首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Human cell lines were isolated that express the V protein of either simian virus 5 (SV5) or human parainfluenza virus type 2 (hPIV2); the cell lines were termed 2f/SV5-V and 2f/PIV2-V, respectively. STAT1 was not detectable in 2f/SV5-V cells, and the cells failed to signal in response to either alpha/beta interferons (IFN-alpha and IFN-beta, or IFN-alpha/beta) or gamma interferon (IFN-gamma). In contrast, STAT2 was absent from 2f/PIV2-V cells, and IFN-alpha/beta but not IFN-gamma signaling was blocked in these cells. Treatment of both 2f/SV5-V and 2f/PIV2-V cells with a proteasome inhibitor allowed the respective STAT levels to accumulate at rates similar to those seen in 2fTGH cells, indicating that the V proteins target the STATs for proteasomal degradation. Infection with SV5 can lead to a complete loss of both phosphorylated and nonphosphorylated forms of STAT1 by 6 h postinfection. Since the turnover of STAT1 in uninfected cells is longer than 24 h, we conclude that degradation of STAT1 is the main mechanism by which SV5 blocks interferon (IFN) signaling. Pretreatment of 2fTGH cells with IFN-alpha severely inhibited both SV5 and hPIV2 protein synthesis. However, and in marked contrast, pretreatment of 2fTGH cells with IFN-gamma had little obvious effect on SV5 protein synthesis but did significantly reduce the replication of hPIV2. Pretreament with IFN-alpha or IFN-gamma did not induce an antiviral state in 2f/SV5-V cells, indicating either that the induction of an antiviral state is completely dependent on STAT signaling or that the V protein interferes with other, STAT-independent cell signaling pathways that may be induced by IFNs. Even though SV5 blocked IFN signaling, the addition of exogenous IFN-alpha to the culture medium of 2fTGH cells 12 h after a low-multiplicity infection with SV5 significantly reduced the subsequent cell-to-cell spread of virus. The significance of the results in terms of the strategy that these viruses have evolved to circumvent the IFN response is discussed.  相似文献   

2.
Wansley EK  Parks GD 《Journal of virology》2002,76(20):10109-10121
The V protein of the paramyxovirus simian virus 5 (SV5) is responsible for targeted degradation of STAT1 and the block in alpha/beta interferon (IFN-alpha/beta) signaling that occurs after SV5 infection of human cells. We have analyzed the growth properties of a recombinant SV5 that was engineered to be defective in targeting STAT1 degradation. A recombinant SV5 (rSV5-P/V-CPI-) was engineered to contain six naturally occurring P/V protein mutations, three of which have been shown in previous transfection experiments to disrupt the V-mediated block in IFN-alpha/beta signaling. In contrast to wild-type (WT) SV5, human cells infected with rSV5-P/V-CPI- had STAT1 levels similar to those in mock-infected cells. Cells infected with rSV5-P/V-CPI- were found to express higher-than-WT levels of viral proteins and mRNA, suggesting that the P/V mutations had disrupted the regulation of viral RNA synthesis. Despite the inability to target STAT1 for degradation, single-step growth assays showed that the rSV5-P/V-CPI- mutant virus grew better than WT SV5 in all cell lines tested. Unexpectedly, cells infected with rSV5-P/V-CPI- but not WT SV5 showed an activation of a reporter gene that was under control of the IFN-beta promoter. The secretion of IFN from cells infected with rSV5-P/V-CPI- but not WT SV5 was confirmed by a bioassay for IFN. The rSV5-P/V-CPI- mutant grew to higher titers than did WT rSV5 at early times in multistep growth assays. However, rSV5-P/V-CPI- growth quickly reached a final plateau while WT rSV5 continued to grow and produced a final titer higher than that of rSV5-P/V-CPI- by late times postinfection. In contrast to WT rSV5, infection of a variety of cell lines with rSV5-P/V-CPI- induced cell death pathways with characteristics of apoptosis. Our results confirm a role for the SV5 V protein in blocking IFN signaling but also suggest new roles for the P/V gene products in controlling viral gene expression, the induction of IFN-alpha/beta synthesis, and virus-induced apoptosis.  相似文献   

