首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The membrane-bound NO reductase from the hyperthermophilic denitrifying archaeon Pyrobaculum aerophilum was purified to homogeneity. The enzyme displays MQH2:NO oxidoreductase (qNOR) activity, consists of a single subunit, and contains heme and nonheme iron in a 2:1 ratio. The combined results of EPR, resonance Raman, and UV-visible spectroscopy show that one of the hemes is bis-His-coordinated low spin (gz = 3.015; gy = 2.226; gx = 1.45), whereas the other heme adopts a high spin configuration. The enzyme also contains one nonheme iron center, which in the oxidized enzyme is antiferromagnetically coupled to the high spin heme. This binuclear high spin heme/nonheme iron center is EPR-silent and the site of NO reduction. The reduced high spin heme is bound to a neutral histidine and can bind CO to form of a low spin complex. The oxidized high spin heme binds NO, yielding a ferric nitrosyl complex, the intermediate causing the commonly found substrate inhibition in NO reductases (Ki(NO) = 7 microm). The qNOR as present in the membrane is, in contrast to the purified enzyme, quite thermostable, incubation at 100 degrees C for 86 min leading to 50% inhibition. The pure enzyme lacks heme b and instead contains stoichiometric amounts of hemes Op1 and Op2, ethenylgeranylgeranyl and hydroxyethylgeranylgeranyl derivatives of heme b, respectively. The archaeal qNOR is the first example of a NO reductase, which contains modified hemes reminiscent of cytochrome bo3 and aa3 oxidases. This report is the first describing the purification and structural and spectroscopic properties of a thermostable NO reductase.  相似文献   

2.
Hydroxylamine oxidoreductase (HAO) from the autotrophic nitrifying bacterium Nitrosomonas europaea catalyzes the oxidation of NH2OH to NO2-. The enzyme contains eight hemes per subunit which participate in catalysis and electron transport. NO is found to bind to the enzyme and inhibit electron flow to the acceptor protein, cytochrome c554. NO is found to oxidize either partially or fully reduced HAO, but NO will not reduce ferric HAO. Since NO can be reduced but not oxidized to product by HAO, NO is not considered to be a long-lived intermediate in the catalytic mechanism. Substrate oxidation occurs in the presence of bound NO or cyanide, suggesting a second interaction site for substrate with HAO and providing a means for recovery of the NO-inhibited form of the enzyme. Upon addition of NO to oxidized HAO, the integer-spin EPR signal from the active site vanishes, an IR band from NO appears at 1920 cm(-1), and a diamagnetic quadrupole iron doublet appears in M?ssbauer spectroscopy with delta = 0.06 mm/s and DeltaEq = 2.1 mm/s. The NO stretching frequency and M?ssbauer parameters are characteristic of an [FeNO]6 heme complex. New M?ssbauer data on ferric myoglobin-NO are also presented for comparison. The results indicate that NO binds to heme P460 and that the loss of the integer-spin EPR signal is due to the conversion of heme P460 to a diamagnetic S = 0 state and concomitant loss of magnetic interaction with neighboring heme 6. In previous studies where the heme P460-heme 6 interaction was affected by substrate or cyanide binding, a signal attributable to heme 6 was not observable. In contrast, in this work, the NO-induced loss of the signal is accompanied by the appearance of a previously unobserved large g(max) (or HALS) low-spin EPR signal from heme 6.  相似文献   

