首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In some lakes, large amounts of the potentially toxic cyanobacterium Microcystis overwinter in the sediment. This overwintering population might inoculate the water column in spring and promote the development of dense surface blooms of Microcystis during summer. In the Dutch Lake Volkerak, we found photochemically active Microcystis colonies in the sediment throughout the year. The most vital colonies originated from shallow sediments within the euphotic zone. We investigated whether recruitment of Microcystis colonies from the sediment to the water column was an active process, through production of gas vesicles or respiration of carbohydrate ballast. We calculated net buoyancy, as an indication of relative density, using the amounts and densities of the major cell constituents (carbohydrates, proteins, and gas vesicles). Carbohydrate content of benthic Microcystis cells was very low throughout the year. Buoyancy changes of benthic Microcystis were mostly a result of changes in gas vesicle volume. Before the summer bloom, net buoyancy and the amount of buoyant colonies in the sediment did not change. Therefore, recruitment of Microcystis from the sediment does not seem to be an active process regulated by internal buoyancy changes. Instead, our observations indicate that attachment of sediment particles to colonies plays an important part in the buoyancy state of benthic colonies. Therefore, we suggest that recruitment of Microcystis is more likely a passive process resulting from resuspension by wind‐induced mixing or bioturbation. Consequently, shallow areas of the lake probably play a more important role in recruitment of benthic Microcystis than deep areas.  相似文献   

2.
A mechanism for buoyancy increases in the cyanobacterium Microcystisaeruginosa and the associated formation of surface water-bloomsis presented. The mechanism is based on considering a responsetime in the rate of carbohydrate accumulation. When irradianceincreases, the Microcystis cells may require time to increasetheir rate of carbohydrate accumulation. If irradiance decreasesbefore adjustment, the maximum rate of carbohydrate accumulationis not reached. Colony buoyancy increases during mixing whenthe time scales of the light fluctuations are shorter than theresponse time. To examine the mechanism, a model of Microcystisbuoyancy that incorporates the response time has been coupledwith a hydrodynamics model that simulates mixing. The modelwas applied to a shallow lake to show that a prolonged episodeof intense mixing caused the simulated Microcystis coloniesto become excessively buoyant. Once the mixing subsided, thecolonies accumulated at the surface. Decreases in carbohydratewere reduced in large colonies as their size afforded buoyancyforces that could readily overcome the entraining forces ofthe mixing.  相似文献   

3.
The sedimentary flux of phytoplankton was measured using sedimenttraps in a shallow hypertrophic lake (Lake Kasumigaura), whereMicrocystis bloomed, from June to November 1983 The sedimenttraps were set at 0.5, 1.5 and 3.0 m depth in Takahamairi Bay(3.5 m depth). Microcystis spp. (including M.aerugmosa and M.viridis)in the traps were rare until early August, but increased thereafter.Sinking rates of Microcystis were 0.0045, 0.020 and 0.24 m day–1in June–August, September and October respectively, whichwere far lower than those of Melosira (0.2–1.7 m day–1)and Syncdra (0.2–1.0 m day–1). The total sedimentaryfluxes of POC and that of algal carbon during the study periodwere 283.2 and 96.7 gC m–2 which were 59.5% and 20.3%of the gross primary production (475.8 gC m–2) respectively.The sedimentary flux of living algae measured by algal countswas large in June but small in August and September. On theother hand, the flux of detritus obtained by subtracting totalalgal carbon from POC was small in June and July but large inAugust and September. Therefore diatoms, which appeared mostlyin June, tended to sink as live algae, while Microcystis sankas detritus after being decomposed or consumed in the waterIt was concluded from the results of carbon budget calculationsand the respiration rate of the 1- to 20-µm fraction thatthe activity of decomposers or consumers increased greatly inthe short period at the end of the bloom of Microcystis.  相似文献   

