首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
53BP1 is a conserved nuclear protein that is implicated in the DNA damage response. After irradiation, 53BP1 localizes rapidly to nuclear foci, which represent sites of DNA double strand breaks, but its precise function is unclear. Using small interference RNA (siRNA), we demonstrate that 53BP1 functions as a DNA damage checkpoint protein. 53BP1 is required for at least a subset of ataxia telangiectasia-mutated (ATM)-dependent phosphorylation events at sites of DNA breaks and for cell cycle arrest at the G2-M interphase after exposure to irradiation. Interestingly, in cancer cell lines expressing mutant p53, 53BP1 was localized to distinct nuclear foci and ATM-dependent phosphorylation of Chk2 at Thr 68 was detected, even in the absence of irradiation. In addition, Chk2 was phosphorylated at Thr 68 in more than 50% of surgically resected lung and breast tumour specimens from otherwise untreated patients [corrected]. We conclude that the constitutive activation of the DNA damage checkpoint pathway may be linked to the high frequency of p53 mutations in human cancer, as p53 is a downstream target of Chk2 and ATM.  相似文献   

2.
3.
53BP1 is a human BRCT protein that was originally identified as a p53-interacting protein by the Saccharomyces cerevisiae two-hybrid screen. Although the carboxyl-terminal BRCT domain shows similarity to Crb2, a DNA damage checkpoint protein in fission yeast, there is no evidence so far that implicates 53BP1 in the checkpoint. We have identified a Xenopus homologue of 53BP1 (XL53BP1). XL53BP1 is associated with chromatin and, in some cells, localized to a few large foci under normal conditions. Gamma-ray irradiation induces increased numbers of the nuclear foci in a dose-dependent manner. The damage-induced 53BP1 foci appear rapidly (in 30 min) after irradiation, and de novo protein synthesis is not required for this response. In human cells, 53BP1 foci colocalize with Mrel1 foci at later stages of the postirradiation period. XL53BP1 is hyperphosphorylated after X-ray irradiation, and inhibitors of ATM-related kinases delay the relocalization and reduce the phosphorylation of XL53BP1 in response to X-irradiation. In AT cells, which lack ATM kinase, the irradiation-induced responses of 53BP1 are similarly affected. These results suggest a role for 53BP1 in the DNA damage response and/or checkpoint control which may involve signaling of damage to p53.  相似文献   

4.
5.
Recruitment of RAD18 to stalled replication forks facilitates monoubiquitination of PCNA during S-phase, promoting translesion synthesis at sites of UV irradiation-induced DNA damage. In this study, we show that RAD18 is also recruited to ionizing radiation (IR)-induced sites of DNA double-strand breaks (DSBs) forming foci which are co-localized with 53BP1, NBS1, phosphorylated ATM, BRCA1 and γ-H2AX. RAD18 associates with 53BP1 and is recruited to DSB sites in a 53BP1-dependent manner specifically during G1-phase, RAD18 monoubiquitinates KBD domain of 53BP1 at lysine 1268 in vitro. A monoubiquitination-resistant 53BP1 mutant harboring a substitution at lysine 1268 is not retained efficiently at the chromatin in the vicinity of DSBs. In Rad18-null cells, retention of 53BP1 foci, efficiency of DSB repair and post-irradiation viability are impaired compared with wild-type cells. Taken together, these results suggest that RAD18 promotes 53BP1-directed DSB repair by enhancing retention of 53BP1, possibly through an interaction between RAD18 and 53BP1 and the modification of 53BP1.  相似文献   

