首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A dihaem cytochrome (Mr 37 400) with cytochrome c peroxidase activity was purified from Pseudomonas stutzeri (ATCC 11 607). The haem redox potentials are far apart: one of the haems is completely ascorbate-reducible and the other is only reduced by dithionite. The coordination, spin states and redox properties of the covalently bound haems were probed by visible, NMR and electron paramagnetic resonance (EPR) spectroscopies in three oxidation states. In the oxidized state, the low-temperature EPR spectrum of the native enzyme is a complex superimposition of three components: (I) a low-spin haem indicating a histidinyl-methionyl coordination; (II) a low-spin haem indicating a histidinyl-histidinyl coordination; and (III) a minor high-spin haem component. At room temperature, NMR and optical studies indicate the presence of high-spin and low-spin haems, suggesting that for one of the haems a high-spin to low-spin transition is observed when temperature is decreased. In the half-reduced state, the component I (high redox potential) of the EPR spectrum disappears and induces a change in the g-values and linewidth of component II; the high-spin component II is no longer detected at low temperature. Visible and NMR studies reveal the presence of a high-spin ferric and a low-spin (methionyl-coordinated) ferrous state. The NMR data fully support the haem-haem interaction probed by EPR. In the reduced state, the NMR spectrum indicates that the low-potential haem is high-spin ferrous.  相似文献   

2.
The high potential heme site of Pseudomonas cytochrome c peroxidase has His and Met as ligands. On reduction, the Fe-met bond becomes photosensitive. Following photolysis, the bond reforms with a half-time of 35 ps. The low potential heme peroxidatic site of the fully reduced enzyme has been shown to bind to a range of ligands. The compounds with carbon monoxide, methyl, ethyl, n-butyl, and t-butyl isonitriles have been investigated by laser flash photolysis. All are photosensitive and show different degrees of geminate recombination of ligand in the picosecond and nanosecond time ranges. Carbon monoxide shows the least effect. The three straight-chain isonitriles show about 50% geminate recombination with half-times of the order of 10 ns. t-Butyl isonitrile shows more and faster recombination. These results imply considerable freedom of movement within the active site for the smaller ligands.  相似文献   

3.
The bacterial cytochrome c peroxidases contain an electron-transferring haem c (E) and a peroxidatic haem c (P). Many are isolated in an inactive oxidised state. Reduction of the E haem promotes Ca(2+)-dependent spin state and coordination changes at the P haem rendering it accessible to ligand. Recent crystallographic work on the oxidised and mixed valence enzymes has suggested a mechanism by which an electron entering the E haem remotely triggers this activation of the P haem. Binding of hydrogen peroxide at the activated P haem leads to an intermediate catalytic form containing two oxidising equivalents, one of which is a ferryl oxene. This form of the enzyme is then reduced by two single electron transfers to the E haem delivered by small redox proteins such as cytochromes or cupredoxins. The binding of these small redox proteins is dominated by global electrostatic forces but the interfaces of the electron transfer complexes that are formed are largely hydrophobic and relatively non-specific. These features allow very high electron transfer rates in the steady state.  相似文献   

4.
 Di-heme Pseudomonas stutzeri cytochrome c 4 has been characterized by electronic absorption and resonance Raman spectroscopies in the ferric and ferrous forms at pH 7.5 and at room temperature. The data indicate that the two hemes are inequivalent. It is proposed that the N-terminal contains a more relaxed heme as a consequence of the relative orientation of the methionine and histidine ligands with respect to the N-Fe-N directions of the heme plane. This causes a weakening of the Fe-S bond with concomitant partial dissociation of the methionine and the formation of an Fe-aquo bond. Heme group relaxation is further accompanied by less distortion of the heme group than that associated with cytochrome c, expansion of the "core" and a negative shift of the redox potential. Received: 17 December 1996 / Accepted: 6 March 1997  相似文献   

