首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytophthora infestans (Mont.) de Bary is the most important fungal pathogen of the potato (Solanum tuberosum). The introduction of major genes for resistance from the wild species S. demissum into potato cultivars is the earliest example of breeding for resistance using wild germplasm in this crop. Eleven resistance alleles (R genes) are known, differing in the recognition of corresponding avirulence alleles of the fungus. The number of R loci, their positions on the genetic map and the allelic relationships between different R variants are not known, except that the R1 locus has been mapped to potato chromosome V The objective of this work was the further genetic analysis of different R alleles in potato. Tetraploid potato cultivars carrying R alleles were reduced to the diploid level by inducing haploid parthenogenetic development of 2n female gametes. Of the 157 isolated primary dihaploids, 7 set seeds and carried the resistance alleles R1, R3 and R10 either individually or in combinations. Independent segregation of the dominant R1 and R3 alleles was demonstrated in two F1 populations of crosses among a dihaploid clone carrying R1 plus R3 and susceptible pollinators. Distorted segregation in favour of susceptibility was found for the R3 allele in 15 of 18 F1 populations analysed, whereas the RI allele segregated with a 1:1 ratio as expected in five F1 populations. The mode of inheritance of the R10 allele could not be deduced as only very few F1 hybrids bearing R10 were obtained. Linkage analysis in two F1 populations between R1, R3 and RFLP markers of known position on the potato RFLP maps confirmed the position of the R1 locus on chromosome V and localized the second locus, R3, to a distal position on chromdsome XI.  相似文献   

2.
In potato, 11 resistance alleles (R1–R11) are known which confer race-specific resistance to the fungus Phytophthora infestans. R1 has been mapped previously to potato chromosome V and R3 to chromosome XI. Here we report on the localization of the R6 and R7 alleles on the genetic map of potato. Differential resistant strains of tetraploid Solanum tuberosum, clones MaR6 and MaR7, were used as parental plants for the parthenogenetic induction and selection of diploid genotypes containing the R6 or the R7 resistance allele to P. infestans. One resistant dihaploid from MaR7 could be used directly as a parent to produce diploid F1 progeny suitable for phenotypic and RFLP analysis. MaR6 did not produce useful dihaploids directly. After crossing MaR6 with a tetraploid susceptible genotype, resistant F1 clones were selected. The resistant genotypes were then used as parents for the induction of dihaploids. Six dihaploids bearing R6 were identified that could be crossed with a diploid susceptible genotype. Two diploid F1 populations, segregating for R6 and R7, respectively, were analysed with RFLP markers known to be linked with previously identified R genes. Markers linked with R3 were found also to be linked with R6 and R7. The resistance alleles R6 and R7 mapped to a similar distal position on chromosome XI as the R3 allele.  相似文献   

3.
Summary Late blight in potato is caused by the fungusPhytophthora infestans and can inflict severe damage on the potato crop. Resistance toP. infestans is either based on major dominantR genes conferring vertical, race-specific resistance or on minor genes inducing horizontal, unspecific resistance. A dihaploid potato line was identified which carried theR1 gene, conferring vertical resistance to allP. infestans races, with the exception of those homozygous for the recessive virulence allele of the locusV1. The F1 progeny of a cross between this resistant parent P(R1) and P(r), a line susceptible to all races, was analysed for segregation ofR1 and of restriction fragment length polymorphism (RFLP) markers distributed on the potato RFLP map comprising more than 300 loci. TheR1 locus was mapped to chromosome V in the interval between RFLP markers GP21 and GP179. The map position ofR1 was found to be very similar to the one ofRx2, a dominant locus inducing extreme resistance to potato virus X.  相似文献   

4.
The R1 allele confers on potato a race-specific resistance to Phytophthora infestans. The corresponding genetic locus maps on chromosome V in a region in which several other resistance genes are also located. As part of a strategy for cloning R1, a high-resolution genetic map was constructed for the segment of chromosome V that is bordered by the RFLP loci GP21 and GP179 and includes the R1 locus. Bulked segregant analysis and markers based on amplified fragment length polymorphisms (AFLP markers) were used to select molecular markers closely linked to R1. Twenty-nine of approximately 3200 informative AFLP loci displayed linkage to the R1 locus. Based on the genotypic analysis of 461 gametes, eight loci mapped within the GP21–GP179 interval. Two of those could not be seperated from R1 by recombination. For genotyping large numbers of plants with respect to the flanking markers GP21 and GP179 PCR based assays were also developed which allowed marker-assisted selection of plants with genotypes Rr and rr and of recombinant plants.  相似文献   