3.
4.
5.
6.
7.
8.
The V protein of simian virus 5 (SV5) facilitates the ubiquitination and subsequent proteasome-mediated degradation of STAT1. Here we show, by visualizing direct protein-protein interactions and by using the yeast two-hybrid system, that while the SV5 V protein fails to bind to STAT1 directly, it binds directly and independently to both DDB1 and STAT2, two cellular proteins known to be essential for SV5-mediated degradation of STAT1. We also demonstrate that STAT1 and STAT2 interact independently of SV5 V and show that SV5 V protein acts as an adaptor molecule linking DDB1 to STAT2/STAT1 heterodimers, which in the presence of additional accessory cellular proteins, including Cullin 4a, can ubiquitinate STAT1. Additionally, we show that the avidity of STAT2 for V is relatively weak but is significantly enhanced by the presence of both STAT1 and DDB1, i.e., the complex of STAT1, STAT2, DDB1, and SV5 V is more stable than a complex of STAT2 and V. From these studies we propose a dynamic model in which SV5 V acts as a bridge, bringing together a DDB1/Cullin 4a-containing ubiquitin ligase complex and STAT1/STAT2 heterodimers, which leads to the degradation of STAT1. The loss of STAT1 results in a decrease in affinity of binding of STAT2 for V such that STAT2 either dissociates from V or is displaced from V by STAT1/STAT2 complexes, thereby ensuring the cycling of the DDB1 and SV5 V containing E3 complex for continued rounds of STAT1 ubiquitination and degradation.  相似文献   

9.
10.
Sendai virus (SeV) is highly pathogenic for mice. In contrast, mice (including SCID mice) infected with simian virus 5 (SV5) showed no overt signs of disease. Evidence is presented that a major factor which prevented SV5 from productively infecting mice was its inability to circumvent the interferon (IFN) response in mice. Thus, in murine cells that produce and respond to IFN, SV5 protein synthesis was rapidly switched off. In marked contrast, once SeV protein synthesis began, it continued, even if the culture medium was supplemented with alpha/beta IFN (IFN-alpha/beta). However, in human cells, IFN-alpha/beta did not inhibit the replication of either SV5 or SeV once virus protein synthesis was established. To begin to address the molecular basis for these observations, the effects of SeV and SV5 infections on the activation of an IFN-alpha/beta-responsive promoter and on that of the IFN-beta promoter were examined in transient transfection experiments. The results demonstrated that (i) SeV, but not SV5, inhibited an IFN-alpha/beta-responsive promoter in murine cells; (ii) both SV5 and SeV inhibited the activation of an IFN-alpha/beta-responsive promoter in human cells; and (iii) in both human and murine cells, SeV was a strong inducer of the IFN-beta promoter, whereas SV5 was a poor inducer. The ability of SeV and SV5 to inhibit the activation of IFN-responsive genes in human cells was confirmed by RNase protection experiments. The importance of these results in terms of paramyxovirus pathogenesis is discussed.  相似文献   

11.
Previous work has demonstrated that the V protein of simian virus 5 (SV5) targets STAT1 for proteasome-mediated degradation (thereby blocking interferon [IFN] signaling) in human but not in murine cells. In murine BF cells, SV5 establishes a low-grade persistent infection in which the virus fluxes between active and repressed states in response to local production of IFN. Upon passage of persistently infected BF cells, virus mutants were selected that were better able to replicate in murine cells than the parental W3 strain of SV5 (wild type [wt]). Viruses with mutations in the Pk region of the N-terminal domain of the V protein came to predominate the population of viruses carried in the persistently infected cell cultures. One of these mutant viruses, termed SV5 mci-2, was isolated. Sequence analysis of the V/P gene of SV5 mci-2 revealed two nucleotide differences compared to wt SV5, only one of which resulted in an amino acid substitution (asparagine [N], residue 100, to aspartic acid [D]) in V. Unlike the protein of wt SV5, the V protein of SV5 mci-2 blocked IFN signaling in murine cells. Since the SV5 mci-2 virus had additional mutations in genes other than the V/P gene, a recombinant virus (termed rSV5-V/P N(100)D) was constructed that contained this substitution alone within the wt SV5 backbone to evaluate what effect the asparagine-to-aspartic-acid substitution in V had on the virus phenotype. In contrast to wt SV5, rSV5-V/P N(100)D blocked IFN signaling in murine cells. Furthermore, rSV5-V/P N(100)D virus protein synthesis in BF cells continued for significantly longer periods than that for wt SV5. However, even in cells infected with rSV5-V/P N(100)D, there was a late, but significant, inhibition in virus protein synthesis. Nevertheless, there was an increase in virus yield from BF cells infected with rSV5-V/P N(100)D compared to wt SV5, demonstrating a clear selective advantage to SV5 in being able to block IFN signaling in these cells.  相似文献   

