首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
tRNA sequences were analyzed for sequence features correlated with known classes of aminoacyl-tRNA synthetase enzymes. The tRNAs were searched for distinguishing nucleotides anywhere in their sequences. The analyses did not find nucleotides predictive of synthetase class membership. We conclude that such nucleotides never existed in tRNA sequences or that they existed and were lost from many of the tRNA sequences during evolution.Based on a presentation made at a workshop—Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code—held at Berkeley, CA, July 17–20, 1994 Correspondence to: H.B. Nicholas, Jr.  相似文献   

2.
Many species of Trichoderma have attracted interest as agents for the biological control of soil borne fungal pathogens of a range of crop plants. Research on the biochemical mechanisms associated with this application has focused on the ability of these fungi to produce enzymes which lyse fungal cell walls, and antifungal antibiotics. An important group of the latter are the non-ribosomal peptides called peptaibols. In this study Trichoderma asperellum, a strain used in biological control in Malaysia, was found to produce the peptaibol, trichotoxin. This type of peptide molecule is synthesised by a peptide synthetase (PES) enzyme template encoded by a peptide synthetase (pes) gene. Using nucleotide sequences amplified from adenylation (A-) domains as probes, to hybridise against a lambda FIXII genomic library from T. asperellum, 25 clones were recovered. These were subsequently identified as representative of four groups based on their encoding properties for specific amino acid incorporation modules in a PES. This was based on analysis of their amino acid sequences which showed up to 86% identity to other PESs including TEX 1.  相似文献   

3.
Understanding the complex network and multi-functionality of proteins is one of the main objectives of post-genome research. Aminoacyl-tRNA synthetases (ARSs) are the family of enzymes that are essential for cellular protein synthesis and viability that catalyze the attachment of specific amino acids to their cognate tRNAs. However, a lot of evidence has shown that these enzymes are multi-functional proteins that are involved in diverse cellular processes, such as tRNA processing, RNA splicing and trafficking, rRNA synthesis, apoptosis, angiogenesis, and inflammation. In addition, mammalian ARSs form a macromolecular complex with three auxiliary factors or with the elongation factor complex. Although the functional meaning and physiological significance of these complexes are poorly understood, recent data on the molecular interactions among the components for the multi-ARS complex are beginning to provide insights into the structural organization and cellular functions. In this review, the molecular mechanism for the assembly and functional implications of the multi-ARS complex will be discussed.  相似文献   

4.
Bovine tryptophanyl-tRNA synthetase (TrpRS, E.C. 6.1.1.2) is unable to catalyze in vitro formation of Ap4A in contrast to some other aminoacyl-tRNA synthetases. However, in the presence of -tryptophan, ATP-Mg2+ and ADP the enzyme catalyzes the Ap3A synthesis via adenylate intermediate. Ap3A (not Ap4A) may serve as a substrate for TrpRS in the reaction of E·(Trp AMP) formation and in the tRNATrp charging. The Km value for Ap3A was higher than the Km for ATP (approx. 1.00 vs. 0.22 mM) and Vmax was 3 times lower than for ATP. The Zn2+-deficient enzyme catalyzes Ap3A synthesis in the absence of exogenous ADP due to ATPase activity of Zn2+-deprived TrpRS. The inability of mammalian TrpRS to synthesize Ap4A, might be considered as a molecular tool preventing the removal of Zn2+ due to chelation by Ap4A and therefore preserving the enzyme activity.  相似文献   

5.
Ambrogelly A  Frugier M  Ibba M  Söll D  Giegé R 《FEBS letters》2005,579(12):2629-2634
Borrelia burgdorferi and other spirochetes contain a class I lysyl-tRNA synthetase (LysRS), in contrast to most eubacteria that have a canonical class II LysRS. We analyzed tRNA(Lys) recognition by B. burgdorferi LysRS, using two complementary approaches. First, the nucleotides of B. burgdorferi tRNA(Lys) in contact with B. burgdorferi LysRS were determined by enzymatic footprinting experiments. Second, the kinetic parameters for a series of variants of the B. burgdorferi tRNA(Lys) were then determined during aminoacylation by B. burgdorferi LysRS. The identity elements were found to be mostly located in the anticodon and in the acceptor stem. Transplantation of the identified identity elements into the Escherichia coli tRNA(Asp) scaffold endowed lysylation activity on the resulting chimera, indicating that a functional B. burgdorferi lysine tRNA identity set had been determined.  相似文献   

