首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf morphology has been the subject of several studies in NoNothofagur especially in the context of the taxonomy and evolutionary relationships of taxa within the genus, which are still controversial. The leaf architecture of 8 dombgi , N. betuloides and N. nitida , dominant trees of temperate forest in southern South America, is compared using venation patterns, landmarks, and entire outlines. In terms of venation patterns N. dombgi and N. betuloides were more similar to each other than to N. nitida. Similar results were found when differences in shape were analysed by discriminant analyses of shape coordinates (landmarks) and Fourier coefficients (outlines). For both analyses, the fwst discriminant function separated N. nitida from the other two species; these were also distinguished but showed greater overlap with each other. This study, in concert with information from allozyme data confirms the hypothesis of a more ancestral position for N. nitida with N. dombgi and N. betuloides being more recently derived. In addition to differences in shape, the size component of leaf morphology indicated that whereas N. betuloides had the smallest leaves, N. dombgi spanned the greatest range and has the biggest leaves. Given that the data shown here were obtained from seedlings grown under common-garden conditions, differences in both shape and size, seem to be important components of leaf morphology that may warrant consideration in characterizing these and other species of Nothofagus.  相似文献   

2.
Subgenus Nothofagus, although geographically restricted at present to temperate areas of South America, has captured much attention in discussions of plant biogeography due to its widespread distribution through Gondwanan continents during the Tertiary. However, phylogenetic relationships within the subgenus Nothofagus have not yet been resolved. We examined geographic patterns of intraspecific and interspecific genetic variation to detect whether incongruences in nuclear or plastid DNA phylogenies occur, in order to better understand the evolutionary history of the subgenus Nothofagus. We conducted spatially-explicit sampling at 10 distinct locations throughout the range of austral South American forests and sampled all present Nothofagus species. We used ITS and chloroplast DNA sequences to estimate phylogenetic relationships. A phylogeny constructed from nuclear genes resolved the subgenus Nothofagus as monophyletic. We found that N. antarctica was a sister to a clade of evergreen species (N. betuloides, N. dombeyi, and N. nitida), while N. pumilio likely diverged earlier. Nine cpDNA haplotypes were distinguished in the subgenus Nothofagus which were associated to geographic locations rather than to taxonomic relationships. This species-independent cpDNA phylogeographic structures within the subgenus Nothofagus may be related to repeated chloroplast capture events over geological time in Patagonia.  相似文献   

3.
Nothofagus cunninghamii (myrtle) has a widespread distribution through the temperate rainforest of southeastern Australia with some disjunct populations existing in putative glacial refugia. Polymorphic nuclear markers are required to resolve the biogeographical history of the species and will also be useful for conservation and forestry applications in this and other species of Nothofagus. Fourteen polymorphic microsatellite loci were isolated from N. cunninghamii, with four to 10 alleles amplified in 15 individuals tested. Transferability to other species of Nothofagus was successful, with six loci transferring to all eight other species tested.  相似文献   

4.
A morphological and molecular examination of the genus Monomorphina was conducted on 46 strains isolated mainly from Korea. The strains were divided into two types based on morphological data: Monomorphina aenigmatica and M. pyrum ‐ like species. Phylogenetic analysis based on a combined data set of nuclear SSU and LSU and plastid SSU and LSU rDNA showed that the strains could be divided into eight clades: Clade A of M. aenigmatica, Clade B of the isolates (M. pyropsis) from Michigan, USA, Clade C of M. pseudopyrum, Clade D of the isolates (M. pyroria) from Bremen, Germany, Clade E of M. soropyrum, Clade F of M. pyriformis, Clade G of M. parapyrum, and Clade H of M. pyrum. Six of these clades came from strains that would be considered M. pyrum sensu Kosmala et Zakry?, one of which could be recognized as a traditional species (M. pyrum) and five were designated as new species; each species had unique molecular signatures at nr SSU rDNA helix 17 and 17′ and spacer E23_14′‐E23_15. The species of Monomorphina had a wide range of genetic diversity with interspecies sequence similarity of 85.6%–97.1% and intraspecies similarity of 96.4%–99.9%. Our results suggested that genetic diversity found in the M. pyrum complex justifies the recognition of a minimum of eight species within this genus, based on specific molecular signatures and gene divergence of the nr SSU rDNA sequences.  相似文献   