5.
The dominant allele Gro1 confers on potato resistance to the root cyst nematode Globodera rostochiensis. The Gro1 locus has been mapped to chromosome VII on the genetic map of potato, using RFLP markers. This makes possible the cloning of Gro1 based on its map position. As part of this strategy we have constructed a high-resolution genetic map of the chromosome segment surrounding Gro1, based on RFLP, RAPD and AFLP markers. RAPD and RFLP markers closely linked to Gro1 were selected by bulked segregant analysis and mapped relative to the Gro1 locus in a segregating population of 1105 plants. Three RFLP and one RAPD marker were found to be inseparable from the Gro1 locus. Two AFLP markers were identified that flanked Gro1 at genetic distances of 0.6 cM and 0.8 cM, respectively. A genetic distance of 1 cM in the Gro1 region corresponds to a physical distance of ca. 100 kb as estimated by long-range restriction analysis. Marker-assisted selection for nematode resistance was accomplished in the course of constructing the high-resolution map. Plants carrying the resistance allele Gro1 could be distinguished from susceptible plants by marker assays based on the polymerase chain reaction (PCR).  相似文献   

6.
A population of diploid potato (Solanum tuberosum) was used for the genetic analysis and mapping of a locus for resistance to the potato cyst nematode Globodera rostochiensis, introgressed from the wild potato species Solanum vernei. Resistance tests of 108 genotypes of a F1 population revealed the presence of a single locus with a dominant allele for resistance to G. rostochiensis pathotype Ro1. This locus, designated GroV1, was located on chromosome 5 with RFLP markers. Fine-mapping was performed with RAPD and SCAR markers. The GroV1 locus was found in the same region of the potato genome as the S. tuberosum ssp. andigena H1 nematode resistance locus. Both resistance loci could not excluded to be allelic. The identification of markers flanking the GroV1 locus offers a valuable strategy for marker-assisted selection for introgression of this nematode resistance.Abbreviations BSA bulked segregant analysis - RAPD random-amplified polymorphic DNA - RFLP restriction fragment length polymorphism - SCAR sequence-characterized amplified region  相似文献   

7.
pBNiR1, a cDNA clone encoding part of the barley nitrite reductase apoprotein, was isolated from a barley (cv. Maris Mink) leaf cDNA library using the 1.85 kb insert of the maize nitrite reductase cDNA clone pCIB808 as a heterologous probe. The cDNA insert of pBNiR1 is 503 by in length. The nucleotide coding sequence could be aligned with the 3 end of other higher plant nitrite reductase apoprotein cDNA sequences but diverges in the 3 untranslated region. The whole-plant barley mutant STA3999, previously isolated from the cultivar Tweed, accumulates nitrite after nitrate treatment in the light, has very much lowered levels of nitrite reductase activity and lacks detectable nitrite reductase cross-reacting material due to a recessive mutation in a single nuclear gene which we have designated Nir1. STA3999 has the characteristics expected of a nitrite reductase apoprotein gene mutant. Here we have used pB-NiR1 in RFLP analysis to determine whether the mutation carried by STA3999 is linked to the nitrite reductase apoprotein gene locus Nii. An RFLP was identified between the wild-type barley cultivars Tweed (major hybridising band of 11.5 kb) and Golden Promise (major hybridising band of 7.5 kb) when DraI-digested DNA was probed with the insert from the partial barley nitrite reductase cDNA clone, pBNiR1. DraI-digested DNA from the mutant STA3999 also exhibited a major hybridising band of 11.5 kb after hybridisation with the insert from pBNiR1. F1 progeny derived from the cross between the cultivar Golden Promise and the homozygous nir1 mutant STA3999 were heterozygous for these bands as anticipated. Co-segregation of the Tweed RFLP band of 11.5 kb and the mutant phenotype (leaf nitrite accumulation after nitrate treatment/loss of detectable nitrite reductase cross-reacting material at Mr 63000) was scored in an F2 population of 312 plants derived from the cross between the cultivar Golden Promise and the homozygous mutant STA3999. The Tweed RFLP band of 11.5 kb and the mutant phenotype showed strict co-segregation (in approximately one quarter (84) of the 312 F2 plants examined). Only those F2 individuals heterozygous for the RFLP pattern gave rise to F3 progeny which segregated for the mutant phenotype. We conclude that the nir1locus and the nitrite reductase apoprotein gene Nii are very tightly linked.  相似文献   