6.
During the DNA damage response (DDR), chromatin modifications contribute to localization of 53BP1 to sites of DNA double-strand breaks (DSBs). 53BP1 is phosphorylated during the DDR, but it is unclear whether phosphorylation is directly coupled to chromatin binding. In this study, we used human diploid fibroblasts and HCT116 tumor cells to study 53BP1 phosphorylation at Serine-25 and Serine-1778 during endogenous and exogenous DSBs (DNA replication and whole-cell or sub-nuclear microbeam irradiation, respectively). In non-stressed conditions, endogenous DSBs in S-phase cells led to accumulation of 53BP1 and γH2AX into discrete nuclear foci. Only the frank collapse of DNA replication forks following hydroxyurea treatment initiated 53BP1Ser25 and 53BP1Ser1778 phosphorylation. In response to exogenous DSBs, 53BP1Ser25 and 53BP1Ser1778 phosphoforms localized to sites of initial DSBs in a cell cycle-independent manner. 53BP1 phosphoforms also localized to late residual foci and associated with PML-NBs during IR-induced senescence. Using isogenic cell lines and small-molecule inhibitors, we observed that DDR-induced 53BP1 phosphorylation was dependent on ATM and DNA-PKcs kinase activity but independent of MRE11 sensing or RNF168 chromatin remodeling. However, loss of RNF168 blocked recruitment of phosphorylated 53BP1 to sites of DNA damage. Our results uncouple 53BP1 phosphorylation from DSB localization and support parallel pathways for 53BP1 biology during the DDR. As relative 53BP1 expression may be a biomarker of DNA repair capacity in solid tumors, the tracking of 53BP1 phosphoforms in situ may give unique information regarding different cancer phenotypes or response to cancer treatment.  相似文献   

7.
Cellular responses to DNA damage require the formation of protein complexes in a highly organized fashion. The complete molecular components that participate in the sequential signaling response to DNA damage remain unknown. Here we demonstrate that vaccinia-related kinase 1 (VRK1) in resting cells plays an important role in the formation of ionizing radiation-induced foci that assemble on the 53BP1 scaffold protein during the DNA damage response. The kinase VRK1 is activated by DNA double strand breaks induced by ionizing radiation (IR) and specifically phosphorylates 53BP1 in serum-starved cells. VRK1 knockdown resulted in the defective formation of 53BP1 foci in response to IR both in number and size. This observed effect on 53BP1 foci is p53- and ataxia-telangiectasia mutated (ATM)-independent and can be rescued with VRK1 mutants resistant to siRNA. VRK1 knockdown also prevented the activating phosphorylation of ATM, CHK2, and DNA-dependent protein kinase in response to IR. VRK1 activation in response to DNA damage is a novel and early step in the signaling of mammalian DNA damage responses.  相似文献   

8.
Several DNA damage checkpoint factors form nuclear foci in response to ionizing radiation (IR). Although the number of the initial foci decreases concomitantly with DNA double-strand break repair, some fraction of foci persists. To date, the physiological role of the persistent foci has been poorly understood. Here we examined foci of Ser1981-phosphorylated ATM in normal human diploid cells exposed to 1Gy of X-rays. While the initial foci size was approximately 0.6microm, the one or two of persistent focus (foci) grew, whose diameter reached 1.6microm or more in diameter at 24h after IR. All of the grown persistent foci of phosphorylated ATM colocalized with the persistent foci of Ser139-phosphorylated histone H2AX, MDC1, 53BP1, and NBS1, which also grew similarly. When G0-synchronized normal human cells were released immediately after 1Gy of X-rays and incubated for 24h, the grown large phosphorylated ATM foci (> or =1.6microm) were rarely (av. 0.9%) observed in S phase cells, while smaller foci (<1.6microm) were frequently (av. 45.9%) found. We observed significant phosphorylation of p53 at Ser15 in cells with a single grown phosphorylated ATM focus. Furthermore, persistent inhibition of foci growth of phosphorylated ATM by an ATM inhibitor, KU55933, completely abrogated p53 phosphorylation. Defective growth of the persistent IR-induced foci was observed in primary fibroblasts derived from ataxia-telangiectasia (AT) and Nijmegen breakage syndrome (NBS) patients, which were abnormal in IR-induced G1 checkpoint. These results indicate that the growth of the persistent foci of the DNA damage checkpoint factors plays a pivotal role in G1 arrest, which amplifies G1 checkpoint signals sufficiently for phosphorylating p53 in cells with a limited number of remaining foci.  相似文献   