3.
The molecular biology and biochemistry of denitrification in gram-negative bacteria has been studied extensively. However, little is known about this process in gram-positive bacteria. We have purified the NO reductase from the cytoplasmic membrane of the gram-positive bacterium Bacillus azotoformans. The purified enzyme consists of two subunits with apparent molecular masses of 16 and 40 kDa based on SDS-PAGE. Analytical and spectroscopic determinations revealed the presence of one non-heme iron, two copper atoms and of two b-type hemes per enzyme complex. Heme c was absent. Using EPR and UV-visible spectroscopy, it was determined that one of the hemes is a low-spin heme b, in which the two axial histidine imidazole planes are positioned at an angle of 60-70 degrees. The second heme b is high-spin binding CO in the reduced state. The high-spin heme center and the non-heme iron are EPR silent. They are proposed to form a binuclear center where reduction of NO occurs. There are two novel features of this enzyme that distinguish it from other NO reductases. First, the enzyme contains copper in form of copper A, an electron carrier up to now only detected in cytochrome oxidases and nitrous oxide reductases. Second, the enzyme uses menaquinol as electron donor, whereas cytochrome c, which is the substrate of other NO reductases, is not used. Copper A and both hemes are reducible by menaquinol. This new NO reductase is thus a menaquinol:NO oxidoreductase. With respect to its prosthetic groups the B. azotoformans NO reductase is a true hybrid between copper A containing cytochrome oxidases and NO reductases present in gram-negative bacteria. It may represent the most ancient "omnipotent" progenitor of the family of heme-copper oxidases.  相似文献   

4.
The reaction between reduced Pseudomonas nitrite reductase and nitrite has been studied by stopped-flow and rapid-freezing EPR spectroscopy. The interpretation of the kinetics at pH 8.0 is consistent with the following reaction mechanism (where k1 and k3 much greater than k2). [formula: see text] The bimolecular step (Step 1) is very fast, being lost in the dead time of a rapid mixing apparatus; the stoichiometry of the complex has been estimated to correspond to one NO2- molecule/heme d1. The final species is the fully reduced enzyme with NO bound to heme d1; and at all concentrations of nitrite, there is no evidence for dissociation of NO or for further reduction of NO to N2O. Step 2 is assigned to an internal electron transfer from heme c to reduced NO-bound heme d1 occurring with a rate constant of 1 s-1; this rate is comparable to the rate of internal electron transfer previously determined when reducing the oxidized enzyme with azurin or cytochrome c551. When heme d1 is NO-bound, the rate at which heme c can accept electrons from ascorbate is remarkably increased as compared to the oxidized enzyme, suggesting an increase in the redox potential of the latter heme.  相似文献   

5.
Respiratory nitric oxide reductase (NOR) was purified from membrane extract of Pseudomonas (Ps.) nautica cells to homogeneity as judged by polyacrylamide gel electrophoresis. The purified protein is a heterodimer with subunits of molecular masses of 54 and 18 kDa. The gene encoding both subunits was cloned and sequenced. The amino acid sequence shows strong homology with enzymes of the cNOR class. Iron/heme determinations show that one heme c is present in the small subunit (NORC) and that approximately two heme b and one non-heme iron are associated with the large subunit (NORB), in agreement with the available data for enzymes of the cNOR class. Mo?ssbauer characterization of the as-purified, ascorbate-reduced, and dithionite-reduced enzyme confirms the presence of three heme groups (the catalytic heme b(3) and the electron transfer heme b and heme c) and one redox-active non-heme Fe (Fe(B)). Consistent with results obtained for other cNORs, heme c and heme b in Ps. nautica cNOR were found to be low-spin while Fe(B) was found to be high-spin. Unexpectedly, as opposed to the presumed high-spin state for heme b(3), the Mo?ssbauer data demonstrate unambiguously that heme b(3) is, in fact, low-spin in both ferric and ferrous states, suggesting that heme b(3) is six-coordinated regardless of its oxidation state. EPR spectroscopic measurements of the as-purified enzyme show resonances at the g ~ 6 and g ~ 2-3 regions very similar to those reported previously for other cNORs. The signals at g = 3.60, 2.99, 2.26, and 1.43 are attributed to the two charge-transfer low-spin ferric heme c and heme b. Previously, resonances at the g ~ 6 region were assigned to a small quantity of uncoupled high-spin Fe(III) heme b(3). This assignment is now questionable because heme b(3) is low-spin. On the basis of our spectroscopic data, we argue that the g = 6.34 signal is likely arising from a spin-spin coupled binuclear center comprising the low-spin Fe(III) heme b(3) and the high-spin Fe(B)(III). Activity assays performed under various reducing conditions indicate that heme b(3) has to be reduced for the enzyme to be active. But, from an energetic point of view, the formation of a ferrous heme-NO as an initial reaction intermediate for NO reduction is disfavored because heme [FeNO](7) is a stable product. We suspect that the presence of a sixth ligand in the Fe(II)-heme b(3) may weaken its affinity for NO and thus promotes, in the first catalytic step, binding of NO at the Fe(B)(II) site. The function of heme b(3) would then be to orient the Fe(B)-bound NO molecules for the formation of the N-N bond and to provide reducing equivalents for NO reduction.  相似文献   