5.
  Cupule and pistillate inflorescence morphology is described in detail for the first time for a number of species in Nothofagus subgenus Lophozonia. The architecture and temporal appearance of prophylls, flowers, and cupule valves is dichasial; the cupule valves are third and higher order shoot systems. Comparative studies demonstrate that the dorsal rows of appendages on the cupule valves have a similar arrangement, and each row exhibits the same temporal pattern of development. This suggests that the cupule valves in all species have a modular construction and consist of rows of homologous appendages. This study clearly demonstrates the uniform groundplan of the pistillate inflorescence in this subgenus. Received March 14, 2002; accepted May 8, 2002 Published online: September 13, 2002  相似文献   

6.
In temperate trees, axis length growth generally results from the differentiation of organs at the end of a growing season and the extension of such "preformed organs" in the next growing season. Neoformation, i.e., the simultaneous differentiation and extension of organs, has been studied for only a few species. Here we evaluated bud composition and growth unit (GU) size for seedlings and saplings of Nothofagus alpina, a valuable South American forest tree. Trunk GUs of seedlings and saplings included preformed and neoformed organs, whereas main-branch GUs of saplings were entirely preformed. The size of a GU was more closely related to the number of preformed green leaves than to the number of cataphylls of its preceding bud. Proximal buds of a trunk GU had more cataphylls and less green-leaf primordia than distal buds. Individual leaf area increased from proximal to distal positions on trunk GUs. For trunk and main-branch GUs, the length/width ratio was maximum for leaves in intermediate positions. The development of large neoformed leaves at the end of the growing season could increase the photosynthetic capacity of this species in late summer, when the activity of preformed organs is likely to be decreasing.  相似文献   

7.
Phylogenetic relationships were examined within the southern beech family Nothofagaceae using 22 species representing the four currently recognized subgenera and related outgroups. Nuclear ribosomal DNA sequences encoding the 5.8s rRNA and two flanking internal transcribed spacers (ITS) provided 95 phylogenetically informative nucleotide sites from a single alignment of ~588 bases per species. Parsimony analysis of this variation produced two equally parsimonious trees supporting four monophyletic groups, which correspond to groups designated by pollen type. These topologies were compared to trees from reanalyses of previously reported rbcL sequences and a modified morphological data set. Results from parsimony analysis of the three data sets were highly congruent, with topological differences restricted to the placement of a few terminal taxa. Combined analysis of molecular and morphological data produced six equally parsimonious trees. The consensus of these trees suggests two basal clades within Nothofagus. Within the larger of the two clades, tropical Nothofagus (subgenus Brassospora) of New Guinea and New Caledonia are strongly supported as sister to cool-temperate species of South America (subgenus Nothofagus). Most of the morphological apomorphies of the cupule, fruit, and pollen of Nothofagus are distributed within this larger clade. An area cladogram based on the consensus of combined data supports three trans-Antarctic relationships, two within pollen groups and one between pollen groups. Fossil data support continuous ancestral distributions for all four pollen groups prior to continental drift; therefore, vicariance adequately explains two of these disjunctions. Extinction of trans-Antarctic sister taxa within formerly widespread pollen groups explains the third disjunction; this results in a biogeographic pattern indicative of phylogenetic relationship not vicariance. For the biogeographically informative vicariant clades, area relationships based on total evidence support the recently advanced hypothesis that New Zealand and Australia share a unique common ancestry. Contrary to previous thought, the distribution of extant Nothofagus is informative on the area relationships of the Southern Hemisphere, once precise phylogenetic relationships are placed in the context of fossil data.  相似文献   