9.
53BP1, an activator of ATM in response to DNA damage   总被引:1,自引:0,他引:1  
p53 Binding protein 1 (53BP1) belongs to a family of evolutionarily conserved DNA damage checkpoint proteins with C-terminal BRCT domains and is most likely the human ortholog of the budding yeast Rad9 protein, the first cell cycle checkpoint protein to be described. 53BP1 localizes rapidly to sites of DNA double strand breaks (DSBs) and its initial recruitment to these sites has not been shown to be dependent on any other protein. Initially, 53BP1 was thought to be a mediator of DNA DSB signaling, but now it has been shown to function upstream of ataxia-telangiectasia mutated (ATM), in one of at least two parallel pathways leading to ATM activation in response to DNA damage. Currently, only a single tudor and two BRCT domains are recognized in 53BP1; however, their precise functional role is not understood. Elucidating the function of 53BP1 will be critical to understanding how cells recognize DNA DSBs and how ATM is activated.  相似文献   

10.
DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1   总被引:1,自引:0,他引:1  
Activation of the ataxia telangiectasia mutated (ATM) kinase triggers diverse cellular responses to ionizing radiation (IR), including the initiation of cell cycle checkpoints. Histone H2AX, p53 binding-protein 1 (53BP1) and Chk2 are targets of ATM-mediated phosphorylation, but little is known about their roles in signalling the presence of DNA damage. Here, we show that mice lacking either H2AX or 53BP1, but not Chk2, manifest a G2-M checkpoint defect close to that observed in ATM(-/-) cells after exposure to low, but not high, doses of IR. Moreover, H2AX regulates the ability of 53BP1 to efficiently accumulate into IR-induced foci. We propose that at threshold levels of DNA damage, H2AX-mediated concentration of 53BP1 at double-strand breaks is essential for the amplification of signals that might otherwise be insufficient to prevent entry of damaged cells into mitosis.  相似文献   

11.
Ataxia-telangiectasia (A-T) mutated (ATM) kinase signals all three cell cycle checkpoints after DNA double-stranded break (DSB) damage. H2AX, NBS1, and p53 are substrates of ATM kinase and are involved in ATM-dependent DNA damage responses. We show here that H2AX is dispensable for the activation of ATM and p53 responses after DNA DSB damage. Therefore, H2AX functions primarily as a downstream mediator of ATM functions in the parallel pathway of p53. NBS1 appears to function both as an activator of ATM and as an adapter to mediate ATM activities after DNA DSB damage. Phosphorylation of ATM and H2AX induced by DNA DSB damage is normal in NBS1 mutant/mutant (NBS1m/m) mice that express an N-terminally truncated NBS1 at lower levels. Therefore, the pleiotropic A-T-related systemic and cellular defects observed in NBS1m/m mice are due to the disruption of the adapter function of NBS1 in mediating ATM activities. While H2AX is required for the irradiation-induced focus formation of NBS1, our findings indicate that NBS1 and H2AX have distinct roles in DNA damage responses. ATM-dependent phosphorylation of p53 and p53 responses are largely normal in NBS1m/m mice after DNA DSB damage, and p53 deficiency greatly facilitates tumorigenesis in NBS1m/m mice. Therefore, NBS1, H2AX, and p53 play synergistic roles in ATM-dependent DNA damage responses and tumor suppression.  相似文献   

