共查询到20条相似文献,搜索用时 0 毫秒
1.
Tassel and ear primordia were collected from greenhouse-grown specimens of the Mexican maize landrace Chapalote and prepared for scanning electron microscopic (SEM) examination. Measurements of inflorescence apices and spikelet pair primordia (spp) were made from SEM micrographs. Correlation of inflorescence apex diameter with number of spikelet ranks showed no significant difference between tassels and ears, except at the two-rank level where the ear apical meristem had a significantly smaller diameter than corresponding two-ranked tassels. Within individual inflorescences, spp in different ranks enlarged at comparable rates, although the rates from one ear to the next along the stem differed. In both tassels and ears, spp divide to form paired sessile and pedicellate spikelet primordia when the spp is 150 μm wide; ear axes are significantly thicker than tassel axes at the time of bifurcation. The similarities in growth between ear and tassel primordia lend further support to the hypothesis that both the maize tassel and ear are derived from a common inflorescence pattern, a pattern shared with teosinte. Inflorescence primordial growth also suggests that a key character difference between teosinte and maize, distichous vs. polystichous arrangement of spikelets, may be related to size of the apical dome and/or rate of primordium production by the apical meristem. There appears to be more than a single morphological event in the shift from vegetative to reproductive growth. The evocation of axillary buds (ears) is independent of, and temporally separated from, the transition to flowering at the primary shoot apex (tassel). 相似文献
2.
Marcela Rosato Amilcar M. Chiavarino Carlos A. Naranjo María J. Puertas Lidia Poggio 《American journal of botany》1996,83(9):1107-1112
We selected genotypes of high and low B chromosome transmission rate (TR) in a native race of maize (Pisingallo) from northwest Argentina. We made 20 female OB male IB and 20 f.IB m.OB crosses. The former (GOm) showed a large variation of B TR, with a mean of TR ± SE = 0.52 ± 0.06, ranging from 0.17 to 0.98. In the latter (GOf) the mean was TR = 0.47 ± 0.02 ranging from 0.31 to 0.58. Plants showing the highest and the lowest TR were selected to constitute the progenitors of the G1 generations. We made 19 f.0B m.2B crosses, studying 24–30 plants per cross. The TR of the high (H) and low (L) lines in Glm (GlmH and GlmL) significantly differed (TRH = 0.65 ± 0.03, TRL = 0.40 ± 0.01), indicating that the H and L lines are different groups. The large variation in male TR suggests that preferential fertilization of gametes carrying B chromosomes does not always occur. We also selected plants showing high and low TR in the progenies of f.lB m.OB crosses (GOf), and made 24 f.1B m.0B crosses, studying 23–30 plants per cross. The TRs of the H and L lines in G1f (GlfH and GlfL) were significantly different (TRH = 0.48 ± 0.025, TRL = 0.40 ± 0.02). The TRs in G0f and G1fL were significantly different (TR = 0.47 ± 0.02 and 0.40 ± 0.02, respectively), while this was not the case between G0f and G1fH. Our results demonstrate the existence of genotypes controlling B TR in this native population of maize. 相似文献
3.
Maize (Zea mays L. subsp.mays) has been identified in archaeological contexts by a high proportion of large cross-shaped phytoliths. Given the numerous races of maize, this study was undertaken to determine if differences below the species level could be noted. It was also designed to see if phytoliths differed in various plant parts at various stages of growth. Several races were grown under experimental conditions. No significant differences were found. Furthermore, few phytoliths alleged to be diagnostic of maize were discovered. Systemic studies of maize and analyses of prehistoric cultivation by means of phytoliths seem not to be as promising as some researchers have argued. 相似文献
4.