8.
The two eggplant relatives Solanum aethiopicum gr. Gilo and Solanum aethiopicum gr. Aculeatum (=Solanum integrifolium) carry resistance to the fungal wilt disease caused by Fusarium oxysporum f. sp. melongenae, a worldwide soil-borne disease of eggplant. To introgress the resistance trait into cultivated eggplant, the tetraploid somatic hybrids S. melongena S. aethiopicum and S. melongena + S. integrifolium were used. An inheritance study of the resistance was performed on advanced anther culture-derived androgenetic backcross progenies from the two somatic hybrids. The segregation fitted a 3 resistant (R): 1 susceptible (S) ratio in the selfed populations and a 1R:1S ratio in the backcross progenies for the trait derived from S. aethiopicum and S. integrifolium. These ratios are consistent with a single gene, which we designated as Rfo-sa1, controlling the resistance to Fusarium oxysporum f. sp. melongenae. The allelic relationship between the resistance genes from S. aethiopicum and S. integrifolium indicate that these two genes are alleles of the same locus. Bulked Segregant Analysis (BSA) was performed with RAPD markers on the BC3/BC5 resistant advanced backcross progenies, and three RAPD markers associated with the resistance trait were identified. Cleaved Amplified Polymorphic Sequences (CAPSs) were subsequently obtained on the basis of the amplicon sequences. The evaluation of the efficiency of these markers in predicting the resistant phenotype in segregating progenies revealed that they represent useful tools for indirect selection of Fusarium resistance in eggplant.  相似文献   

9.
Summary Resistance to watermelon mosaic virus-2 in Phaseolus vulgaris L. is conferred by two distinct dominant alleles at independent loci. Based on segregation data one locus is designated Wmv, the other, Hsw. The dominant allele Wmv from cv. Great Northern 1140 prevents systemic spread of the virus but viral replication occurs in inoculated tissue. In contrast, Hsw confers both local and systemic resistance to WMV-2 below 30C. At higher temperatures, plants that carry this allele in the absence of modifying or epistatic factors develop systemic veinal necrosis upon inoculation with the virus that results in rapid death. Patho-type specificity has not been demonstrated for either allele; both factors confer resistance to every isolate tested. A temperature-sensitive shift in epistasis is apparent between dominant alleles at these loci. Because Hsw is very tightly linked if not identical to the following genes for hypersensitivity to potyviruses I, (bean common mosaic virus), Bcm, (blackeye cowpea mosaic virus), Cam, (cowpea aphid-borne mosaic virus) and Hss (soybean mosaic virus), parental, reciprocal dihybrid F1 populations, and selected F3 families were inoculated with each of these viruses and held at 35 C. F1 populations developed vascular necrosis completely or primarily limited to inoculated tissue, while F3 families from WMV-2-susceptible segregates were uniformly susceptible to these viruses. The relationship between Hsw, Wmv and other genes for potyvirus resistance suggest patterns in the evolution of resistance and viral pathogenicity. Characterization of the resistance spectrum associated with each factor provides an additional criterion to distinguish genes for plant virus resistance.  相似文献   

10.
The basic prerequisite for an efficient breeding program to improve levels of resistance to pathogens in plants is the identification of genes controlling the resistance character. If the response to pathogens is under the control of a multilocus system, the utilization of molecular markers becomes essential. Stalk and ear rot caused by Gibberella zeae is a widespread disease of corn: resistance to G. zeae is quantitatively inherited. Our experimental approach to understanding the genetic basis of resistance to Gibberella is to estimate the genetic linkage between available molecular markers and the character, measured as the amount of diseased tissue 40 days after inoculation of a suspension of Fusarium graminearum, the conidial form of G. zeae, into the first stalk internode. Sensitive and resistant parental inbreds were crossed to obtain F1 and F2 populations: the analysis of the segregation of 95 RFLP (restriction fragment length polymorphism) clones and 10 RAPD (random amplified polymorphic DNA) markers was performed on a population of 150 F2 individuals. Analysis of resistance was performed on the F3 families obtained by selfing the F2 plants. Quantitative trait loci (QTL) detection was based either on analysis of regression coefficients between family mean value and allele values in the F2 population, or by means of interval mapping, using MAPMAKER-QTL. A linkage map of maize was obtained, in which four to five genomic regions are shown to carry factors involved in the resistance to G. zeae.  相似文献   