4.
Gas-vacuolate filaments of Oscillatoria agardhii form a metalimneticlayer in Oeming Lake, Minnesota. The environmental factors whichaffect buoyancy and the physiological processes which mediatechanges in buoyancy were determined. Buoyant filaments losttheir buoyancy in a few hours when incubated at light intensitiesabove those found in situ ({small tilde}15 µnol photonsm–2 s–1, or 1% of the surface value). The rate ofbuoyancy loss was accelerated by the addition of 10 µMphosphate at irradiances >200mol photons m–2 s–1.The effect of nutrient additions on buoyancy was also investigatedover a longer time period by incubating metalimnetic samplesin situ. The samples were deployed for 6 days at a depth wherethe irradiance was 8% of the surface value. As found in short-termexperiments, the addition of phosphate resulted in the largestdecrease in buoyancy. However, the addition of ammonia in additionto phosphate attenuated the buoyancy loss on day 2, and on day6 the filaments in these treatments were almost completely buoyant.The physiological status of the filaments in these treatmentswas assayed by analysis of elemental ratios of C, N and P, andby measurement of cellular chlorophyll, polysaccharide and protein.In addition, the cellular content of gas vesicles was determined.The construction of ballast balance sheets from these data indicatedthat changes in buoyancy were primarily due to differences inthe amount of polysaccharide ballast in the cells. However,in another set of in situ experiments, the increase in measuredballast molecules did not explain the observed loss of buoyancy.We hypothesized that another, undetected ballast-providing moleculehad accumulated in the cells.  相似文献   

5.
Autumnal sedimentation of the Microcystis population was studiedin Lake Nieuwe Meer (Amsterdam, The Netherlands). In summer,Microcystis formed a high percentage of the total phytoplanktonin the water column, but a low percentage in sedimentation traps.The reverse was found during September and October, with a highpercentage in the sedimentation traps, but a low percentagein the water column. The decrease in the numbers of Microcystiscolonies coincided with a decrease in waler temperature. Inexperiment with a strain of Mirocystis, isolated from Lake NieuweMeer, the percentage of total colonies that were sinking increasedin a few days to 100% after a shift from 20C to 15.3, 13.0or 10.5C. The gas vesicle volume in the cells remained constantduring the incubations. Sinking of the colonies resulted froman increased glycogen content. Calculation of carbon (C) flowsduring the first 2 days of the incubation at reduced temperatureshowed that the glycogen accumulation was the result of a muchlower rate of protein synthesis during the light period at thelower temperatures. Although the photosynthetic rate itselfdecreased at reduced temperature, it resulted in more fixedCO2 being stored as glucose. Because the respiratory rate alsodecreased (with an almost similar decrease to that of photosynthesis),glycogen accumulated at lower temperatures. It was calculatedthat after an incubation period of-I week at reduced temperature,the rate of photosynthesis had decreased by 10.1% of the valueat 20C per 1C, while the rate of respiration had decreasedonly 1.8%. It is proposed that there is a feedback mechanismin which an increasing concentration of glycogen inhibits photosynthesisand stimulates respiration.  相似文献   

6.
In a storage reservoir, which is artificially mixed in order to reduce algal and especially cyanobacterial growth, the cyanobacterium Microcystis is still present. The aim of the research was to investigate why Microcystis was able to grow in the artificially mixed reservoir. From the results it could be concluded that the large shallow area in the reservoir allows this growth. The loss of buoyancy during the day was much higher in this shallow part than in the deep part. Assuming that the loss of buoyancy was the result of a higher carbohydrate content, a higher growth rate in the shallow part may be expected. A higher received light dose by the phytoplankton in the shallow mixed part of the reservoir than in the deep mixed part explains the difference in buoyancy loss. A significant correlation between the received light dose (calculated for homogeneously mixed phytoplankton) and the buoyancy loss was found. Apparently, the Microcystis colonies were entrained in the turbulent flow in both the shallow and the deep part of the reservoir. With a little higher stability on one sampling day, due to the late start of the artificial mixing, the loss of buoyancy at the deep site was higher than on the other days and almost comparable to the loss at the shallow site. Although the vertical biomass distribution and the temperature profiles showed homogeneous mixing, the colonies in the upper layers apparently received a higher light dose than those deeper in the water column. Determination of the buoyancy state of cyanobacteria appeared to be a valuable method to investigate the light history and hence their entrainment in the turbulent flow in the water column.  相似文献   

7.
Temporal variations in carbon isotope ratio of phytoplanktonand dissolved inorganic carbon (DIC) in Lake Suwa were reported.In summer, blooming of Microcystis spp. resulted in low concentrationsof DIC and high pH, and HCO3 was the prominent speciesof DIC. Chlorophyll-specific rates of photosynthesis were relativelyconstant irrespective of the algal biomass during summer. Carboxylationin photosynthesis of Microcystis spp. was mainly catalyzed byribulose bisphosphate carboxylase (RuBPCase). Carbon isotopediscrimination between 13C of phytoplankton and DIC was considerablysmall in early summer and appeared to be negatively correlatedto DIC concentration. We concluded that carbon fixation by phytoplanktonin Lake Suwa is controlled not by the switch of photosyntheticpathways, but by low DIC concentration and high pH, suggestingthat photosynthesis of Microcystis spp. in Lake Suwa is governedby uptake kinetics other than the carboxylation step.  相似文献   