5.
The isolation of cytochrome c peroxidase, cytochrome c4, cytochrome c-551 and azurin from Pseudomonas dentrificans is described. The peroxidase has a molecular weight of 63,000 and an isoelectric point of 5.6. Its absorption spectrum suggests that it contains two haem c groups/molecule. Preliminary steady-state kinetic data are reported with cytochromes c-551 and c4 and azurin as the second substrate.  相似文献   

6.
Cytochrome c peroxidase (CCP) catalyses the reduction of H(2)O(2) to H(2)O, an important step in the cellular detoxification process. The crystal structure of the di-heme CCP from Pseudomonas nautica 617 was obtained in two different conformations in a redox state with the electron transfer heme reduced. Form IN, obtained at pH 4.0, does not contain Ca(2+) and was refined at 2.2 A resolution. This inactive form presents a closed conformation where the peroxidatic heme adopts a six-ligand coordination, hindering the peroxidatic reaction from taking place. Form OUT is Ca(2+) dependent and was crystallized at pH 5.3 and refined at 2.4 A resolution. This active form shows an open conformation, with release of the distal histidine (His71) ligand, providing peroxide access to the active site. This is the first time that the active and inactive states are reported for a di-heme peroxidase.  相似文献   

7.
Cytochrome c peroxidases (CCP) play a key role in cellular detoxification by catalyzing the reduction of hydrogen peroxide to water. The di-heme CCP from Rhodobacter capsulatus is the fastest enzyme (1060 s(-1)), when tested with its physiological cytochrome c substrate, among all di-heme CCPs characterized to date and has, therefore, been an attractive target to investigate structure-function relationships for this family of enzymes. Here, we combine for the first time structural studies with site-directed mutagenesis and spectroscopic studies of the mutant enzymes to investigate the roles of amino acid residues that have previously been suggested to be important for activity. The crystal structure of R. capsulatus at 2.7 Angstroms in the fully oxidized state confirms the overall molecular scaffold seen in other di-heme CCPs but further reveals that a segment of about 10 amino acids near the peroxide binding site is disordered in all four molecules in the asymmetric unit of the crystal. Structural and sequence comparisons with other structurally characterized CCPs suggest that flexibility in this part of the molecular scaffold is an inherent molecular property of the R. capsulatus CCP and of CCPs in general and that it correlates with the levels of activity seen in CCPs characterized, thus, far. Mutagenesis studies support the spin switch model and the roles that Met-118, Glu-117, and Trp-97 play in this model. Our results help to clarify a number of aspects of the debate on structure-function relationships in this family of bacterial CCPs and set the stage for future studies.  相似文献   

8.
The primary structure of Pseudomonas cytochrome c peroxidase is presented. The intact protein was fragmented with cyanogen bromide into five fragments; partial cleavage was observed at a Met-His bond of the protein. The primary structure was established partly by automatic Edman degradations, partly by manual sequencing of peptides obtained with trypsin, thermolysin, chymotrypsin, pepsin, subtilisin and Staphylococcus aureus V8 endopeptidase. The order of the cyanogen bromide fragments was further confirmed by overlapping peptides obtained by specific cleavage of the whole protein. Pseudomonas cytochrome c peroxidase consists of 302 amino acid residues giving a calculated Mr of 33 690.  相似文献   

9.
The catalytic mechanism of Pseudomonas cytochrome c peroxidase   总被引:1,自引:0,他引:1  
The catalytic mechanism of Pseudomonas cytochrome c peroxidase has been studied using rapid-scan spectrometry and stopped-flow measurements. The reaction of the totally ferric form of the enzyme with H2O2 was slow and the complex formed was inactive in the peroxidatic cycle, whereas partially reduced enzyme formed highly reactive intermediates with hydrogen peroxide. Rapid-scan spectrometry revealed two different spectral forms, one assignable to Compound I and the other to Compound II as found in the reaction cycle of other peroxidases. The formation of Compound I was rapid approaching that of diffusion control. The stoichiometry of the peroxidation reaction, deduced from the formation of oxidized electron donor, indicates that both the reduction of Compound I to Compound II and the conversion of Compound II to resting (partially reduced) enzyme are one-electron steps. It is concluded that the reaction mechanism generally accepted for peroxidases is applicable also to Pseudomonas cytochrome c peroxidase, the intramolecular source of one electron in Compound I formation, however, being reduced heme c.  相似文献   