Plant architecture is elaborated through the activity of shoot apical meristems (SAMs), which produce repeating units known as phytomers, that are comprised of leaf, node, internode, and axillary bud. Insight into how SAMs function and how individual phytomer components are related to each other can been obtained through characterization of recessive mutants with perturbed shoot development. In this study, we characterized a new mutant to further understand mechanisms underlying shoot development in maize. The filifolium1-0 (ffm1-0) mutants develop narrow leaves on dwarfed shoots. Shoot growth often terminates at the seedling stage from depletion of the SAM, but if plants survive to maturity they are invariably bushy. KN1-like homeobox (KNOX) proteins are inappropriately regulated in mutant apices, adaxial identity is not specified in mutant leaves, and axillary meristems develop precociously. We propose that FFM1 acts to demarcate zones within the SAM so that appropriate fates can be conferred on cells within those zones by other factors. On the basis of the mutant phenotype, we also speculate about different relationships between phytomer components in maize and Arabidopsis. 相似文献
5.
In previous papers we found that the frequency of B chromosomes in native races of maize varies considerably in different populations. Moreover, we found genotypes that control high and low transmission rates (TR) of B chromosomes in the Pisingallo race. In the present work crosses were made to determine whether the genes controlling B-TR are located on the normal chromosome set (As) or on the B chromosomes (Bs). We made female f.0B × male m.2B crosses between and within high (H) and low (L) B-TR groups. The Bs were transmitted on the male side in all cases. The mean B-TR from the progeny of f.0B (H) × m.2B (H) and f.0B (H) × m.2B (L) crosses was significantly higher than that from f.0B (L) × m.2B (L) and f.0B (L) × m.2B (H) crosses. The results show that the B-TR of the crosses corresponds to the H or L B-TR of the 0B female parents irrespective of the Bs of the male parent. This indicates that B-TR is genetically controlled by the 0B female parent and that these genes are located on the A chromosomes. 相似文献
6.
T. Srinivas M. K. Bhashyam Nagin Chand Sila Bhattacharya S. Sreedhara Murthy H. V. Narasimha 《Economic botany》1991,45(4):503-510
Twenty varieties of maize (Zea mays, Poaceae) were studied through 11 attributes in three to seven randomly selected plants of each variety with a view to understanding the effect of cob characters on technologically desirable grain qualities. Canonical discriminant analysis showed thatproductivity (determined by total grain weight/cob, cob diameter and average grain weight) was the most discriminating among varieties followed by round grains fraction (represented by whole top and middle flat grains, number of rows and grain count/surface area), middle flat grains (composed of middle flat grains and grain count/surface area) and shape of the cob (determined by shape index, total grain weight/cob and cob diameter), which accounted for 35.1, 18.3, 12.2, and 9.8% of the total variance, respectively. In the light of these results, tentative norms have been suggested to evolve maize varieties of superior technological properties and yet retain high productivity. A cylindrical cob of large diameter with highest number of grains/area and smallest possible number of rows together constituted an ideal combination to achieve the objectives. Such possibilities in the light of available information are discussed. 相似文献
7.
Twenty-one native populations (1120 individuals) of maize from Northern Argentina were studied. These populations, which belong to 13 native races, were cultivated at different altitudes (80-3620 m). Nineteen of the populations analyzed showed B chromosome (Bs) numerical polymorphism. The frequency of individuals with Bs varied from 0 to 94%. The number of Bs per plant varied from 0 to 8 Bs, with the predominant doses being 0, 1, 2, and 3. Those populations with varying number of Bs showed a positive and statistically significant correlation of mean number of Bs with altitude. The DNA content, in plants without Bs (A-DNA)(2n = 20), of 17 populations of the 21 studied was determined. A 36% variation (5.0-6.8 pg) in A-DNA content was found. A significant negative correlation between A-DNA content and altitude of cultivation and between A-DNA content and mean number of Bs was found. This indicates that there is a close interrelationship between the DNA content of A chromosomes and doses of Bs. These results suggest that there is a maximum limit to the mass of nuclear DNA so that Bs are tolerated as long as this maximum limit is not exceeded. 相似文献
8.