11.
The segregation of several isozyme marker genes has been studied in F2 inbred families from hybrids between self-sterile and five self-fertile inbred lines (nos. 2, 3, 4, 5, and 8) as well as from interline hybrids. Self-pollination of F1 hybrids between self-sterile forms and lines 5 and 8 gave an F2 segregation ratio of 1 heterozygote:1 homozygote for the gene Prx7 (chromosome 1R) against the allele from the line. This is interpreted as a result of tight linkage of the Prx7 gene with the S1 gene in chromosome 1R (recombination at a level of 0–1%). The self-pollination of such hybrids with lines 2,3 and 4 gave normal segregation for the Prx7 gene (1:2:1). This means that these lines carry a self-fertility allele which is not on chromosome 1R. Interline hybrids 5×2, 5×3 and 5×4 had self-fertility alleles for the two S genes and in inbred F2 progenies gave the expected deviating segregation for the Prx7 gene in a ratio of 2:3:1. The segregation of interline hybrid 5×8 was normal, 1:2:1, as expected. Highly-deviating segregation in an inbred F2 family of a hybrid with line 5 has also been obtained for another gene from chromosome 1R — Pgi2 (recombination with the S1 locus of 16.7%). By using the same method it has been estimated that line 4 has a self-fertility allele of the S2 locus from chromosome 2R and that the genes -Glu and Est4/11 are linked with it (recombination 16.7% and 17.5–20% respectively). Lines 2 and 3 have a self-fertility allele of the S5 locus from chromosome 5R which is linked with the Est5-7 gene complex (recombination at a level of 28.8–36.0%).  相似文献   

12.
The Pik m gene in rice confers a high and stable resistance to many isolates of Magnaporthe oryzae collected from southern China. This gene locus was roughly mapped to the long arm of rice chromosome 11 with restriction fragment length polymorphic (RFLP) markers in the previous study. To effectively utilize the resistance, a linkage analysis was performed in a mapping population consisting of 659 highly susceptible plants collected from four F2 populations using the publicly available simple sequence repeat (SSR) markers. The result showed that the locus was linked to the six SSR markers and defined by RM254 and RM144 with ≈13.4 and ≈1.2 cM, respectively. To fine map this locus, additional 10 PCR-based markers were developed in a region flanked by RM254 and RM144 through bioinformatics analysis (BIA) using the reference sequence of cv. Nipponbare. The linkage analysis with these 10 markers showed that the locus was further delimited to a 0.3-cM region flanked by K34 and K10, in which three markers, K27, K28, and K33, completely co-segregated with the locus. To physically map the locus, the Pik m -linked markers were anchored to bacterial artificial chromosome clones of the reference cv. Nipponbare by BIA. A physical map spanning ≈278 kb in length was constructed by alignment of sequences of the clones anchored by BIA, in which only six candidate genes having the R gene conserved structure, protein kinase, were further identified in an 84-kb segment.  相似文献   

13.
Summary Two different chromosomal locations of major genes controlling extreme resistance to potato virus X (PVX) were found by restriction fragment length polymorphism (RFLP) analysis of two populations segregating for the resistance. The resistance geneRx1 mapped to the distal end of chromosome XII, whereasRx2 was located at an intermediate position on linkage group V in a region where reduced recombination and segregation distortion have also been observed. These linkage anomalies were due to abnormal behaviour of the chromosome contributed by the resistant parent P34. The results presented were obtained using two different strategies for mapping genes of unknown location. One approach was the use of probes revealing polymorphic loci spread throughout the genome and resulted in the mapping ofRx1. The second approach was based on the assumption of possible linkage between the resistance gene and clone-specific DNA fragments introduced from a wild potato species.Rx2 was mapped by adopting this strategy.  相似文献   