8.
It is proposed that surface scums of densely packed planktoniccyanobacteria (blue-green algae) which exist for weeks to months,measure several decimeters in thickness and are covered by acrust of photo-oxidized cells, be called hyperscums. Hyperscumsof Microcystis aeruginosa formed during prolonged periods ofcalm weather in wind-protected sites in a hypertrophic lakesubject to low wind speeds (Hart beespoort Dam, South Africa).A hyperscum that extended over 1–2 hectares and persistedfor 103 days during winter 1983 was studied. Chlorophyll a concentrationsranged from 100 to 300 mg l–2 Microcystis cell concentrationsreached 1.76x109 cells ml–1 or 116 cm3l–1. The hyperscumenvironment was anoxic, aphotic, with a fluctuating temperatureregime and low pH values. The densely packed Microcystis cellssurvived these conditions for more than 2 months. This was shownby comparing the potential photosynthetic capacity of Microcystisfrom the hyperscum with that of Microcystis from the main basinof the lake. However, after 3 months the hyperscum algae losttheir photosynthetic capacity and decomposition processes prevailed.The hyperscum gradually shrank in size until a storm causedits complete disintegration.  相似文献   

9.
Two lakes of contrasting trophic state in the central NorthIsland of New Zealand were sampled monthly for protozoan ciliatesand potential food resources. Oligotrichs dominated numbersin both lakes. Subdominants in oligotrophic Lake Taupo includedAskenasia, Pscudobalanion and Urotri-cha, and in eutrophic LakeOkaro Prorodon, Coleps, Urocentrum, Stentor and Spirostomumwere important. Biomass was dominated by large predatory ciliatesand Stentor in Lake Taupo, and Prorodon and Stentor in LakeOkaro. The importance of Prorodon and Stentor to ciliate biomassis unusual and has not been reported for northern hemispherelakes. Small ciliates (<20 µm) capable of consumingparticles <2 µm were a major component of the ciliatecommunity in Lake Taupo. Peaks in ciliate abundance occurredat the same time in both lakes: in autumn, at the beginningof mixis and in spring. Ciliates were vertically stratifiedduring mixis and stratification in both lakes. The effect wasmore pronounced during deoxygenation of the hypolimnion in LakeOkaro which excluded oligotrichs and introduced benthic ciliates.Ciliates were less abundant (mean 40001–1 in Lake Okaroand 9001–1 in Lake Taupo) than in comparable northerntemperate lakes. There was no correlation between the seasonaldistribution of ciliates and chlorophyll a, primarily causedby a winter peak in chlorophyll a dominated by large speciesof phytoplankton in Lake Taupo, at a time when ciliate numberswere low. The only consistent, significant correlations weretotal ciliate numbers and individual species of ciliates withbacterial concentrations in both lakes and with picophytoplanktonin Lake Taupo.  相似文献   

10.
Laboratory scale enclosure: concept, construction and operation   总被引:6,自引:0,他引:6  
A laboratory scale enclosure (LSE) was devised for studyingthe seston dynamics in shallow, wind-mixed lakes. The LSE isa continuous flow system suitable for mass balance studies oflake water columns, and for cultivation of phytoplankton speciesas a reference for potential growth at the lake's light andmixing regime. The construction of the LSE is described in detail.Results are given on the operation with water from Lake Loosdrecht(The Netherlands). The coefficient of vertical mixing in theLSE was variable from 7.6 to 25.6 cm2 s–1, i.e. similarto values reported for shallow, wind-exposed lakes. On average,the vertical light attenuation and the spectral changes withdepth in the LSE agreed well with the in situ underwater lightclimate. Mass balances for phosphorus and oxygen could be accuratelyestablished, while the loss of paniculate matter due to settlingand wall growth was insignificant. The LSE may also be appliedas an incubator for primary production measurements in a ‘natural’light gradient and allowed prolonged continuous cultivationof Prochlorothrix hollandica.  相似文献   