6.
Endogenously produced nitric oxide (NO) controls oxygen consumption by inhibiting cytochrome c oxidase, the terminal electron acceptor of the mitochondrial electron transport chain. The oxygen-binding site of the enzyme is an iron/copper (haem a3/CuB) binuclear centre. At high substrate (ferrocytochrome c) concentrations, NO binds reversibly to the reduced iron in competition with oxygen. At low substrate concentrations, NO binds to the oxidized copper. Inhibition at the haem iron site is relieved by dissociation of the NO from the reduced iron. Inhibition at the copper site is relieved by oxidation of the bound NO and subsequent dissociation of nitrite from the enzyme. Therefore, NO can be a substrate, inhibitor or effector of cytochrome oxidase, depending on cellular conditions.  相似文献   

7.
Manganese peroxidase (MnP) is a component of the lignin degradation system of the basidiomycetous fungus, Phanerochaete chrysosporium. This novel MnII-dependent extracellular enzyme (Mr = 46,000) contains a single protoporphyrin IX prosthetic group and oxidizes phenolic lignin model compounds as well as a variety of other substrates. To elucidate the heme environment of this enzyme, we have studied its electron paramagnetic resonance and resonance Raman spectroscopic properties. These studies indicate that the native enzyme is predominantly in the high-spin ferric form and has a histidine as fifth ligand. The reduced enzyme has a high-spin, pentacoordinate ferrous heme. Fluoride and cyanide readily bind to the sixth coordination position of the heme iron in the native form, thereby changing MnP into a typical high-spin, hexacoordinate fluoro adduct or a low-spin, hexacoordinate cyano adduct, respectively. EPR spectra of 14NO- and 15NO-adducts of ferrous MnP were compared with those of horseradish peroxidase (HRP); the presence of a proximal histidine ligand was confirmed from the pattern of superhyperfine splittings of the NO signals centered at g approximately equal to 2.005. The appearance of the FeII-His stretch at approximately 240 cm-1 and its apparent lack of deuterium sensitivity suggest that the N delta proton of the proximal histidine of the enzyme is more strongly hydrogen bonded than that of oxygen carrier globins and that this imidazole ligand may be described as having a comparatively strong anionic character. Although resonance Raman frequencies for the spin- and coordination-state marker bands of native MnP, nu 3 (1487), nu 19 (1565), and nu 10 (1622 cm-1), do not fall into frequency regions expected for typical penta- or hexacoordinate high-spin ferric heme complexes, ligation of fluoride produces frequency shifts of these bands very similar to those observed for cytochrome c peroxidase and HRP. Hence, these data strongly suggest that the iron in native MnP is predominantly high-spin pentacoordinate. Analysis of the Raman frequencies indicates that the dx2-y2 orbital of the native enzyme is at higher energy than that of metmyoglobin. These features of the heme in MnP must be favorable for the peroxidase catalytic mechanism involving oxidation of the heme iron to FeIV. Consequently, it is most likely that the heme environment of MnP resembles those of HRP, cytochrome c peroxidase, and lignin peroxidase.  相似文献   