12.
13.
The V protein of simian virus 5 (SV5) blocks interferon signaling by targeting STAT1 for proteasome-mediated degradation. Here we present three main pieces of evidence which demonstrate that the p127 subunit (DDB1) of the UV damage-specific DNA binding protein (DDB) plays a central role in this degradation process. First, the V protein of an SV5 mutant which fails to target STAT1 for degradation does not bind DDB1. Second, mutations in the N and C termini of V which abolish the binding of V to DDB1 also prevent V from blocking interferon (IFN) signaling. Third, treatment of HeLa/SV5-V cells, which constitutively express the V protein of SV5 and thus lack STAT1, with short interfering RNAs specific for DDB1 resulted in a reduction in DDB1 levels with a concomitant increase in STAT1 levels and a restoration of IFN signaling. Furthermore, STAT1 is degraded in GM02415 (2RO) cells, which have a mutation in DDB2 (the p48 subunit of DDB) which abolishes its ability to interact with DDB1, thereby demonstrating that the role of DDB1 in STAT1 degradation is independent of its association with DDB2. Evidence is also presented which demonstrates that STAT2 is required for the degradation of STAT1 by SV5. These results suggest that DDB1, STAT1, STAT2, and V may form part of a large multiprotein complex which leads to the targeted degradation of STAT1 by the proteasome.  相似文献   

14.
Humans and mice have evolved distinct pathways for Th1 cell development. Although IL-12 promotes CD4(+) Th1 development in both murine and human T cells, IFN-alphabeta drives Th1 development only in human cells. This IFN-alphabeta-dependent pathway is not conserved in the mouse species due in part to a specific mutation within murine Stat2. Restoration of this pathway in murine T cells would provide the opportunity to more closely model specific human disease states that rely on CD4(+) T cell responses to IFN-alphabeta. To this end, the C terminus of murine Stat2, harboring the mutation, was replaced with the corresponding human Stat2 sequence by a knockin targeting strategy within murine embryonic stem cells. Chimeric m/h Stat2 knockin mice were healthy, bred normally, and exhibited a normal lymphoid compartment. Furthermore, the murine/human STAT2 protein was expressed in murine CD4(+) T cells and was activated by murine IFN-alpha signaling. However, the murine/human STAT2 protein was insufficient to restore full IFN-alpha-driven Th1 development as defined by IFN-gamma expression. Furthermore, IL-12, but not IFN-alpha, promoted acute IFN-gamma secretion in collaboration with IL-18 stimulation in both CD4(+) and CD8(+) T cells. The inability of T cells to commit to Th1 development correlated with the lack of STAT4 phosphorylation in response to IFN-alpha. This finding suggests that, although the C terminus of human STAT2 is required for STAT4 recruitment and activation by the human type I IFNAR (IFN-alphabetaR), it is not sufficient to restore this process through the murine IFNAR complex.  相似文献   

15.
16.
Some paramyxovirus V proteins induce STAT protein degradation, and the amino acids essential for this process in the human parainfluenza virus type 2 (hPIV2) V protein have been studied. Various recombinant hPIV2s and cell lines constitutively expressing various mutant V proteins were generated. We found that V proteins with replacement of Cys residues of the Cys cluster were still able to bind STATs but were unable to induce their degradation. The hPIV2 V protein binds STATs via a W-(X)3-W-(X)9-W Trp motif located just upstream of the Cys cluster. Replacements of two or more Trp residues in this motif resulted in a failure to form a V/STAT2 complex. We have also identified two Phe residues of the hPIV2 V protein that are essential for STAT degradation, namely, Phe207, lying within the Cys cluster, and Phe143, in the P/V common region of the protein. Interestingly, infection of BHK cells with hPIV2 led to the specific degradation of STAT1 and not STAT2. Other evidence for the cell species specificity of hPIV2-induced STAT degradation is presented. Finally, a V-minus hPIV2, which can express only the P protein from its P gene, was generated and partially characterized. In contrast to V-minus viruses of other paramyxovirus genera, this V-minus rubulavirus was highly debilitated, and its growth even in Vero cells was very limited. The structural rubulavirus V proteins, as expected, are thus clearly important in promoting virus growth, independent of their anti-interferon (IFN) activity. Interestingly, many of the residues that are essential for anti-IFN activity, e.g., the Cys of this cluster and Phe207 within this cluster, as well as the Trp of this motif, are also essential for promoting virus growth.  相似文献   