11.
Seasonal variations of colony numbers of Microcystis aeruginosa(Kütz.) Kütz. and M. wesenbergii(Komárek) Komárek in N. V. Kondrat. in sediments of Lake Biwa were investigated over a period of 1 year. At two stations located in the shallow South Basin of Lake Biwa (ca. 4 m water depth), the colony number of Microcystisfluctuated seasonally. The number had a tendency to gradually decrease from winter to early summer, while it increased through mid-summer and autumn. Since the Microcystispopulation in sediment was rather small, intensive growth and accumulation in the water column should be important for the formation of Microcystisblooms in Lake Biwa. Microcystiscolonies in the sediment samples after June were observed to be floating in a counting chamber under a microscope. The observation suggests that the recruitment of Microcystis colonies into the water column mostly occurs in early summer. The number of Microcystiscolonies in the deep North Basin of Lake Biwa (70 – 90 m water depth) was larger than in the South Basin. Because the seasonal variation of colony numbers was not observed in the North Basin, and Microcystiscells do not have gas vesicles, these colonies will not return into the water column. The colonies isolated from the sediment of the North Basin were able to grow in cultured conditions, in the same way as those from the sediment of the South Basin. Therefore, Microcystiscolonies may survive for a long time under stable conditions of low temperature (ca. 8 °C) and darkness, in the sediment of the deep North Basin, accumulating gradually each year.  相似文献   

12.
Seasonal changes in the photosynthesis and primary productionof Microcystis aeruginosa Kütz. were investigated in LakeKasumigaura during 1981–1982. Microcystis always showeda light-saturated photosynthesis-light curve. Both Pmax andthe initial slope of the photosynthesis-light curve of Microcystisin early summer were very high, so it was concluded that Microcystisutilized both low and high light intensities efficiently. ThePmax of Microcystis was found to be a function of the watertemperature except in August and September. The linear regressionon the temperature-Pmax relationship discontinued at 11°C,where the Pmax value dropped; Microcystis did not photosynthesizebelow 4°C. The initial slope of the curve was also descendingbelow 11°C. It is suggested that Microcystis changes itsphysiological properties below 11°C. The highest value ofgross production calculated for M. aeruginosa was 5.4 gC m–2d–1 in July; the annual gross production was estimatedto be 300 gC m–2year–1 (i.e., 40% of the total primaryproduction in this lake).  相似文献   

13.
Recruitment of Microcystis from sediments to the water column was investigated in shallow (1–2 m) and deep (6–7 m) areas of Lake Limmaren, central Sweden. Recruitment traps attached to the bottom were sampled on a weekly basis throughout the summer season ( June–September). A comparison between the two sites showed that the recruitment from the shallow bay was significantly higher over the entire season for all three Microcystis species present in the lake. Maximum rates of recruitment were found in August, when 2.3 × 105 colonies m ? 2·day ? 1 1 Received 18 April 2002. Accepted 29 October 2002. left the sediments of the shallow area. Calculated over the entire summer, Microcystis colonies corresponding to 50% of the initial abundance in the surface sediments were recruited in the shallow bay, whereas recruitment from the deep area was only 8% of the sediment colonies. From these results we conclude that shallow areas, which to a large extent have been overlooked in studies of recruitment of phytoplankton, may be crucial to the dynamics of these organisms by playing an important role as inoculation sites for pelagic populations.  相似文献   

14.
Microcystis spp., which occur as colonies of different sizes under natural conditions, have expanded in temperate and tropical freshwater ecosystems and caused seriously environmental and ecological problems. In the current study, a Bayesian network (BN) framework was developed to access the probability of microcystins (MCs) risk in large shallow eutrophic lakes in China, namely, Taihu Lake, Chaohu Lake, and Dianchi Lake. By means of a knowledge-supported way, physicochemical factors, Microcystis morphospecies, and MCs were integrated into different network structures. The sensitive analysis illustrated that Microcystis aeruginosa biomass was overall the best predictor of MCs risk, and its high biomass relied on the combined condition that water temperature exceeded 24 °C and total phosphorus was above 0.2 mg/L. Simulated scenarios suggested that the probability of hazardous MCs (≥1.0 μg/L) was higher under interactive effect of temperature increase and nutrients (nitrogen and phosphorus) imbalance than that of warming alone. Likewise, data-driven model development using a naïve Bayes classifier and equal frequency discretization resulted in a substantial technical performance (CCI = 0.83, K = 0.60), but the performance significantly decreased when model excluded species-specific biomasses from input variables (CCI = 0.76, K = 0.40). The BN framework provided a useful screening tool to evaluate cyanotoxin in three studied lakes in China, and it can also be used in other lakes suffering from cyanobacterial blooms dominated by Microcystis.  相似文献   