10.
The cbb3 cytochrome c oxidases are distant members of the superfamily of heme copper oxidases. These terminal oxidases couple O2 reduction with proton transport across the plasma membrane and, as a part of the respiratory chain, contribute to the generation of an electrochemical proton gradient. Compared with other structurally characterized members of the heme copper oxidases, the recently determined cbb3 oxidase structure at 3.2 Å resolution revealed significant differences in the electron supply system, the proton conducting pathways and the coupling of O2 reduction to proton translocation. In this paper, we present a detailed report on the key steps for structure determination. Improvement of the protein quality was achieved by optimization of the number of lipids attached to the protein as well as the separation of two cbb3 oxidase isoenzymes. The exchange of n‐dodecyl‐β‐d ‐maltoside for a precisely defined mixture of two α‐maltosides and decanoylsucrose as well as the choice of the crystallization method had a most profound impact on crystal quality. This report highlights problems frequently encountered in membrane protein crystallization and offers meaningful approaches to improve crystal quality.  相似文献   

11.
We have found that an anti-CD11c monoclonal antibody (MAb) inhibits the respiratory burst induced in phorbol 12-myristate 13-acetate (PMA)-differentiated U937 cells as well as in human peripheral blood monocytes and neutrophils upon cell stimulation with concanavalin A. The MAb had no effect, however, when the added stimulus was fMet-Leu-Phe or PMA. Flow cytometry analyses indicated that concanavalin A was able to interact with CD11c. The anti-CD11c MAb inhibited significantly concanavalin A binding to differentiated U937 cells, and concanavalin A blocked binding of anti-CD11c MAb to the cells. Binding of labelled concanavalin A to membrane proteins which were separated by PAGE and transferred to nitrocellulose paper indicated that proteins with apparent molecular masses similar to those of CD11c (150 kDa) and CD18 (95 kDa) molecules were the main concanavalin A-binding proteins in differentiated U937 cells as well as in mature neutrophils. Similar experiments carried out in the presence of the anti-CD11c MAb showed a specific and significant inhibition of concanavalin A binding to the CD11c molecule. These results indicate that concanavalin A binds to the CD11c molecule and this binding is responsible for the concanavalin A-induced respiratory burst in PMA-differentiated U937 cells as well as in human mature monocytes and neutrophils.  相似文献   

12.
The crystal structure of the fully oxidized di-heme peroxidase from Nitrosomonas europaea has been solved to a resolution of 1.80 A and compared to the closely related enzyme from Pseudomonas aeruginosa. Both enzymes catalyze the peroxide-dependent oxidation of a protein electron donor such as cytochrome c. Electrons enter the enzyme through the high-potential heme followed by electron transfer to the low-potential heme, the site of peroxide activation. Both enzymes form homodimers, each of which folds into two distinct heme domains. Each heme is held in place by thioether bonds between the heme vinyl groups and Cys residues. The high-potential heme in both enzymes has Met and His as axial heme ligands. In the Pseudomonas enzyme, the low-potential heme has two His residues as axial heme ligands [Fulop et al. (1995) Structure 3, 1225-1233]. Since the site of reaction with peroxide is the low-potential heme, then one His ligand must first dissociate. In sharp contrast, the low-potential heme in the Nitrosomonas enzyme already is in the "activated" state with only one His ligand and an open distal axial ligation position available for reaction with peroxide. A comparison between the two enzymes illustrates the range of conformational changes required to activate the Pseudomonas enzyme. This change involves a large motion of a loop containing the dissociable His ligand from the heme pocket to the molecular surface where it forms part of the dimer interface. Since the Nitrosomonas enzyme is in the active state, the structure provides some insights on residues involved in peroxide activation. Most importantly, a Glu residue situated near the peroxide binding site could possibly serve as an acid-base catalytic group required for cleavage of the peroxide O--O bond.  相似文献   