8.
We report the first resonance Raman scattering studies of NO-bound cytochrome c oxidase. Resonance Raman scattering and optical absorption spectra have been obtained on the fully reduced enzyme (a2+, a2+(3) NO) and the mixed valence enzyme (a3+, a2+(3) NO). Clear vibrational frequency shifts are detected in the lines associated with cytochrome a in comparing the two redox states. With 441.6 nm excitation the fully reduced preparation yields a spectrum similar to that of carbon monoxide-bound cytochrome c oxidase and is dominated by the spectrum of reduced cytochrome a. In contrast, in the mixed valence preparation no contributions from reduced cytochrome a are evident in the spectrum, verifying that this heme is no longer in the Fe2+ state. In the mixed valence NO-bound samples, a line appears at approximately 545 cm-1, a frequency similar to that found in NO-bound hemoglobin and myoglobin and assigned as an Fe-N-O-bending mode in those proteins. We do not detect this line in the spectrum of the fully reduced NO-bound enzyme. The carbonyl line of the cytochrome a3 heme formyl group in the fully reduced NO-bound enzyme appears at approximately equal to 1666 cm-1 in the resonance Raman spectrum. In the mixed valence NO-bound preparation the frequency of the carbonyl line increases by 1.2 cm-1 to approximately equal to 1667 cm-1. Thus, modes in cytochrome a2+(3) NO are sensitive to the redox state of the cytochrome a and/or CuA centers. We propose that the redox sensitivity of the formyl mode and the Fe-N-O mode results from an interaction between cytochrome a2+(3) (NO) and the cytochrome a-CuA pair, and is linked to the cytochrome a3 (NO) by the coupling between CuB and the NO-bound cytochrome a3 heme.  相似文献   

9.
Cytochrome cd(1) (cd(1)NIR) from Paracoccus pantotrophus, which is both a nitrite reductase and an oxidase, was reduced by ascorbate plus hexaamineruthenium(III) chloride on a relatively slow time scale (hours required for complete reduction). Visible absorption spectroscopy showed that mixing of ascorbate-reduced enzyme with oxygen at pH = 6.0 resulted in the rapid oxidation of both types of heme center in the enzyme with a linear dependence on oxygen concentration. Subsequent changes on a longer time scale reflected the formation and decay of partially reduced oxygen species bound to the d(1) heme iron. Parallel freeze-quench experiments allowed the X-band electron paramagnetic resonance (EPR) spectrum of the enzyme to be recorded at various times after mixing with oxygen. On the same millisecond time scale that simultaneous oxidation of both heme centers was seen in the optical experiments, two new EPR signals were observed. Both of these are assigned to oxidized heme c and resemble signals from the cytochrome c domain of a "semi-apo" form of the enzyme for which histidine/methionine coordination was demonstrated spectroscopically. These observations suggests that structural changes take around the heme c center that lead to either histidine/methionine axial ligation or a different stereochemistry of bis-histidine axial ligation than that found in the as prepared enzyme. At this stage in the reaction no EPR signal could be ascribed to Fe(III) d(1) heme. Rather, a radical species, which is tentatively assigned to an amino acid radical proximal to the d(1) heme iron in the Fe(IV)-oxo state, was seen. The kinetics of decay of this radical species match the generation of a new form of the Fe(III) d(1) heme, probably representing an OH(-)-bound species. This sequence of events is interpreted in terms of a concerted two-electron reduction of oxygen to bound peroxide, which is immediately cleaved to yield water and an Fe(IV)-oxo species plus the radical. Two electrons from ascorbate are subsequently transferred to the d(1) heme active site via heme c to reduce both the radical and the Fe(IV)-oxo species to Fe(III)-OH(-) for completion of a catalytic cycle.  相似文献   

10.
Nitric oxide (NO) is synthesized in mammals where it acts as a signal molecule for neurotransmission, vasorelaxation, and cytotoxicity. The NO synthases isolated from brain and cytokine-activated macrophages are FAD- and FMN-containing flavoproteins that display considerable sequence homology to NADPH-cytochrome P-450 reductase. However, the nature of their catalytic centers is unknown. We have found that both isoenzymes contain 2 mol of iron-protoporphyrin IX/mol of enzyme homodimer. The optical and EPR spectroscopic properties of the heme groups were found to be remarkably similar to those of high-spin cytochrome P-450. The heme iron in the resting NO synthase is ferric and five-coordinate with a cysteine thiolate as the proximal axial ligand. In addition, the EPR spectra of the resting NO synthases contained a free radical signal attributable to a bound flavin semiquinone that appeared to interact magnetically with the ferric heme iron. NO production was inhibited by carbon monoxide, implying a role for the heme groups in catalysis.  相似文献   