15.
The isotope 15N was used to examine nitrogen dynamics in LakesFryxell and Vanda, two permanently ice-covered Antarctic lakes.Half-saturation constants for NH4+. uptake in the shallow watersof both lakes were <10 µg N l–1; uptake kineticexperiments on populations forming the deep-chlorophyll layersof these lakes showed zero-order kinetics and could not be fittedwith the Michaelis-Menten equation. Elevated uptake within thefirst few minutes following pulses of NH4+. and NO3 occurredin both lakes. NH4+ regeneration, determined from isotope dilutionexperiments, exceeded uptake at 4.6 m in Lake Fryxell, was lessthan uptake at 9 m in Lake Fryxell and was equal to uptake at10 m in Lake Vanda under the experimental conditions. NO3uptake was suppressed by NH4+ levels as low as 2 µg NH4+-N l–1 in Lake Fryxell; the suppression was strongestin the near-surface populations. Substrate-saturated C:N uptakeratios (g:g) in Lake Fryxell decreased from 8.4 near the surfaceto 1.8 at the bottom of the trophogenic zone. Overall, the nitrogendynamics in these lakes are similar to other lakes and the openocean in that biological productivity during the austral summeris supported by regenerated nutrients.  相似文献   

16.
Blue-green algal blooms formed by Microcystis and Oscillatoria often occur in shallow eutrophic lakes, such as Lake Taihu (China) and Lake Kasumigaura (Japan). Growth characteristics and competitions between Microcystis aeruginosa and Oscillatoria mougeotii were investigated using lake simulator systems (microcosms) at various temperatures. Oscillatoria was the superior competitor, which suppressed Microcystis, when temperature was <20°C, whereas the opposite phenomenon occurred at 30°C. Oscillatoria had a long exponential phase (20 day) and a low growth rate of 0.22 day−1 and 0.20 day−1 at 15°C and 20°C, respectively, whereas Microcystis had a shorter exponential phase (2–3 days) at 30°C and a higher growth rate (0.86 day−1). Interactions between the algae were stronger and more complex in the lake simulator system than flask systems. Algal growth in the lake simulator system was susceptible to light attenuation and pH change, and algae biomasses were lower than those in flasks. The outcome of competition between Microcystis and Oscillatoria at different temperatures agrees with field observations of algal communities in Lake Taihu, indicating that temperature is a significant factor affecting competition between Microcystis and Oscillatoria in shallow, eutrophic lakes.  相似文献   

17.
SYNOPSIS. The swimbladder gas gland is recognized as a cholesterolsynthesis site in abyssal rattail fishes, Coryphaenoides sp.(from 2000 m depth), and Galápagos Islands surface fish,Orthopristis forbesi, Seriola mazatlana, and Sphoeroides annulatus.This relates to high levels of cholesterol in the gas gland(up to 21% of lipid) and high cholesterol levels in the fattyswimbladder interior (up to 49% of lipid). The gas gland hasmore protein (45.4%) than the internal fatty mass (18%). Lipidssynthesized include phospholipids and triglycerides in 2:1 ratioin the gas gland and 1:2 ratio in the liver. Deep fish havefatty livers (66%) compared to shallow fish (28%). Shallow fishincorporated five times as much acetate-l-14C into lipids asdid deep fish, and seven to eight times as much acetate-l-14Cinto cholesterol. Pressure facilitation of cholesterol synthesiswas observed in gas gland and liver of O. forbesi and Coryphaenoides,whereas total lipid synthesis was inhibited by higher pressures.Optimal acetate-l-14C incorporation into lipids occurred at5000 psi and 2°C in Coryphaenoides; it occurred at 14.7psi and 15° in O. forbesi. These conditions closely approximatethe environment of the fish.  相似文献   

18.
Microcystis is a well-studied type of bloom-forming genus cyanobacteria that occurs as colonies in lakes. However, whenever Microcystis colonies are transferred to the laboratory, they always disaggregate into a unicellular form. The mechanism underlying this disaggregation of Microcystis colonies remains uncharacterized. Here, we report on the changes in morphology and the changes in the composition of the associated bacterial community of Microcystis wesenbergii colonies. Denaturing gradient gel electrophoresis analysis (DGGE) showed that the diversity of the associated bacterial community decreased during the disaggregation of Microcystis colonies. Two γ-Proteobacteria and one Bacteroidetes species from the mucilage of Microcystis colonies were not detected following colony disaggregation, suggesting that these species may influence Microcystis colony morphology. Solid phase microextraction and gas chromatography–mass spectrometry (SPME GC/MS) analysis revealed that seven of the forty-one extracellular compounds detected were exclusively present in the media of the Microcystis colony extracts; these compounds may be secreted by bacteria and may be a beneficial role in Microcystis colony maintenance. The results of this study indicate that changes in the composition of the bacterial community associated with Microcystis colonies are likely responsible for the disaggregation of these colonies in the laboratory.  相似文献   