6.
Previous investigations show that tRNA(Arg)-induced conformational changes of arginyl-tRNA synthetase (ArgRS) Omega-loop region (Escherichia coli (E. coli), Ala451-Ala457) may contribute to the productive conformation of the enzyme catalytic core, and E. coli tRNA(2)(Arg)(ICG)-bound and -free conformations of the Omega-loop exchange at an intermediate rate on NMR timescale. Herein, we report that E. coli ArgRS catalyzes tRNA(2)(Arg)(ICG) and tRNA(4)(Arg)(UCU) with similar efficiencies. However, 19F NMR spectroscopy of 4-fluorotryptophan-labeled E. coli ArgRS reveals that the tRNA(4)(Arg)(UCU)-bound and -free conformations of the Omega-loop region interconvert very slowly and the lifetime of bound conformation is much longer than 0.33 ms. Therefore, tRNA(4)(Arg)(UCU) differs from tRNA(2)(Arg)(ICG) in the conformation-exchanging rate of the Omega-loop. Comparative structure model of E. coli ArgRS is presented to rationalize these 19F NMR data. Our 19F NMR and catalytic assay results suggest that the tRNA(Arg)-induced conformational changes of Omega-loop little contribute to the productive conformation of ArgRS catalytic core.  相似文献   

7.
8.
ABSTRACT

To measure amino acid concentrations with high sensitivity, the pyrophosphate amplification reaction conditions of histidyl-tRNA synthetase (HisRS) and tyrosyl-tRNA synthetase (TyrRS) were examined. The amount of pyrophosphate produced by reactions involving HisRS and TyrRS was amplified compared with the amount of the initial substrate L-amino acid after the addition of excess adenosine-5′-triphosphate and magnesium ions, with incubation at 50°C in an alkaline pH. The amount of pyrophosphate produced in the HisRS and TyrRS reactions was approximately 24- and 16-fold higher than the initial amount of L-His and L-Tyr, respectively. The pyrophosphate amplification reactions involving HisRS and TyrRS showed high substrate specificity for L-His and L-Tyr, respectively. Products of pyrophosphate amplification were identified as p1, p4-di(adenosine) 5′-tetraphosphate, and adenosine-5′-monophosphate using high-performance liquid chromatography. A strong positive correlation was observed for 0 to 50 μM of L-His and L-Tyr in the pyrophosphate amplification reaction (R = 0.98 and R = 1.00, respectively).

Abbreviations: L-His: L-histidine; L-Tyr: L-tyrosine; aaRSs: aminoacyl-tRNA synthetases; ATP: adenosine-5′-triphosphate; aminoacyl-AMP-aaRS: aminoacyl-adenylate intermediate; Ap4A, P1, P4-di(adenosine) 5?-tetraphosphate; AMP: adenosine-5′-monophosphate; PAR: pyrophosphate amplification rate  相似文献   

9.
The crystal structure of ligand-free tryptophanyl-tRNA synthetase (TrpRS) was solved at 2.9 A using a combination of molecular replacement and maximum-entropy map/phase improvement. The dimeric structure (R = 23.7, Rfree = 26.2) is asymmetric, unlike that of the TrpRS tryptophanyl-5'AMP complex (TAM; Doublié S, Bricogne G, Gilmore CJ, Carter CW Jr, 1995, Structure 3:17-31). In agreement with small-angle solution X-ray scattering experiments, unliganded TrpRS has a conformation in which both monomers open, leaving only the tryptophan-binding regions of their active sites intact. The amino terminal alphaA-helix, TIGN, and KMSKS signature sequences, and the distal helical domain rotate as a single rigid body away from the dinucleotide-binding fold domain, opening the AMP binding site, seen in the TAM complex, into two halves. Comparison of side-chain packing in ligand-free TrpRS and the TAM complex, using identification of nonpolar nuclei (Ilyin VA, 1994, Protein Eng 7:1189-1195), shows that significant repacking occurs between three relatively stable core regions, one of which acts as a bearing between the other two. These domain rearrangements provide a new structural paradigm that is consistent in detail with the "induced-fit" mechanism proposed for TyrRS by Fersht et al. (Fersht AR, Knill-Jones JW, Beduelle H, Winter G, 1988, Biochemistry 27:1581-1587). Coupling of ATP binding determinants associated with the two catalytic signature sequences to the helical domain containing the presumptive anticodon-binding site provides a mechanism to coordinate active-site chemistry with relocation of the major tRNA binding determinants.  相似文献   

10.
The structural component of the tyrS gene of Escherichia coli, comprising 1269 base pairs, has been fully sequenced by the combined M13/dideoxychain termination approach. The gene has a codon usage pattern which is typical of highly expressed proteins and similar to other Escherichia coli aminoacyl-tRNA synthetase genes. Peptide purification and sequencing has been used to locate the N-terminus and to provide confirmation of 95% of the translated protein sequence. This latter yields on Mr of 47 403 for the Escherichia coli tyrosyl-tRNA synthetase, and reveals considerable homology with the primary structure of the analogous enzyme isolated from Bacillus staerothermophilus.  相似文献   