11.
Purified prostaglandin H synthase (EC 1.14.99.1) apoprotein, a polypeptide of 72 kDA, was titrated with hemin and EPR spectra of high-spin ferric heme were observed at liquid-helium temperature. With up to one hemin per polypeptide, a signal at g = 6.6 and 5.4, rhombicity 7.5%, evolved owing to specifically bound, catalytic active heme. At higher heme/polypeptide ratios signals at g = 6.3 and 5.9 were observed which were assigned to non-specific heme with no catalytic function. In microsomes from ram seminal vesicles the native enzyme showed the signal at g = 6.7 and 5.2 which could not be increased by the addition of hemin. Cyanide, an inhibitor of the enzyme, reacted at lower concentrations with the specific heme abolishing its signal at g = 6.6 and 5.4. Higher concentrations of cyanide were needed for the disappearance of the signal of non-specific heme. The reduced enzyme reacted with NO and formed two types of NO complexes. A transient complex, with a rhombic signal at gx = 2.07, gz = 2.01 and gy = 1.97, was assigned to a six-coordinate complex. The final, stable complex showed an axial signal at g = 2.12 and g = 2.001 and was assigned to a five-coordinate complex, where the protein ligand was no longer bound to the heme iron. Neither type of signal showed a hyperfine splitting from nitrogen of histidine indicating the absence of a histidine-iron bond in the enzyme. From these results and the similarity of the EPR signal at g = 6.6 and 5.4 to the signal of native catalase (EC 1.11.1.6) we speculated that tyrosinate might be the endogenous ligand of the heme in prostaglandin H synthase.  相似文献   

12.
Kinetics of the reaction of peroxynitrite with ferric cytochrome c in the absence and presence of bicarbonate was studied. It was found that the heme iron in ferric cytochrome c does not react directly with peroxynitrite. The rates of the absorbance changes in the Soret region of cytochrome c spectrum caused by peroxynitrite or peroxynitrite/bicarbonate were the same as the rate of spontaneous isomerization of peroxynitrite or as the rate of the reaction of peroxynitrite with bicarbonate, respectively. This means that intermediate products of peroxynitrite decomposition, (.)OH/(.)NO(2) or, in the presence of bicarbonate, CO(3)(-)(.)/(.)NO(2), are the species responsible for the absorbance changes in the Soret band of cytochrome c. Modifications of the heme center of cytochrome c by radiolytically produced radicals, (.)OH, (.)NO(2) or CO(3)(-)(.), were also studied. The absorbance changes in the Soret band caused by radiolytically produced (.)OH or CO(3)(-)(.) were much more significant that those observed after peroxynitrite treatment, compared under similar concentrations of radicals. (.)NO(2) produced radiolytically did not interact with the heme center of cytochrome c. Cytochrome c exhibited an increased peroxidase-like activity after reaction with peroxynitrite as well as with radiolytically produced (.)OH, (.)NO(2) or CO(3)(-)(.) radicals. This means that modification of protein structure: oxidation of amino acids and/or tyrosine nitration, facilitates reaction of H(2)O(2) with the heme iron of cytochrome c, followed by reaction with the second substrate.  相似文献   

13.
The complete iron atom vibrational spectrum has been obtained by refinement of normal mode calculations to nuclear inelastic x-ray absorption data from (nitrosyl)iron(II)tetraphenylporphyrin, FeTPP(NO), a useful model for heme dynamics in myoglobin and other heme proteins. Nuclear resonance vibrational spectroscopy (NRVS) provides a direct measurement of the frequency and iron amplitude for all normal modes involving significant displacement of (57)Fe. The NRVS measurements on isotopically enriched single crystals permit determination of heme in-plane and out-of-plane modes. Excellent agreement between the calculated and experimental values of frequency and iron amplitude for each mode is achieved by a force-field refinement. Significantly, we find that the presence of the phenyl groups and the NO ligand leads to substantial mixing of the porphyrin core modes. This first picture of the entire iron vibrational density of states for a porphyrin compound provides an improved model for the role of iron atom dynamics in the biological functioning of heme proteins.  相似文献   