Axillary meristems play a fundamental role in inflorescence architecture. Maize (Zea mays) inflorescences are highly branched panicles because of the production of multiple types of axillary meristems. We used auxin transport inhibitors to show that auxin transport is required for axillary meristem initiation in the maize inflorescence. The phenotype of plants treated with auxin transport inhibitors is very similar to that of barren inflorescence2 (bif2) and barren stalk1 (ba1) mutants, suggesting that these genes function in the same auxin transport pathway. To dissect this pathway, we performed RNA in situ hybridization on plants treated with auxin transport inhibitors. We determined that bif2 is expressed upstream and that ba1 is expressed downstream of auxin transport, enabling us to integrate the genetic and hormonal control of axillary meristem initiation. In addition, treatment of maize inflorescences with auxin transport inhibitors later in development results in the production of single instead of paired spikelets. Paired spikelets are a key feature of the Andropogoneae, a group of over 1000 grasses that includes maize, sorghum, and sugarcane. Because all other grasses bear spikelets singly, these results implicate auxin transport in the evolution of inflorescence architecture. Furthermore, our results provide insight into mechanisms of inflorescence branching that are relevant to all plants. 相似文献
9.
The origin of polystichy in the maize ear and central tassel spike continues to challenge our understanding of evolution in this important crop species. In this paper we tested the hypothesis that the change in phyllotaxy occurs in the region of husk leaf production before the transition to reproductive growth. Young ear or presumptive ear primordia were dissected to examine the transition from distichous husk leaves below the ear through spiral phyllotaxy to the polystichous arrangement of spikelet pair primordia in the young ear. Serial transverse sections were used to document the thickness of successive disks of insertion of lateral primordia and to reconstruct the path of procambial differentiation. The transition in phyllotaxy, though variable, typically occurs in the vegetative zone and is associated with periodic heterogeneity in the thickness of leaf bases and a delay in the development of waves of procambial differentiation into the base of the young ear. 相似文献
10.
Over the course of maize evolution, domestication played a major role in the structural transition of the vegetative and reproductive
characteristics that distinguish it from its closest wild relative, Zea mays subsp. parviglumis (Balsas teosinte). Little is known, however, about impacts of the domestication process on the cellular features of the female
gametophyte and the subsequent reproductive events after fertilization, even though they are essential components of plant
sexual reproduction. In this study, we investigated the developmental and cellular features of the Balsas teosinte female
gametophyte and early developing seed in order to unravel the key structural and evolutionary transitions of the reproductive
process associated with the domestication of the ancestor of maize. Our results show that the female gametophyte of Balsas
teosinte is a variation of the Polygonum type with proliferative antipodal cells and is similar to that of maize. The fertilization
process of Balsas teosinte also is basically similar to domesticated maize. In contrast to maize, many events associated with
the development of the embryo and endosperm appear to be initiated earlier in Balsas teosinte. Our study suggests that the
pattern of female gametophyte development with antipodal proliferation is common among species and subspecies of Zea and evolved before maize domestication. In addition, we propose that the relatively longer duration of the free nuclear endosperm
phase in maize is correlated with the development of a larger fruit (kernel or caryopsis) and with a bigger endosperm compared
with Balsas teosinte. 相似文献
11.
Twenty-four peroxidase isoenzymes were identified by starch gel electrophoresis of 250 varieties of maize. Twelve of these bands corresponded in electrophoretic mobility to bands observed in commercial horseradish peroxidase. Maize tissues varied greatly in isoenzyme pattern, many tissues having a characteristic and distinguishing complement. Ontogenetic variations were observed for the leaf blade, leaf sheath, and internodes during maturation, and were related to the rates of tissue enlargement. Genetic studies of two isoenzymes, C10 and C20, indicated that they were conditioned by alleles of a single locus, here designated Px1. 相似文献
12.