19.
The vertical distribution of the cyanobacterium Planktothrir(Oscillazoria) rubescens in Lake Zrich was investigated fromMarch 1993 to June 1995 by collecting filaments on filters andmeasuring them by epifluorescence microscopy and computer imageanalysis. The initial population, which began to stratify inApril, decreased by up to 99% by June. During the summer, thepopulation peaked at depths of 8–15 m; it reached a maximumareal filament-volume concentration of -60 cm –3 of lakesurface in early September and was then entrained in the deepeningsurface layer. It became mixed progressively deeper, to thelake bottom in the cold winter of 1993–94, but less completelyin the milder winter of 1994–95. Most of the filamentsremained viable during the winter. At the end of the mild winterof 1994–5, 70% of filaments in the water column retainedbuoyancy, but after the cold winter of 1996–7 only 22%were buoyant. Few remained buoyant below 80 m, where the hydrostaticpressure caused gas vesicle collapse. The proportion that remainbuoyant decreases with the depth and duration of winter mixing,and increases with the critical collapse pressure (Pc) of thegas vesicles, which provide buoyancy. Strains of P.rubescensisolated from Lake Zrich differed in mean (Pc) of their gasvesicles, from 0.9 to 1.1 MPa, the highest values in freshwatercyanobacteria. Allowing for a turgor pressure of 0.2 MPa. thesestrains would remain buoyant at depths down to 70 and 90 m,respectively. Natural selection for gas vesicles of high (Pc)will operate by increasing the proportion of filaments thatremain buoyant in the upper parts of the water column aftercirculation to various depths during the winter because onlybuoyant filaments will form the inoculum for the following season.  相似文献   

20.
The dynamics of bacterioplankton and protozooplankton in twomaritime Antarctic lakes (Heywood Lake and Sombre Lake, SignyIsland, South Orkneys) were studied during the phase of icebreak-out (December and early January 1994/95). The lakes aresuffering animal-induced (fur seal) eutrophication, though HeywoodLake is most severely affected. Both lakes had morphologicallydiverse bacterial communities which increased during the studyperiod, reaching maxima of 80 x 108 l–1 in Heywood Lakeand 31.8 x 108 l–1 in Sombre Lake. Heterotrophic nanoflagellates(HNAN) reached a peak in late December with maxima of 40.6 x108 l–1 in Sombre Lake and 174 x 105 l–1 in HeywoodLake. Phototrophic nanoflagellates (PNAN) peaked in late Decemberafter ice loss in Heywood Lake (63 x 105 l–1), which coincidedwith a peak in a bloom of Chroomonas acuta which reached abundancesof 1.0 x 108 l–1. In Sombre Lake, ice persisted for alonger period and here PNAN reached their highest density atthe end of the study period (around 70.0 x 105 l–1). Ciliateabundance reached high levels in Heywood Lake (>60001–1),while in Sombre Lake maximum abundance was 568l–1. Protozooplanktondiversity was greater in the less-enriched Sombre Lake. Grazingrates of ciliates averaged 70.6 bacteria indiv.–1 h–1in Heywood Lake and 119.3 bacteria indiv.–1 h–1in Sombre Lake. The difference was a reflection of the differenttaxonomic make-up of the community in the lakes. HNAN grazingrates varied between 0.51 and 0.83 bacteria indiv.–1 h–1in Sombre and Heywood Lakes, respectively. Specific growth rates(r) h–1 in Sombre Lake were 0.028 for ciliates and 0.013for HNAN, and in Heywood Lake 0.010 for ciliates and HNAN 0.012.These growth rates result in doubling times ranging between38 and 69 h for ciliates and around 55 h for HNAN.HNAN grazingon bacteria was curtailed in Heywood Lake in early January asa result of predation by microcrustacean larvae feeding on theplankton. Thus, for a short phase top-down control was apparentin the dynamics of Heywood Lake, a feature uncommon in Antarcticlake ecosystems. The impact of natural eutrophication on thesesystems is discussed in relation to other unaffected Antarcticlakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号