12.
The Mre11/Rad50/NBS1 (MRN) complex is thought to be a critical sensor that detects damaged DNA and recruits ATM to DNA foci for activation. However, it remains to be established how the MRN complex regulates ATM recruitment to the DNA foci during DNA double-strand breaks (DSBs). Here we show that Skp2 E3 ligase is a key component for the MRN complex-mediated ATM activation in response to DSBs. Skp2 interacts with NBS1 and triggers K63-linked ubiquitination of NBS1 upon DSBs, which is critical for the interaction of NBS1 with ATM, thereby facilitating ATM recruitment to the DNA foci for activation. Finally, we show that Skp2 deficiency exhibits a defect in homologous recombination (HR) repair, thereby increasing IR sensitivity. Our results provide molecular insights into how Skp2 and the MRN complex coordinate to activate ATM, and identify Skp2-mediatetd NBS1 ubiquitination as a vital event for ATM activation in response to DNA damage.  相似文献   

13.
We have shown previously that SNM1A colocalizes with 53BP1 at sites of double-strand breaks (DSBs) induced by IR, and that these proteins interact with or without DNA damage. However, the role of SNM1A in the DNA damage response has not been elucidated. Here, we show that SNM1A is required for an efficient G1 checkpoint arrest after IR exposure. Interestingly, the localization of SNM1A to sites of DSBs does not require either 53BP1 or H2AX, nor does the localization of 53BP1 require SNM1A. However, the localization of SNM1A does require ATM. Furthermore, SNM1A is shown to be a phosphorylation substrate of ATM in vitro, and to interact with ATM in vivo particularly after exposure of cells to IR. In addition, in the absence of SNM1A the activation of the downstream ATM target p53 is reduced. These findings suggest that SNM1A acts with ATM to promote the G1 cell cycle checkpoint.  相似文献   

14.
The BLM helicase, a deficiency in which markedly increases cancer incidence in humans, isrequired for optimal repair during DNA replication. We show that BLM rapidly moves fromPML nuclear bodies to damaged replication forks, returning to PML bodies several hours later,owing to activities of the DNA damage response kinases ATR and ATM, respectively.Immunofluorescence and cellular fractionation demonstrate that BLM partitions to different subcellularcompartments after replication stress. Unexpectedly, fibroblasts lacking BLM weredeficient in phospho-ATM (S-1981) and 53-binding protein-1 (53BP1), and these proteins failedto form foci following replication stress. Expression of a dominant p53 mutant or helicasedeficientBLM restored replication stress-induced 53BP1 foci, but only mutant p53 restoredoptimal ATM activation. Thus, optimal repair of damaged replication fork lesions likelyrequires both ATR and ATM, BLM recruits 53BP1 to these lesions independent of its helicaseactivity, and optimal activation of ATM requires both p53 and BLM helicase activities.

Supplemental material for this paper can be found at the following link:

http://www.landesbioscience.com/journals/cc/davalosCC3-12-sup.pdf  相似文献   

15.
53BP1 is a DNA damage protein that forms phosphorylated H2AX (γ-H2AX) dependent foci in a 1 Mb region surrounding DNA double-strand breaks (DSBs). In addition, 53BP1 promotes genomic stability by regulating the metabolism of DNA ends. We have compared the joining rates of paired DSBs separated by 1.2 kb to 27 Mb on chromosome 12 in the presence or absence of 53BP1. 53BP1 facilitates joining of intrachromosomal DSBs but only at distances corresponding to γ-H2AX spreading. In contrast, DNA end protection by 53BP1 is distance independent. Furthermore, analysis of 53BP1 mutants shows that chromatin association, oligomerization, and N-terminal ATM phosphorylation are all required for DNA end protection and joining as measured by immunoglobulin class switch recombination. These data elucidate the molecular events that are required for 53BP1 to maintain genomic stability and point to a model wherein 53BP1 and H2AX cooperate to repress resection of DSBs.  相似文献   