The course of development during germination in the dark at21{diaeresis} was followed for five hybrids of Zea mays andtheir immediate parents of flint or dent type by dissectingand weighing daily the endosperm, scutellum and embryo, whichincluded the radicle, plumule, coleoptile and coleorrhiza. Overall triplets there were detectable losses in scutellum weightby the third day from water imbibition, but already the embryoswere gaining weight, the rate being fastest for the hybrid suchthat by the sixth day the mean embryo of the hybrid was some40 per cent larger. The expansion of the radicle and the initial development ofthe root system was again greater in the hybrid where the advantagewas in the rate of cell division rather than the number of meristematiccells. Employing solution culture procedures and greenhouse conditionsthe effects of excising the endosperm on the second day werefollowed. By the ninth day the hybrid plants, irrespective ofendosperm removal, weighed more than those of their parents.By the time the shoot of the hybrid was becoming photosyntheticallyactive, differences in favour of the hybrid were much largerfor plants without endosperm. Treating the grains with varying concentrations of gibberellin(GAs, kinetin, kaurene (a possible precursor for gibberellinsynthesis) and two inhibitors of gibberellin synthesis (CCCand AMO-1618) showed no consistent preferential effects on thegrowth of the embryo within a triplet. It is concluded that hybrid vigour is initiated by the greaterpotential of the hybrid for embryo development and a more effectiveutilization of reserve materials. Once the shoot emergesandbecomes photosynthetically active the better performance ofthe hybrid is primarily dependent on increases in the net assimilationrate or leaf area ratio. 相似文献
13.
Genomic formulae, fertility, chromosome pairing, and the cryptic intergenomic pairing (induced by using diluted colchicine solution) were analysed in the tri-hybrid (MDP), obtained by crossing DP40 (2n=40, which was inferred in previous studies to have originated from the fusion of an unreduced gamete of Zea diploperennis with a normal gamete of Z. perennis) with the maize inbred line Zm40 (2n=40). MDP (2n=40) showed a higher fertility (90% of the seeds are viable) than Zm40 (60%) and DP40 (80%). A regular migration of 20 chromosomes to each pole occurred in 92% of the cells in anaphase I, while bridges were observed in the other 8% of the cells. When Zm40 was used as female of the crossing (Zm40 x DP40), ears were similar to corn. Conversely, ears resembled those of the wild species when cytoplasm was donoured by Zd. Then, it can be stated the existence of cytoplasmic influence on MDP ear type. MDP had almost no I or III, with an average of 0.04I + 10.90II + 0.01III + 4.50IV. The most frequent meiotic configuration was 10II + 5IV (43.93% of the cells). On average, 33.81 chiasmata/cell were observed (17.34, 0.05 and 16.42 average numbers of chiasmata/cell in bivalents, trivalents and tetravalents, respectively). It can be inferred that the 5IV were the product of homoeologous chromosome pairing of A genomes from the three species. On the other hand, the 10II configuration suggests separate pairing of the 5 homologous B chromosomes from maize and the 5 homoeologous B chromosomes from Zp and Zd. 相似文献
14.
Early effects of gibberellic acid (GA3) (1–4 h treatment) on the ion ratios in a dwarf maize mutant (Zea mays L. d
1) showing normal growth after hormone treatment, have been investigated by electron microprobe analysis. GA3 exerts a different effect on the ion ratios in plastids, cytoplasm and vacuoles in short term experiments. The Cl content of chloroplasts and cytoplasm increases without a lag phase after GA3 treatment. The K content of plastids increases after a lag phase of 2 h, whereas in the cytoplasm an increase can be observed immediately after GA3 addition. The hormone has only little influence on the Ca content of the cell compartments investigated. Control experiments with water and the physiologically inactive GA3 methylester confirm the specifity of the short-term actions of GA3 on the ion ratios. The primary action of GA3 at the membrane level is discussed. 相似文献
15.
The evolutionary history of maize (Zea mays subsp. mays) is of general interest because of its economic and scientific importance. Here we show that many cellular traits described previously in developing caryopses of maize are also seen in its wild progenitor teosinte (Zea mays subsp. parviglumis). These features, each with a possible role in development, include (1) an early programmed cell death in the maternal placento-chalazal (P-C) layer that may lead to increased hydrolytic conductance to the developing seed; (2) accumulation of phenolics and flavonoids in the P-C layer that may be related to antimicrobial activity; (3) formation of wall ingrowths in the basal endosperm transfer layer (BETL); (4) localization of cell wall invertase in the BETL, which is attributed to the increased transport capacity of photosynthates to the sink; and (5) endoreduplication in endosperm nuclei suggested to contribute to increased gene expression and greater sink capacity of the developing seed. In maize caryopsis, these cellular traits have been previously attributed to domestication and selection for larger seed size and vigor. Given the conservation of the entire cellular program in developing teosinte caryopses described here, we suggest that these traits evolved independently of domestication and predate human selection pressure. 相似文献
16.