13.
Cytochrome cbb(3) is a cytochrome c-oxidising isoenzyme that belongs to the superfamily of respiratory haem/copper oxidases. We have developed a purification method yielding large amounts of pure cbb(3) complex from the soil bacterium Pseudomonas stutzeri. This cytochrome cbb(3) complex consists of three subunits (ccoNOP) in a 1:1:1 stoichiometry and contains two b-type and three c-type haems. The protein complex behaves as a monomer with an overall molecular weight of 114.0+/-8.9 kDa and a s(0)(20,w) value of 8.9+/-0.3 S as determined by analytical ultracentrifugation. Crystals diffracting to 5.0 A resolution have been grown by the vapour diffusion sitting drop method to an average size of 0.1 x 0.1 x 0.3 mm. This is the first crystallisation report of a (cbb(3))-type oxidase.  相似文献   

14.
P. stutzeri cytochrome c(4) is a di-haem protein, composed of two globular domains each with His-Met coordinated haem, and a hydrogen bond network between the domains. The domain foldings are highly symmetric but with specific differences including structural differences of ligand coordination, and different spin states of the oxidised haem groups. We have studied unfolding of oxidised P. stutzeri cyt c(4) induced thermally and by chemical denaturants. Horse heart cyt c was a reference molecule. Isothermal unfolding induced by guanidinium chloride and acid was followed by Soret, alpha/beta, and 701-nm band absorption, and by far-UV circular dichroism spectroscopy. Multifarious patterns emerge, but the two domains clearly unfold sequentially. One phase, assigned to unfolding of the N-terminal domain, proceeds at guanidinium concentrations up to approximately 1.0 M. This is followed by two overlapping phases at higher concentrations. The intermediate state maintains Fe-Met coordination, assigned to the C-terminal domain. Interdomain interaction is reflected in decreasing values of the cooperativity parameters. Differential scanning calorimetry shows a single peak, but two peaks appear when guanidinium chloride up to 0.4 M is present. This reflects different chemical action in chemical and thermal unfolding. Acid-induced unfolding kinetics was addressed by pH jumps using diode array stopped-flow techniques. Three kinetic phases in the 701 nm Fe-Met marker band, and four phases in the Soret and alpha/beta bands, spanning 4-1000 ms could be distinguished on pH jumps from 7.5 to the range 2.5-3.5. In this range of time and pH cyt c appears to unfold in no more than two phases. Spectral properties of the kinetic intermediates could be identified. Sequential domain unfolding, formation of high-spin states, and an intermediate state with Fe-Met coordination to a single haem group are features of the unfolding kinetics.  相似文献   

15.
16.
17.
The EPR spectrum at 15 K of Pseudomonas cytochrome c peroxidase, which contains two hemes per molecule, is in the totally ferric form characteristic of low-spin heme giving two sets of g-values with gz 3.26 and 2.94. These values indicate an imidazole-nitrogen : heme-iron : methionine-sulfur and an imidazole-nitrogen : heme-iron : imidazole-nitrogen hemochrome structure, respectively. The spectrum is essentially identical at pH 6.0 and 4.6 and shows only a very small amount of high-spin heme iron (g 5--6) also at 77 K. Interaction between the two hemes is shown to exist by experiments in which one heme is reduced. This induces a change of the EPR signal of the other (to gz 2.83, gy 2.35 and gx 1.54), indicative of the removal of a histidine proton from that heme, which is axially coordinated to two histidine residues. If hydrogen peroxide is added to the partially reduced protein, its EPR signal is replaced by still other signals (gz 3.5 and 3.15). Only a very small free radical peak could be observed consistent with earlier mechanistic proposals. Contrary to the EPR spectra recorded at low temperature, the optical absorption spectra of both totally oxidized and partially reduced enzyme reveal the presence of high-spin heme at room temperature. It seems that a transition of one of the heme c moieties from an essentially high-spin to a low-spin form takes place on cooling the enzyme from 298 to 15 K.  相似文献   