14.
Very little is known about the genes and mechanisms affecting skin lightening in Asian populations. In this study, two coding SNPs, c.G1129A (R163Q) at the MC1R (melanocortin 1 receptor) gene and c.A1962G (H615R) at the OCA2 (oculocutaneous albinism type II) gene, were investigated in a total of 1,809 individuals in 16 populations from various areas. The Q163 and R615 alleles prevailed almost exclusively in East and Southeast Asian populations. Wright’s F ST was 0.445 for R163Q and 0.385 for H615R among the 16 populations. The frequency of the Q163 allele was higher in Northeast Asians than in Southeast Asians. The frequency of the R615 allele was highest in South China and unlikely to be associated with levels of ultraviolet radiation. This allele may be a good marker to study the genetic affinity among East Asians because of its restricted distribution and marked difference in allele frequency.  相似文献   

15.
We report the identification and mapping of two quantitative trait loci (QTLs) of Solanum spegazzinii BGRC, accession 8218-15, involved in resistance to the potato cyst-nematode Globodera rostochiensis pathotype Ro1, by means of restriction fragment length polymorphisms (RFLPs). For this purpose we crossed a susceptible diploid S. tuberosum with the resistant S. spegazzinii, and tested the F1 population for resistance to the Ro1 pathotype. Since the F1 segregated for the resistance, the S. spegazzinii parent was concluded to be heterozygous at the nematode resistance loci. For the mapping of the resistance loci we made use of RFLP markers segregating for S. spegazzinii alleles in the F1. One hundred and seven RFLP markers were tested in combination with four different restriction enzymes; 29 of these displayed a heterozygous RFLP pattern within S. spegazzinii and were used for mapping. Analysis of variance (ANOVA) was applied to test the association of the RFLP patterns of these markers with nematode resistance. Two QTLs involved in disease resistance to Globodera rostochiensis pathotype Ro1 were identified and mapped to chromosomes 10 and 11 respectively.  相似文献   

16.
Summary Four soybean seed urease nulls (lacking both the activity and antigen of the embryo-specific urease) were intermated and the F1 and F2 seed examined for urease activity. Both generations were without urease activity, and the nulls were therefore considered noncomplementing. In crosses of each null line to cultivars homozygous for the allelic, codominantly inherited urease slow or fast isozyme, the F1 seed expressed the embryo-specific urease isozyme of the urease-expressing parent. A 3 1 segregation for presence and absence of urease was observed in progeny from F1 and heterozygous F2 plants. The F2 and F3 from fastXnull combinations revealed that urease-positive seed were all phenotypically urease fast, while the same seed from slowXnull combinations showed a segregation of one seed containing a fast urease, either exclusively or in a heterozygous state with the slow isozyme, for every 69 phenotypic slows. Data pooled from F2 plants which segregate for both the presence (Sun) and absence (Sun) of urease and for the fast (Eu1-b) or slow (Eu1-a) urease allele indicate that the null lesion (Sun) is linked to Eu1 by approximately one map unit. The evidence is consistent with two models: (1) sun is an allele at the embryo-specific urease isozyme locus (Eu1) and that a high degree of exchange (and/or conversion) within the locus results in a 1% recombination frequency between the null trait and urease allozyme; (2) sun is at a distinct locus which is separated by one map unit from the embryo-specific urease isozyme locus (Eu1) upon which it acts in the cis position. Polyadenylated embryo RNA from one of the null lines, PI 229324, exhibited no urease template activity in vitro. Thus, the lack of urease antigen is due to lack of accumulation of translatable urease mRNA. The availability of soybeans lacking seed urease should be extremely useful to breeders as a trait for linkage studies and to geneticists as a transformation marker.Portions of this work were funded by the Illinois and Missouri Agricultural Experiment Stations, the SOHIO-University of Illinois Center of Excellence in Crop Molecular Genetics and Genetic Engineering and by grants PCM-8219652 from the National Science Foundation and USDA/SEA-CRCR-1-1374 from the USDA Competitive Grants Office  相似文献   

