sulfate groups. ACP and HOP had almost identical ratios of glucuronic acid, N-acetyl-galactosamine and fucose. However, the sulfate contents and sulfation patterns of fucose residues of ACP and HOP were obviously different. There were 4-O-sulfated fucose, 3,4-O-disulfated fucose and 2,4-O-disulfated fucose in ACP, but only 3-O-sulfated fucose and 2,4-O-disulfated fucose were present in HOP. Therefore, their distinct anticoagulant activities might be due to the different sulfate contents and sulfation patterns of their fucose residues.  相似文献   

13.
The structure of a unique focose-branched chondroitin sulfate isolated from the body wall of a sea cucumber was examined in detail. This glycosaminoglycan contains side chain disaccharide units of sulfated fucopyranosyl units linked to approximately one-half of the glucuronic acid moieties through the O-3 position of the acid. The intact polysaccharide is totally resistant to chondroitinase degradation, whereas, after defucosylation, it is partially degraded by the enzyme. However, only after an additional step of desulfation, the chondroitin from sea cucumber is almost totally degraded by chondroitinase AC or ABC. This result, together with the methylation and NMR studies of the native and chemically modified polysaccharide, suggest that besides the fucose branches, the sea cucumber chondroitin sulfate contains sulfate esters at position O-3 of the beta-D-glucuronic acid units. Furthermore, the proteoglycan from the sea cucumber chondroitin sulfate is recognized by anti-Leu-7 monoclonal antibody, which specifically recognizes 3-sulfoglucuronic acid residues. In analogy with the fucose branched units, the 3-O-sulfo-beta-D-glucuronosyl residues are resistant to chondroitinase degradation. Regarding the position of the glycosidic linkage and site of sulfation in the fucose branches, our results suggest high heterogeneity. Tentatively, it is possible to suggest the preponderance of disaccharide units formed by 3,4-di-O-sulfo-alpha-L-fucopyranosyl units glycosidically linked through position 1----2 to 4-O-sulfo-alpha-L-fucopyranose. Finally, the presence of unusual 4/6-disulfated disaccharide units, together with the common 6-sulfated and non-sulfated units, was detected in the chondroitin sulfate core of this polysaccharide.  相似文献   

14.
A fucoidanase preparation from the marine mollusk Littorina kurila cleaved some glycosidic bonds in fucoidan from the brown alga Fucus distichus, but neither fucose nor lower oligosaccharides were produced. The main product isolated from the incubation mixture was a polysaccharide built up of disaccharide repeating units -->3)-alpha-L-Fucp-(2,4-di-SO3(-))-(1-->4)-alpha-L-Fucp-(2SO3(-))-(1-->, the structure coinciding with the idealized formula proposed for the initial substance. A polymer fraction with the same carbohydrate chain but sulfated only at positions 2 and nonstoichiometrically acetylated at positions 3 and 4 of fucose residues was isolated as a minor component. It is suggested that the native polysaccharide should contain small amounts of non-sulfated and non-acetylated fucose residues, and only their glycosidic bonds are cleaved by the enzyme. The enzymatic hydrolysis showed that irregular regions of the native polysaccharide containing acetylated and partially sulfated repeating units were assembled in blocks.  相似文献   

15.
The cell walls of Actinomadura viridis contain poly(glycosylglycerol phosphate) chains of complex structure. On the basis of NMR spectroscopy of the polymer and glycosides thereof the following structural units were found: beta-D-Galp3Me-(1-->4)[beta-D-Glcp-(1-->6)]-beta-D-Galp-(1-->1)-++ +snGro (G1); beta-D-Galp-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2); beta-D-Galp3Me-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2a); beta-D-Galp-(1-->1)-snGro (G3); beta-D-Galp-(1-->1)[beta-D-Galp-(1-->2)]-snGro (G4); beta-D-Glcp-(1-->2)-snGro (G5). Glycosides G1, G2 and G3 were the predominant components of the teichoic acid: they formed the polymer chain via phosphodiester bonds involving C-3 of the glycerol residue and C-3 of the galactosyl residue which in turn glycosylates C-1 of the glycerol residue. Whether the different glycosides make up the one chain or whether there are several poly(glycosylglycerol phosphate) chains in the cell wall remains to be determined. It was suggested that the minor component G5 is located at the nonterminal end of the chains. Compound G4 which contains disubstituted glycerol residues (unusual for the teichoic acid) was also found as a minor component; this may be the glycoside of a new type of teichoic acid, or a glycoside on the terminal end of the above mentioned chains. In addition, small amounts of 1,3-poly(glycerol phosphate) chains were found in the cell wall.  相似文献   

16.
The sulfated polysaccharides in the body wall of the sea cucumber occur as three fractions that differ markedly in molecular mass and chemical composition. The fraction containing a high molecular mass component has a high proportion of fucose and small amounts of galactose and amino sugars, whereas another fraction contains primarily a sulfated fucan. The third fraction (F-2), which represents the major portion of the sea cucumber-sulfated polysaccharides, contains approximately equimolar quantities of glucuronic acid, N-acetyl galactosamine, and fucose, and has a sulfate content higher than that in the other two fractions. The structure of fraction F-2 was examined in detail. This polysaccharide has an unusual structure composed of a chondroitin sulfate-like core, containing side chain disaccharide units of sulfated fucopyranosyl linked to approximately half of the glucuronic acid moieties through the O-3 position of the acid. These unusual fucose branches obstruct the access of chondroitinases to the chondroitin sulfate core of F-2. However, after partial acid hydrolysis, which removes the sulfated fucose residues from the polymer, fraction F-2 is degraded by chondroitinases into 6-sulfated and nonsulfated disaccharides.  相似文献   