16.
DNA damage can activate the oncosuppressor protein ataxia telangiectasia mutated (ATM), which phosphorylates the histone H2AX within characteristic DNA damage foci. Here, we show that ATM undergoes an activating phosphorylation in syncytia elicited by the envelope glycoprotein complex (Env) of human immunodeficiency virus-1 (HIV-1) in vitro. This was accompanied by aggregation of ATM in discrete nuclear foci that also contained phospho-histone H2AX. DNA damage foci containing phosphorylated ATM and H2AX were detectable in syncytia present in the brain or lymph nodes from patients with HIV-1 infection, as well as in a fraction of blood leukocytes, correlating with viral status. Knockdown of ATM or of its obligate activating factor NBS1 (Nijmegen breakage syndrome 1 protein), as well as pharmacological inhibition of ATM with KU-55933, inhibited H2AX phosphorylation and prevented Env-elicited syncytia from undergoing apoptosis. ATM was found indispensable for the activation of MAP kinase p38, which catalyzes the activating phosphorylation of p53 on serine 46, thereby causing p53 dependent apoptosis. Both wild type HIV-1 and an HIV-1 mutant lacking integrase activity induced syncytial apoptosis, which could be suppressed by inhibiting ATM. HIV-1-infected T lymphoblasts from patients with inactivating ATM or NBS1 mutations also exhibited reduced syncytial apoptosis. Altogether these results indicate that apoptosis induced by a fusogenic HIV-1 Env follows a pro-apoptotic pathway involving the sequential activation of ATM, p38MAPK and p53.  相似文献   

17.
The 53BP1 tumour suppressor, an important regulator of genome stability, is phosphorylated in response to ionising radiation (IR) by the ATM protein kinase, itself an important regulator of cellular responses to DNA damage. The only known sites of phosphorylation in 53BP1 are Ser25 and/or Ser29 but 53BP1 lacking these residues is still phosphorylated after DNA damage. In this study, we use mass spectrometry-based together with bioinformatic analysis to identify novel DNA damage-regulated sites of 53BP1 phosphorylation. Several new sites were identified that conform to the consensus Ser/Thr-Gln motif phosphorylated by ATM and related kinases. Phospho-specific antibodies were raised, and were used to demonstrate ATM-dependent phosphorylation of these residues in 53BP1 after exposure of cells to IR. Surprisingly, 53BP1 was also phosphorylated on these residues after exposure of cells to UV light. In this case, 53BP1 phosphorylation did not require ATM but required ATR instead. These data reveal that 53BP1 is phosphorylated on multiple residues in response to different types of DNA damage, and that 53BP1 is regulated by ATR in response to UV-induced DNA damage.  相似文献   

18.
BRCA1 is an important mediator of the DNA damage response pathway. Previous studies have identified a number of proteins that associate with BRCA1 at nuclear foci after ionizing radiation (IR)-induced DNA damage. However, the co-localization patterns of BRCA1 and various DNA damage response proteins have not yet been systematically quantified and compared within the same experimental system. In this study, a new inducible human cell line was established to allow unambiguous detection of YFP–BRCA1 at nuclear foci. Quantitative 2-D microscopic analysis was performed to compare the intranuclear co-localization of YFP–BRCA1 with 10 cellular proteins and 4 cellular domains before and after IR. Intriguingly, YFP–BRCA1 displayed significantly better focal co-localization with BARD1, RAP80 and Abraxas than with the upstream foci-initiating proteins γH2AX and MDC1. In contrast to previous reports, we found that the co-localization between YFP–BRCA1 and 53BP1 foci was surprisingly weak. Quantitative analyses of 3-D confocal images showed that ~ 60% of 53BP1 foci were unrelated to YFP–BRCA1 foci, ~ 35% of foci were abutting and only ~ 5% of foci co-localized. The YFP–BRCA1 and 53BP1 nuclear foci were distinctively separated within the first 3 h after IR. In addition, in situ nuclear retention analysis revealed YFP–BRCA1 and BARD1 are less mobile than 53BP1 at IR-induced nuclear foci. Our findings indicate that BRCA1–BARD1 and 53BP1 are proximal but not overlapping at DNA break sites and are consistent with recent evidence for distinct roles of these proteins in the DNA damage response pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号