17.
Host species specificity of the polyomaviruses simian virus 40 (SV40) and mouse polyomavirus (PyV) has been shown to be determined by the host DNA polymerase alpha-primase complex involved in the initiation of both viral and host DNA replication. Here we demonstrate that DNA replication of the related human pathogenic polyomavirus JC virus (JCV) can be supported in vitro by DNA polymerase alpha-primase of either human or murine origin indicating that the mechanism of its strict species specificity differs from that of SV40 and PyV. Our results indicate that this may be due to differences in the interaction of JCV and SV40 large T antigens with the DNA replication initiation complex.  相似文献   

18.
D I Linzer  A J Levine 《Cell》1979,17(1):43-52
SV40 infection or transformation of murine cells stimulated the production of a 54K dalton protein that was specifically immunoprecipitated, along with SV40 large T and small t antigens, with sera from mice or hamsters bearing SV40-induced tumors. The same SV40 anti-T sera immunoprecipitated a 54K dalton protein from two different, uninfected murine embryonal carcinoma cell lines. These 54K proteins from SV40-transformed mouse cells and the uninfected embryonal carcinomas cells had identical partial peptide maps which were completely different from the partial peptide map of SV40 large T antigen. An Ad2+ND4-transformed hamster cell line also expressed a 54K protein that was specifically immunoprecipitated by SV40 T sera. The partial peptide maps of the mouse and hamster 54K protein were different, showing the host cell species specificity of these proteins. The 54K hamster protein was also unrelated to the Ad2+ND4 SV40 T antigen. Analogous proteins immunoprecipitated by SV40 T sera, ranging in molecular weight from 44K to 60K, were detected in human and monkey SV40-infected or -transformed cells. A wide variety of sera from hamsters and mice bearing SV40-induced tumors immunoprecipitated the 54K protein of SV40-transformed cells and murine embryonal carcinoma cells. Antibody produced by somatic cell hybrids between a B cell and a myeloma cell (hybridoma) against SV40 large T antigen also immunoprecipitated the 54K protein in virus-infected and -transformed cells, but did not do so in the embryonal carcinoma cell lines. We conclude that SV40 infection or transformation of mouse cells stimulates the synthesis or enhances the stability of a 54K protein. This protein appears to be associated with SV40 T antigen in SV40-infected and -transformed cells, and is co-immunoprecipitated by hybridomas sera to SV40 large T antigen. The 54K protein either shares antigenic determinants with SV40 T antigen or is itself immunogenic when in association with SV40 large T antigen. The protein varies with host cell species, and analogous proteins were observed in hamster, monkey and human cells. The role of this protein in transformation is unclear at present.  相似文献   

19.
Respiratory syncytial virus (RSV) subverts the antiviral interferon (IFN) response, but the mechanism for this evasion was unclear. Here we show that RSV preferentially inhibits IFN-alpha/beta signaling by expression of viral NS1 and NS2. Thus, RSV infection or expression of recombinant NS1 and NS2 in epithelial host cells causes a marked decrease in Stat2 levels and the consequent downstream IFN-alpha/beta response. Similarly, NS1/NS2-deficient RSV no longer decreases Stat2 levels or IFN responsiveness. RSV infection decreased human but not mouse Stat2 levels, so this mechanism of IFN antagonism may contribute to viral host range, as well as immune subversion.  相似文献   

20.
For most paramyxoviruses, virus type-specific interaction between fusion (F) protein and attachment protein (hemagglutinin-neuraminidase [HN], hemagglutinin [H], or glycoprotein [G]) is a prerequisite for mediating virus-cell fusion and cell-cell fusion. Our previous cell-cell fusion assay using the chimeric F proteins of human parainfluenza virus 2 (HPIV2) and simian virus 41 (SV41) suggested that the middle region of the HPIV2 F protein contains the site(s) that determines its specificity for the HPIV2 HN protein. In the present study, we further investigated the sites of the F protein that could be critical for determining the HN protein specificity. By analyzing the reported structure of the F protein of parainfluenza virus 5 (PIV5), we found that four major domains (M1, M2, M3, and M4) and five minor domains (A to E) in the middle region of the PIV5 F protein were exposed on the trimer surface. We then replaced these domains with the SV41 F counterparts individually or in combination and examined whether the resulting chimeras could mediate cell-cell fusion when coexpressed with the SV41 HN protein. The results showed that a chimera designated M(1+2), which harbored SV41 F-derived domains M1 and M2, mediated cell-cell fusion with the coexpressed SV41 HN protein, suggesting that these domains are involved in determining the HN protein specificity. Intriguingly, another chimera which harbored the SV41 F-derived domain B in addition to domains M1 and M2 showed increased specificity for the SV41 HN protein compared to that of M(1+2), although it was capable of mediating cell-cell fusion by itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号