14.
Chlorite dismutase (EC 1.13.11.49), an enzyme capable of reducing chlorite to chloride while producing molecular oxygen, has been characterized using EPR and optical spectroscopy. The EPR spectrum of GR-1 chlorite dismutase shows two different high-spin ferric heme species, which we have designated 'narrow' (gx,y,z = 6.24, 5.42, 2.00) and 'broad' (gz,y,x = 6.70, 5.02, 2.00). Spectroscopic evidence is presented for a proximal histidine co-ordinating the heme iron center of the enzyme. The UV/visible spectrum of the ferrous enzyme and EPR spectra of the ferric hydroxide and imidazole adducts are characteristic of a heme protein with an axial histidine co-ordinating the iron. Furthermore, the substrate analogs nitrite and hydrogen peroxide have been found to bind to ferric chlorite dismutase. EPR spectroscopy of the hydrogen peroxide adduct shows the loss of both high-spin and low-spin ferric signals and the appearance of a sharp radical signal. The NO adduct of the ferrous enzyme exhibits a low-spin EPR signal typical of a five-co-ordinate heme iron nitrosyl adduct. It seems that the bond between the proximal histidine and the iron is weak and can be broken upon binding of NO. The midpoint potential, Em(Fe3+/2+) = -23 mV, of chlorite dismutase is higher than for most heme enzymes. The spectroscopic features and redox properties of chlorite dismutase are more similar to the gas-sensing hemoproteins, such as guanylate cyclase and the globins, than to the heme enzymes.  相似文献   

15.
To investigate the nitrite reducing activity of microperoxidases (mps) in the presence of methyl viologen and dithionite, the fragments C14-K22 (mp9), V11-L32 (mp22), and G1-M65 (mp65) containing heme were prepared by enzymatic hydrolysis of commercially equine heart cytochrome c (Cyt c), in which His is axially coordinated to heme iron, and acts as its fifth ligand. The nitrite reducing activity of mps was measured under anaerobic condition, and the nitrite reducing activity of mps increased with the cutting of the peptide chain. The activity of the shortest nonapeptide mp9 was approximately 120-fold that of Cyt c (104 amino acid residues) and 3.2-fold that of nitrite reductase (EC 1.7.7.1) from Escherichia coli. In the nitrite reduction by mp, nitrite was completely reduced to ammonia. We presumed that ferrous mps reduced NO2- to NO by donating one electron, the NO was completely reduced to NH4+ under anaerobic condition via ferrous-NO complexes as a reaction intermediate using visible spectra and ESR spectra, and this overall reaction was a 6-electron and 8-proton reduction. Sepharose-immobilized mp9 had a nitrite reducing activity similar to that of mp9 in solution, and the resin retained the activity after five uses and even 1-year storage. The mp will be able to use as a substitute for nitrite reductase.  相似文献   

16.
We have used optical, EPR and M?ssbauer spectroscopies to study the formation of heme-NO complex upon the addition of nitrite to reduced cytochrome cd1 from Thiobacillus denitrificans. The reduced d1 heme binds NO under both alkaline and acidic conditions, but the binding of NO to the reduced c heme was strongly pH-dependent. The M?ssbauer data showed unambiguously that at pH 7.6 the c heme does not complex NO, whereas at pH 5.8 approximately half of the reduced c heme binds NO. This observation was confirmed by EPR studies, which showed that the spin concentration of the heme-NO EPR signal increased from 2 spins/molecule at pH 8.0 to approximately 3 spins/molecule at pH 5.8. Optical absorption study also showed strong pH dependence in the binding of NO to the reduced c heme. We have also analyzed the M?ssbauer spectra of the ferrous d1 heme-NO complex using a spin-Hamiltonian formalism. The magnetic hyperfine coupling tensor was found to be consistent with the unpaired electron residing on a sigma orbital.  相似文献   