8.
Aim The aim of this paper is to analyse the biogeography of Nothofagus and its subgenera in the light of molecular phylogenies and revisions of fossil taxa. Location Cooler parts of the South Pacific: Australia, Tasmania, New Zealand, montane New Guinea and New Caledonia, and southern South America. Methods Panbiogeographical analysis is used. This involves comparative study of the geographic distributions of the Nothofagus taxa and other organisms in the region, and correlation of the main patterns with historical geology. Results The four subgenera of Nothofagus have their main massings of extant species in the same localities as the main massings of all (fossil plus extant) species. These main massings are vicariant, with subgen. Lophozonia most diverse in southern South America (north of Chiloé I.), subgen. Fuscospora in New Zealand, subgen. Nothofagus in southern South America (south of Valdivia), and subgen. Brassospora in New Guinea and New Caledonia. The main massings of subgen. Brassospora and of the clade subgen. Brassospora/subgen. Nothofagus (New Guinea–New Caledonia–southern South America) conform to standard biogeographical patterns. Main conclusions The vicariant main massings of the four subgenera are compatible with largely allopatric differentiation and no substantial dispersal since at least the Upper Cretaceous (Upper Campanian), by which time the fossil record shows that the four subgenera had evolved. The New Guinea–New Caledonia distribution of subgenus Brassospora is equivalent to its total main massing through geological time and is explained by different respective relationships of different component terranes of the two countries. Global vicariance at family level suggests that Nothofagaceae/Nothofagus evolved largely as the South Pacific/Antarctic vicariant in the breakup of a world‐wide Fagales ancestor.  相似文献   

9.
The organogenetic cycle of main-branch shoots of Nothofagus dombeyi (Nothofagaceae) was studied. Twelve samples of 52-59 parent shoots were collected from a roadside population between September 1999 and October 2000. Variations over time in the number of nodes of terminal and axillary buds, and the length, diameter and number of leaves of shoots derived from these buds (sibling shoots) were analysed. The number of nodes of buds developed by parent shoots was compared with the number of nodes of buds developed, I year later, by sibling shoots. The length, diameter and number of leaves of sibling shoots increased from October 1999 to February 2000 in those shoots with a terminal bud. However, extension of most sibling shoots, including the first five most distal leaf primordia, ceased before February due to abscission of the shoot apex. Axillary buds located most distally on a shoot had more nodes than both terminal buds and more proximal axillary buds. The longest shoots included a preformed part and a neoformed part. The organogenetic event which initiated the neoformed organs continued until early autumn, giving rise to the following year's preformation. The absence of cataphylls in terminal buds could indicate a low intensity of shoot rest. The naked terminal bud of Nothofagus spp. could be interpreted as a structure less specialized than the scaled bud found in genera of Fagaceae and Betulaceae.  相似文献   

10.
Thecosomata is a marine zooplankton group, which played an important role in the carbonate cycle in oceans due to their shell composition. So far, there is important discrepancy between the previous morphological-based taxonomies, and subsequently the evolutionary history of Thecosomata. In this study, the remarkable planktonic sampling of TARA Oceans expedition associated with a set of various other missions allowed us to assess the phylogenetic relationships of Thecosomata using morphological and molecular data (28 S and COI genes). The two gene trees showed incongruities (e.g. Hyalocylis, Cavolinia), and high congruence between morphological and 28S trees (e.g. monophyly of Euthecosomata). The monophyly of straight shell species led us to reviving the Orthoconcha, and the split of Limacinidae led us to the revival of Embolus inflata replacing Limacina inflata. The results also jeopardized the Euthecosomata families that are based on plesiomorphic character state as in the case for Creseidae which was not a monophyletic group. Divergence times were also estimated, and suggested that the evolutionary history of Thecosomata was characterized by four major diversifying events. By bringing the knowledge of palaeontology, we propose a new evolutionary scenario for which macro-evolution implying morphological innovations were rhythmed by climatic changes and associated species turn-over that spread from the Eocene to Miocene, and were shaped principally by predation and shell buoyancy.  相似文献   

11.
One new subspecies ofNothofagusBlume,Nothofagus obliquasubsp.andina, is described from Chile, and two new combinations have been madeNothofagus obliquasubsp.valdivianaandNothofagus macrocarpacomb. nov.  相似文献   