17.
Mapping loci controlling vernalization requirement in Brassica rapa   总被引:1,自引:0,他引:1  
Brassica cultivars are classified as biennial or annual based on their requirement for a period of cold treatment (vernalization) to induce flowering. Genes controlling the vernalization requirement were identified in a Brassica rapa F2 population derived from a cross between an annual and a biennial oilseed cultivar by using an RFLP linkage map and quantitative trait locus (QTL) analysis of flowering time in F3 lines. Two genomic regions were strongly associated with variation for flowering time of unvernalized plants and alleles from the biennial parent in these regions delayed flowering. These QTLs had no significant effect on flowering time after plants were vernalized for 6 weeks, suggesting that they control flowering time through the requirement for vernalization. The two B. rapa linkage groups containing these QTLs had RFLP loci in common with two B. napus linkage groups that were shown previously to contain QTLs for flowering time. An RFLP locus detected by the cold-induced gene COR6.6 cloned from Arabidopsis thaliana mapped very near to one of the B. rapa QTLs for flowering time.  相似文献   

18.
A genetic linkage map for loblolly pine (Pinus taeda L.) was constructed using segregation data from a three-generation outbred pedigree consisting of four grandparents, two parents, and 95 F2 progeny. The map was based predominantly on restriction fragment length polymorphism (RFLP) loci detected by cDNA probes. Sixty-five cDNA and three genomic DNA probes revealed 90 RFLP loci. Six polymorphic isozyme loci were also scored. One-fourth (24%) of the cDNA probes detected more than 1 segregating locus, an indication that multigene families are common in pines. As many as six alleles were observed at a single segregating locus among grandparents and it was not unusual for the progeny to segregate for three or four alleles per locus. Multipoint linkage analysis placed 73 RFLP and 2 isozyme loci into 20 linkage groups; the remaining 17 RFLP and 4 isozyme loci were unlinked. The mapped RFLP probes provide a new set of codominant markers for genetic analyses in loblolly pine.  相似文献   

19.
Summary Allelic complexity is a key feature of self-incompatibility (S) loci in gametophytic plants. We describe in this report the allelic diversity and gene structure of the S locus in Solanum tuberosum revealed by the isolation and characterization of genomic and cDNA clones encoding S-associated major pistil proteins from three alleles (S 1, S r1, S 2). Genomic clones encoding the S1 and S2 proteins provide evidence for a simple gene structure: Two exons are separated by a small intron of 113 (S 1) and 117 by (S 2). Protein sequences deduced from cDNA clones encoding S1 and Sr1 proteins show 95% homology. 15 of the 25 residues that differ between these S 1and S r1alleles are clustered in a short hypervariable protein segment (amino acid positions 44–68), which corresponds in the genomic clones to DNA sequences flanking the single intron. In contrast, these alleles are only 66% homologous to the S 2allele, with the residues that differ between the alleles being scattered throughout the sequence. DNA crosshybridization experiments identify a minimum of three classes of potato S alleles: one class contains the alleles S 1, S r1and S 3, the second class S 2and an allele of the cultivar Roxy, and the third class contains at present only S 4. It is proposed that these classes reflect the origin of the S alleles from a few ancestral S sequence types.  相似文献   

20.
Summary The dominant gene I 2 confers on tomato (Lycopersicon esculentum) resistance against the fungus Fusarium oxysporum f. sp. lycopersici race 2. A restriction fragment length polymorphism (RFLP) marker, TG105, has recently been found to be tightly linked to I 2. The potential for cloning this gene by a reverse genetics approach prompted us to describe in both genetic and physical detail the region surrounding the I 2 locus on chromosome 11. We have analyzed patterns of segregation of RFLP markers on chromosome 11 and Fusarium resistance in 140 F2 plants from a cross between Fusarium-resistant and susceptible parental lines. Marker TG105 mapped 0.4 centi-Morgan (CM) from I 2. Physical analysis of TG105 and its flanking RFLP markers, TG26 and TG36, by pulsed field gradient gel electrophoresis (PFGE) yielded a restriction map for this region encompassing at least 620 kb of the tomato genome. TG105 and TG26 hybridized to the same 175 kb MluI-NruI restriction fragment. We have therefore linked two genetically distinct RFLP markers. Based on the 4.1 cM distance between them, we have assigned a mean value of 43 kb for each cM recombination distance in the vicinity of I 2. This local ratio between physical and genetic distances is more than 10-fold below the average for the tomato genome. It should therefore be possible to clone I 2 by chromosome walking from TG105.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号