17.
The anti-inflammatory, antiangiogenic, anticoagulant, and antiadhesive properties of fucoidans obtained from nine species of brown algae were studied in order to examine the influence of fucoidan origin and composition on their biological activities. All fucoidans inhibited leucocyte recruitment in an inflammation model in rats, and neither the content of fucose and sulfate nor other structural features of their polysaccharide backbones significantly affected the efficacy of fucoidans in this model. In vitro evaluation of P-selectin-mediated neutrophil adhesion to platelets under flow conditions revealed that only polysaccharides from Laminaria saccharina, L. digitata, Fucus evanescens, F. serratus, F. distichus, F. spiralis, and Ascophyllum nodosum could serve as P-selectin inhibitors. All fucoidans, except that from Cladosiphon okamuranus carrying substantial levels of 2-O-alpha-D-glucuronopyranosyl branches in the linear (1-->3)-linked poly-alpha-fucopyranoside chain, exhibited anticoagulant activity as measured by activated partial thromboplastin time whereas only fucoidans from L. saccharina, L. digitata, F. serratus, F. distichus, and F. evanescens displayed strong antithrombin activity in a platelet aggregation test. The last fucoidans potently inhibited human umbilical vein endothelial cell (HUVEC) tubulogenesis in vitro and this property correlated with decreased levels of plasminogen-activator inhibitor-1 in HUVEC supernatants, suggesting a possible mechanism of fucoidan-induced inhibition of tubulogenesis. Finally, fucoidans from L. saccharina, L. digitata, F. serratus, F. distichus, and F. vesiculosus strongly blocked MDA-MB-231 breast carcinoma cell adhesion to platelets, an effect which might have critical implications in tumor metastasis. The data presented herein provide a new rationale for the development of potential drugs for thrombosis, inflammation, and tumor progression.  相似文献   

18.
Methylation and 13C NMR analyses were carried out on the high-arabinose, acidic heteropolysaccharide of gum ghatti and the products obtained on three successive, controlled Smith degradations. The side chains contained mainly 2-O- and 3-O-substituted Araf units. Of these the second degradation eliminated remaining alpha-Araf units, and their beta anomers became evident. The proportion of Galp units gradually increased in the form of nonreducing end- and Galp units, although 3,6-di-O- and 3,4,6-tri-O-substituted Galp units diminished. After three degradations groups with consecutive 3-O-substituted beta-Galp units were formed. The proportion of periodate-resistant 3-O- and 2,3-di-O-substituted Manp units was maintained. As a guide to side-chain structures in the polysaccharide, seven of the 10 free reducing oligosaccharide fractions (PC) present in the gum were isolated and examined (NMR, ESIMS, and sometimes methylation analysis). Characterized are alpha-Araf-(1 --> 2)-Ara and three Ara-containing oligosaccharide fractions containing 2-O- and 3-O-substituted units. These gave respectively, ESIMS molecular ions arising from Ara(2), beta-Araf oligosaccharides with four units, beta-Araf oligosaccharides with seven units, and Hex(2)-Ara(4). Alpha-Rhap-(1 --> 4)-GlcA, alpha-Rhap-(1 --> 4)-beta-GlcpA-(1 --> 6)-Gal, and alpha-Rhap-(1 --> 4)-beta-GlcpA-(1 --> 6)-beta-Galp-(1 --> 6)-Gal represented other side chains.  相似文献   

19.
The body wall of the sea cucumber contains high amounts of sulfated glycans, which differ in structure from glycosaminoglycans of animal tissues and also from the fucose-rich sulfated polysaccharides isolated from marine algae and from the jelly coat of sea urchin eggs. In Ludwigothurea grisea, glycans can be separated into three fractions which differ in molecular mass and chemical composition. The fraction containing a high-molecular-mass component has a high proportion of fucose and small amounts of amino sugars, whereas another fraction contains primarily a sulfated fucan. The third fraction, which represents the major portion of the sea cucumber polysaccharides, contains besides fucose, approximately equimolar proportions of glucuronic acid and amino sugars, and has a sulfate content higher than that in the other two fractions. Both D and L-isomers of fucose are found in these polysaccharides, and the sulfate is linked to the O-3 position of the fucose residues. The attachment position of the sulfate groups to the glucuronic acid units and amino sugars is still undetermined. It is possible that these compounds are involved in maintaining the integrity of the sea cucumber's body wall, in analogy with the role of other macromolecules in the vertebrate connective tissue.  相似文献   

20.
Fucoidans and laminarans from Laminaria cichorioides, Laminaria japonica, Fucus evanescens, laminaran from Laminaria gurjanovae, other beta-D-glucans (translam, pustulan and zymosan) and lambda-carrageenan from Chondrus armatus were used to study the effect of water-soluble polysaccharides from seaweeds on the alternative pathway of complement (APC). beta-D-Glucans and fucoidans under study differed appreciably from each other by structural characteristics, and also by degree of purification. beta-D-glucans, on ability to bind complement, ranked in a line according to a degree of their purification. Highly purified beta-D-glucans under study did not reveal an ability to bind complement. The fucoidans were divided conventionally into three groups according to their action on APC. Highly sulfated alpha-L-fucan from L. cichorioides with the greatest activity toward APC and caused 50% inhibition of reaction of activation (RA) of APC in a concentration of 0.5-0.7 mg/ml. Opposite 50% of inhibition of lysis of erythrocytes by sulfated heterogeneous fucoidan from L. japonica was achieved with 20 mg/ml. All other fucoidans and lambda-carrageenan have activity at 6-10 mg/ml concentration. Decreasing the sulfate content from 36% up to 9% in sample fucoidans under study was not reflected practically in the 50% inhibition concentration. Apparently, the degree of sulfating of fucoidans did not influence their action on APC. But the positive influence of fucose in structure of polysaccharide was obvious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号