12.
13.
The genusNothofagus is distributed in the Southern Hemisphere from South America to Oceania, and its distribution has been assumed to be formed by continental drift by means of Gondwana break-up during the Mesozoic era. The phylogeny of the genus was elucidated by the sequences ofatpB-rbcL intergenic spacer of cpDNA for the better understanding of its evolution and biogeography. The phylogeny ofNothofagus corresponded completely to the pollen morphology which recognizes four pollen types in extant species, and agrees well with the taxonomic system of Hill and Read (1991) although there, the subgenusNothofagus showed in unresolved polytomy. The topology of the phylogenetic tree reveals that subgenusLophozonia was derived first, and thenFuscospora, Nothofagus andBrassospora. Species from South America and New Zealand were assigned to each cluster according to their pollen morphology. Therefore, diversification ofNothofagus should have already proceeded at the subgenus level before the completion of Gondwana break-up Tropical species distributed in New Guinea and New Caledonia whose evolutionary history has been controversial were revealed to be a derived group. All five New Caledonian species formed a monophyletic group with very few sequence divergences in the intergenic spacer of cpDNA, thus showing rapid adaptive radiation in the island. Evolutionary trends of several morphological traits ofNothofagus are discussed. The evolution of valve number of cupules, number of nuts per cupule, and habit of leaf-fall (evergreen or deciduous) which are diversified in the genus, were revealed as having occurred several times as the result of convergence.  相似文献   

14.
A new species of Primulaceae, Primula undulifolia, is described from the hilly area of Hunan province in south-central China. Its morphology and distributional range suggest that it is allied to P. kwangtungensis, both adapted to subtropical climate, having contiguous distribution and similar habitat, growing on shady and moist cliffs. Petioles, scapes and pedicels of them are densely covered with rusty multicellular hairs, but the new species can be easily distinguished by its smaller flowers and narrowly oblong leaves with undulate margins. Molecular phylogenetic analysis based on four DNA markers (ITS, matK, trnL-F and rps16) confirmed the new species as an independent lineage and constitutes a main clade together with P. kwangtungensis, P. kweichouensis, P. wangii and P. hunanensis of Primula sect. Carolinella.  相似文献   

15.
The size (length and diameter) and number of leaf primordia of winter buds of Nothofagus antarctica (G. Forster) Oerst. shrubs were compared with the size and number of leaves of shoots derived from buds in equivalent positions. Buds developed in two successive years were compared in terms of size and number of leaf primordia. Bud size and the number of leaf primordia per bud were greater for distal than for proximally positioned buds. Shoots that developed in the five positions closest to the distal end of their parent shoots had significantly more leaves than more proximally positioned shoots of the same parent shoots. The positive relationship between the size of a shoot and that of its parent shoot was stronger for proximal than for distal positions on the parent shoots. For each bud position on the parent shoots there were differences in the number of leaf primordia per bud between consecutive years. The correlations between the number of leaf primordia per bud and bud size, bud position and parent shoot size varied between years. Only shoots produced close to the distal end of a parent shoot developed neoformed leaves; more proximal sibling shoots consisted entirely of preformed leaves. Leaf neoformation, a process usually linked with high shoot vigour in woody plants, seems to be widespread among the relatively small shoots developed in N. antarctica shrubs, which may relate to the species' opportunistic response to disturbance.  相似文献   

16.
17.

Background and Aims

The distribution and differentiation times of flowers in monoecious wind-pollinated plants are fundamental for the understanding of their mating patterns and evolution. Two closely related South American Nothofagus species were compared with regard to the differentiation times and positions of staminate and pistillate flowers along their parent growth units (GUs) by quantitative means.

Methods

Two samples of GUs that had extended in the 2004–2005 growing season were taken in 2005 and 2006 from trees in the Lanín National Park, Patagonia, Argentina. For the first sample, axillary buds of the parent GUs were dissected and the leaf, bud and flower primordia of these buds were identified. The second sample included all branches derived from the parent GUs in the 2005–2006 growing season.

Key Results

Both species developed flowering GUs with staminate and/or pistillate flowers; GUs with both flower types were the most common. The position of staminate flowers along GUs was similar between species and close to the proximal end of the GUs. Pistillate flowers were developed more distally along the GUs in N. alpina than in N. obliqua. In N. alpina, the nodes bearing staminate and pistillate flowers were separated by one to several nodes with axillary buds, something not observed in N. obliqua. Markovian models supported this between-species difference. Flowering GUs, including all of their leaves and flowers were entirely preformed in the winter buds.