18.
The anion-binding characteristics of resting and half-reduced Pseudomonas cytochrome c peroxidase (ferrocytochrome c-551: hydrogen peroxide oxidoreductase, EC 1.11.1.5) have been examined by EPR and optical spectroscopy with cyanide, azide and fluoride as ligands. The resting enzyme was found to be essentially inaccessible for ligation, which indicates that it has a closed conformation. In contrast, the half-reduced enzyme has a conformation in which the low-potential heme is easily accessible for ligands, a behavior parallel to that towards the substrate hydrogen peroxide (R?nnberg, M., Araiso, T., Ellfolk, N. and Dunford, H.B. (1981) Arch. Biochem. Biophys. 207, 197-204). Cyanide and azide caused distinct changes in the low-potential heme c moiety, and the gz values of the two low-spin derivatives were 3.14 and 3.22, respectively. Fluoride binds to the same heme, giving rise to a high-spin signal at g = 6. The dissociation constants of the anions differ widely from each other, the values for the cyanide, azide and fluoride being 23 microM, 2.5 mM and 0.13 M, respectively. In addition, a partial shift of the low-spin peak at g = 2.84 of the half-reduced species to 3.24 was observed even at low concentrations of fluoride.  相似文献   

19.
The secondary structure of Pseudomonas cytochrome c peroxidase (ferrocytochrome c: hydrogen-peroxide oxidoreductase, EC 1.11.1.5) has been predicted from the established amino acid sequence of the enzyme using a Chou-Fasman-type algorithm. The amount of alpha-helicity thus obtained is in agreement with previously obtained results based on circular dichroic measurements at far UV. The two heme c moieties of the enzyme have earlier been shown to have widely different characteristics, e.g., the redox potentials of the hemes differ with about 600 mV, and carry out different functions in the enzyme molecule. The structural comparisons made in this study enlighten the observed functional differences. The first heme in the polypeptide chain, heme 1, has in its environment a folding pattern generally encountered in cytochromes. In the region of the sixth ligand, however, profound differences are noted. The cytochromal methionine has been replaced by a lysine with a concomitant lowering of redox-potential thus making peroxidatic activity possible. Around heme 2, extra amino acid residues have been added to the peroxidase as compared with Rhodospirillum molischianum cytochrome c2 core structure in the 20's loop. After completion of the cytochromal fold around heme 2 an additional tail consisting of 25 residues is linked. This tail shows no stabilizing elements of secondary structure, but contains a strongly hydrophobic segment which suggests a possible membrane contact site of this extrinsic membrane protein. Heme 2 is concluded to have a cytochromal function in the molecule. To further elucidate the functional properties of the enzyme, a noncovalent two-fragment complex was produced by specific cleavage of the peroxidase by Pseudomonas elastase. The complex was studied with respect to its properties to the native enzyme. The two-fragment complex of Pseudomonas peroxidase retains the overall conformation of the native enzyme showing, however, no heme-heme interaction. Thus, a comparison of the properties of the native enzyme with those of the two-fragment complex permitted some conclusions to be drawn on the structure of the enzyme as well as the mechanism of heme-heme interaction. From the present results we conclude that the two distal heme surfaces in the peroxidase are oriented toward each other. This structural arrangement allows an inter-heme communication in the enzyme molecule and it also forms the structural basis for the enzyme mechanism. The structural comparisons also give insight into the evolution of an ancestral cytochrome c into an efficient peroxidase that has a versatile control mechanism in heme-heme interaction.  相似文献   

20.
The reaction between ferric Pseudomonas cytochrome c peroxidase and reduced azurin was investigated by static titration, rapid scan, and stopped flow techniques as well as circular dichroism measurements. Kinetics of the reduction of the enzyme under pseudo-first order conditions reveals a biphasic logarithmic curve indicating that the reaction between enzyme and azurin is complex and comprises of two reactions, one rapid and a slower one. The relative portion of the fast phase from the overall reaction increases with increasing azurin concentration. Kinetic results can be explained by postulating the presence of two different enzyme forms which are slowly interconvertible. Both enzymatic forms form a complex with reduced azurin. The electron transfer between proteins occurs within the molecular complex of azurin and the peroxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号