17.
Cytochrome cd(1) nitrite reductase is a bifunctional enzyme, which can catalyze the 1-electron reduction of nitrite to nitric oxide and the 4-electron reduction of dioxygen to water. Here we describe the structure of reduced nitrite reductase, crystallized under anaerobic conditions. The structure reveals substantial domain rearrangements with the c domain rotated by 60 degrees and shifted by approximately 20 A compared with previously known structures from crystals grown under oxidizing conditions. This alternative conformation gives rise to different electron transfer routes between the c and d(1) domains and points to the involvement of elements of very large structural changes in the function in this enzyme. In the present structure, the c heme has a His-69/Met-106 ligation, and this ligation does not change upon oxidation in the crystal. The d(1) heme is penta-coordinated, and the d(1) iron is displaced from the heme plane by 0.5 A toward the proximal ligand, His-200. After oxidation, the iron moves into the d(1) heme plane. A surprising finding is that although reduced nitrite reductase can be readily oxidized by dioxygen in the new crystal, it cannot turnover with its other substrate, nitrite. The results suggest that the rearrangement of the domains affects catalysis and substrate selectivity.  相似文献   

18.
Studying the structure and regulation of soluble guanylyl cyclase   总被引:4,自引:0,他引:4  
Soluble guanylyl cyclase acts as the receptor for the signaling molecule nitric oxide. The enzyme consists of two different subunits. Each subunit shows the cyclase catalytic domain, which is also conserved in the membrane-bound guanylyl cyclases and the adenylyl cyclases. The N-terminal regions of the subunits are responsible for binding of the prosthetic heme group of the enzyme, which is required for the stimulatory effect of nitric oxide (NO). The five-coordinated ferrous heme displays a histidine as the axial ligand; activation of soluble guanylyl cyclase by NO is initiated by binding of NO to the heme iron and proceeds via breaking of the histidine-to-iron bond. Recently, a novel pharmacological and possibly physiological principle of guanylyl cyclase sensitization was demonstrated. The substance YC-1 has been shown to activate the enzyme independent of NO, to potentiate the effect of submaximally effective NO concentrations, and to turn carbon monoxide into an effective activator of soluble guanylyl cyclase.  相似文献   

19.
Determinations of iron content and dry-weight measurements on samples of Pseudomonas cytochrome oxidase were coupled with sodium dodecyl sulphate/polyacrylamide-gel-electrophoresis studies of both the native protein and covalently cross-linked oligomers in order to estimate the enzyme's molecular weight and spectral absorption coefficients. A value of epsilon(ox.) (410)=282x10(3) litre.mol(-1).cm(-1) was calculated for a dimeric protein molecule having a total molecular weight of 122000 (based on iron analysis). Steady-state kinetic observations of the enzyme-catalysed oxidation of reduced azurin by nitrite indicated a marked increase in enzyme inactivation as the pH was raised from 5.7 to 7.2. Since NO, a product of the nitrite reductase activity of Pseudomonas cytochrome oxidase, is known to bind to the enzyme, a study was undertaken to try to assess the potential of NO as a product inhibitor. Investigations showed that samples of the oxidized protein at pH values 4, 5 and 6 bound NO to both haem c and d(1) components, but oxidized enzyme samples at pH7 and above formed their reduced ligand-bound forms when placed under an atmosphere of the gas. Ascorbate-reduced enzyme samples at pH4, 5, 6 and 7 were also found to bind NO at both haem components, although at pH7 the rate of haem c binding was very slow. At pH8 and 9 only the ferrohaem d(1) bound NO. Titration experiments on the reduced protein over the pH range 5-7, with nitrite as a precursor of NO, showed that the haem d(1) had a much higher affinity than the haem c: experiments at pH5.2 and 5.9 with NO-equilibrated solutions revealed the same pattern of behaviour with the oxidized enzyme.  相似文献   

20.
Photodissociation of cytochrome oxidase-nitric oxide at low temperatures   总被引:1,自引:0,他引:1  
Spectrophotometric studies revealed the irreversible photodissociation of reduced cytochrome oxidase-nitric oxide (NO) at 5 K. The dissociated NO recombined as the sample temperature was raised, and the half-recombination temperature was 65 K. The photodissociation at 5K was also confirmed by a change in the EPR spectrum; that is, ferroheme a-NO signals at gx=2.09 and gm=2.006 were replaced by a new signal at gm=2.03, and this change was reversed at the temperature of liquid nitrogen. Comparison of such behavior with that of cytochrome oxidase-carbon monoxide led us to propose that on photodissociation of NO from heme iron, the NO was trapped specifically at a site near the heme iron producing a new paramagnetic species. Its identification will require further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号