Conclusions

Staminate and pistillate flowers of N. alpina and N. obliqua are differentiated at precise locations on GUs in the growing season preceding that of their antheses. The differences between N. alpina and N. obliqua (and other South American Nothofagus species) regarding flower distribution might relate to the time of anthesis of each flower type and, in turn, to the probabilities of self-pollination at the GU level.Key words: Branch, bud, growth unit, Markovian models, Nothofagus alpina, N. obliqua, Patagonian forests, pistillate flower, preformation, staminate flower  相似文献   

18.
Samples of sugarcane leaves were collected from different commercial fields and breeding stations in Egypt. Aetiology of sugarcane phytoplasma disease was investigated using nested PCR. Phytoplasma‐specific primers (P1/P7 and R16F2n/R16R2) were used to amplify a fragment of the 16S rRNA gene. Sequencing and restriction fragment length polymorphism analyses revealed that the tested phytoplasmas belonged to the 16SrI (aster yellows phytoplasma) group. Phylogenetic analyses of 60 screened accessions of 16S ribosomal RNA gene sequences of Candidatus phytoplasmas comprising those collected from Egypt (this study) and those extracted from GenBank showed that they split into two distinct clusters. All the phytoplasmas form a stable phylogenetic subcluster, as judged by branch length and bootstrap values of 100% in the 16S group cluster. Results of phylogenetic analyses indicated that these phytoplasmas are closely related and share a common ancestor. Conversely, based on the analysis of the 16S‐23S region, examined isolates segregated into four different clusters suggesting a notable heterogeneity between them. These results are the first record of the presence of phytoplasma in association with sugarcane yellow leaf in Egypt.  相似文献   

19.
Elucidating the phylogenetic relationships of the current but problematic Dasyatidae (Order Myliobatiformes) was the first priority of the current study. Here, we studied three molecular gene markers of 43 species (COI gene), 33 species (ND2 gene) and 34 species (RAG1 gene) of stingrays to draft out the phylogenetic tree of the order. Nine character states were identified and used to confirm the molecularly constructed phylogenetic trees. Eight or more clades (at different hierarchical level) were identified for COI, ND2 and RAG1 genes in the Myliobatiformes including four clades containing members of the present Dasyatidae, thus rendering the latter non-monophyletic. The uncorrected p-distance between these four ‘Dasytidae’ clades when compared to the distance between formally known families confirmed that these four clades should be elevated to four separate families. We suggest a revision of the present classification, retaining the Dasyatidae (Dasyatis and Taeniurops species) but adding three new families namely, Neotrygonidae (Neotrygon and Taeniura species), Himanturidae (Himantura species) and Pastinachidae (Pastinachus species). Our result indicated the need to further review the classification of Dasyatis microps. By resolving the non-monophyletic problem, the suite of nine character states enables the natural classification of the Myliobatiformes into at least thirteen families based on morphology.  相似文献   

20.
The difficulty in achieving a consensus on the phylogenetic relationships of lemuriform primates has been due largely to the lack of a lemur fossil record and to the lack of an appropriate outgroup that would facilitate polarization of character states. Recent findings allow us to polarize some of the bony characters, but to a large extent this problem still remains. In the past, phylogenetic analyses have focused on specialized character sets such as dentition or basicranial traits, or they have employed differential weighting schemes to a more variable set of characters. In the analysis presented here, I combined all relevant characters available in the literature into one data set but restricted my selection to those traits having discontinuous states and for which no contradictory coding schemes were published. I reduced the assumptions in this analysis by removing most external weighting and ordering effects on these data sets. The available data from the literature were supplemented with data from my own observations at the Duke University Primate Center. Data were collected for 25 characters and 20 taxa and were submitted to a cladistic analysis. Some important findings from this study include support for (1) a sister-group relationship between Lepilemur and the Indridae, (2) a sister-group relationship between the Lemuridae (except Varecia) and the Indridae/Lepilemur clade, (3) a monophyletic genus Eulemur, and (4) the exclusion of Varecia from the Lemuridae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号