Zinc deficiency decreased pollen viability in maize (Zea mays L. cv. G2) grown in sand culture. On restoring normal zinc supply to zinc-deficient plants before the pollen mother cell stage of anther development, the vegetative yield of plants and pollen fertility could be recovered to a large extent, but the recovery treatment was not effective when given after the release of microspores from the tetrads. If zinc deficiency was induced prior to microsporogenesis it did not significantly affect vegetative yield and ovule fertility, but decreased the fertility of pollen grains, even of those which visibly appeared normal. If the deficiency was induced after the release of microspores from the tetrads, not only vegetative yield and ovule fertility but pollen fertility also remained unaffected. 相似文献
17.
Axillary meristems, which give rise to branches and flowers, play a critical role in plant architecture and reproduction. To understand how axillary meristems initiate, we have screened for mutants with defects in axillary meristem initiation to uncover the genes controlling this process. These mutants, called the barren class of mutants in maize (Zea mays), have defects in axillary meristem initiation during both vegetative and reproductive development. Here, we identify and characterize a new member of the barren class of mutants named Developmental disaster1 (Dvd1), due to the pleiotropic effects of the mutation. Similar to the barren mutants, Dvd1 mutants have fewer branches, spikelets, florets, and floral organs in the inflorescence due to defects in the initiation of axillary meristems. Furthermore, double mutant analysis with teosinte branched1 shows that dvd1 also functions in axillary meristems during vegetative development. However, unlike the barren mutants, Dvd1 mutants are semidwarf due to the production of shorter internodes, and they produce leaves in the inflorescence due to the outgrowth of bract leaf primordia. The suite of defects seen in Dvd1 mutants, together with the genetic interaction of Dvd1 with barren inflorescence2, suggests that dvd1 is a novel regulator of axillary meristem and internode development. 相似文献
18.
The concentration of free radicals in different parts of theroot system and the stem of 130, 158 and 165 d old maize plantswere measured. The highest concentrations of free radicals werefound in the tissue of the primary root and in the adventitiousroots of the 1st and 2nd nodes. In the stem tissues, the highestconcentration of free radicals was found in the tissues of the14th to 15th internode. The concentration of free radicals inthe tissues of the nodal roots decreased with increasing nodenumber, whereas in the tissues of the overground stem it increasedwith internode number. This pattern may be correlated with themetabolic activity of tissues. 相似文献
19.
Controlled cell death is vital for many physiological processes in plants, such as xylem development, the hypersensitive response (HR), and senescence; however, the pathways governing cell death are incompletely understood. Studies of mutants that display a cell-death phenotype have greatly contributed to our knowledge of how this process is regulated. The maize camouflage1 (cf1) mutant displays the novel phenotype of cell-specific death of bundle sheath (BS) cells in discrete yellow leaf tissues. To investigate the BS cell death in cf1 mutants, we characterized potential underlying factors. Hydrogen peroxide (H(2)O(2)) is known to be involved in many cell-death events in plants, including the HR. However, in vivo staining found no accumulation of H(2)O(2) in cf1 mutant leaves. Additionally, genetic analyses determined that functional chloroplasts are required for cf1 BS cell death. These results demonstrate that cf1 BS cell death occurs via a distinct pathway from that seen in a functionally related maize mutant or in the HR, suggesting that cell death in maize leaves can be caused by multiple mechanisms. 相似文献
20.
Frictional resistance to a penetrating body can account for more than 80% of the total resistance to penetration of soil. We measured the frictional resistance between growing root caps of maize and pea and ground and smooth glass surfaces, which was linearly correlated to load, allowing calculation of the coefficient of kinetic friction and adhesion. Coefficients of kinetic friction between the root caps and the ground and smooth glass surfaces were approximately 0.04 and 0.02, respectively, the first measurements of the frictional properties of root tips at rates approaching those of root elongation, and an order of magnitude smaller than those previously reported. Results suggest that roots are well designed for penetrating soil, and encounter only small frictional resistance on the root cap. These data provide important parameters for modelling soil stresses and deformation around growing root tips. 相似文献