11.
Many peptide antibiotics in prokaryotes and lower eukaryotes are produced non-ribosomally by multi-enzyme complexes. Analysis of gene-derived amino acid sequences of some peptide synthetases of bacterial and fungal origins revealed a high degree of conservation (35-50% identity). The genes encoding those peptide synthetases are clustered into large operons with repetitive domains (about 600 amino acids), in the case of synthetases activating more than one amino acid. We used two 35-mer oligonucleotides derived from two highly conserved regions of known peptide synthetases to identify the surfactin synthetase operon in Bacillus subtilis ATCC 21332, a strain not accessible to genetic manipulation. We show that the derived oligonucleotides can be used not only for the identification of unknown peptide synthetase genes by hybridization experiments but also in sequencing reactions as primers to identify internal domain sequences. Using this method, a 25.8-kb chromosomal DNA fragment bearing a part of the surfactin biosynthesis operon was cloned and partial sequences of two internal domains were obtained.  相似文献   

12.
Abstract Toxic strains of Microcystis aeruginosa produce cyclic heptatoxins (microcystins) that are believed to be synthesized non-ribosomally by peptide synthetases. We analysed toxin-producing and non-toxic strains of M. aeruginosa with respect to the presence of DNA sequences potentially encoding peptide synthetases. Hybridizations of genomic DNA of various M. aeruginosa strains with PCR-amplificated fragments possessing homologies to adenylate-forming domains of peptide synthetase genes provided first evidence for the existence of corresponding genes in cyanobacteria. Furthermore we isolated and sequenced from genomic libraries overlapping fragments of M. aeruginosa DNA with a total length of 2982 bp showing significant homology to genes encoding peptide synthetases and hybridizing exclusively with DNA from toxic strains. Our results indicate that both toxic and non-toxic strains of M. aeruginosa possess genes coding for peptide synthetases and that hepatotoxin-producing and non-toxic strains differ in their content of genes for specific peptide synthetases.  相似文献   

13.
The possible codon-anticodon pairings follow the standard genetic code, yet in a different mode. The corresponding rules for decoding sequence of the codons in mRNA with tRNA may be called "tRNA code". In this paper we analyse the mutational and translational stability of such tRNA code. Our approach is based on the model of "ambiguous intermediate" and on the study of underlying block structure and Eulerean graph technique. It is shown that the wobble rules and the reduced number of tRNA anticodons strongly affect the mutational and translational stability of the code. The selection of tRNA anticodons, besides the optimization of translation, also ensures the more reliable start and, to a lesser extent, the stop of translation. The attribution of tRNA anticodons to the groups [WWW, WWS, SWW, SWS] and [SSS, SSW, WSS, WSW] as well as [MMM, MMK, KMM, KMK] and [KKK, KKM, MKK, MKM] clearly correlates with class I and class II aminoacyl-tRNA synthetases and obeys the principle of the optimal coding in both cases. Both W-S and M-K groupings also refer to the encoding of amino acids with the large and small side-chain volumes, which may provide such an attribution. The higher variability of tRNA code agrees with the suggestions that the variations in an assignment of tRNA anticodons may serve as the driving force generating the different variants of the genetic code.  相似文献   

14.
The extent of tRNA recognition at the level of binding by Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS), one of the most complex class II synthetases, has been studied by independent measurements of the enzyme association with wild-type and mutant tRNA(Phe)s as well as with non-cognate tRNAs. The data obtained, combined with kinetic data on aminoacylation, clearly show that PheRS exhibits more tRNA selectivity at the level of binding than at the level of catalysis. The anticodon nucleotides involved in base-specific interactions with the enzyme prevail both in the initial binding recognition and in favouring aminoacylation catalysis. Tertiary nucleotides of base pair G19-C56 and base triple U45-G10-C25 contribute primarily to stabilization of the correctly folded tRNA(Phe) structure, which is important for binding. Other nucleotides of the central core (U20, U16 and of the A26-G44 tertiary base pair) are involved in conformational adjustment of the tRNA upon its interaction with the enzyme. The specificity of nucleotide A73, mutation of which slightly reduces the catalytic rate of aminoacylation, is not displayed at the binding step. A few backbone-mediated contacts of PheRS with the acceptor and anticodon stems revealed in the crystal structure do not contribute to tRNA(Phe) discrimination, their role being limited to stabilization of the complex. The highest affinity of T. thermophilus PheRS for cognate tRNA, observed for synthetase-tRNA complexes, results in 100-3000-fold binding discrimination against non-cognate tRNAs.  相似文献   

15.
极端环境微生物嗜酸氧化亚铁硫杆菌的谷胱甘肽还原酶(GR)可能在它的抵抗极端酸性,有毒和氧化性的生物浸出环境中发挥至关重要的作用.通过同源模建技术和分子动力学模拟,它的一个三维结构被构建,优化和检验了.获得的结构被进一步用于搜索绑定位点,跟辅因子黄素腺嘌呤二核苷酸(FAD)和底物谷胱甘肽(GSSG)进行分子柔性对接,并以此识别关健残基.对接结果显示,位于活性残基Cys42和Cys47之间的二硫键夹在FAD的活性位点和底物GSSG的二硫键之间.它们之间的距离非常靠近,这跟底物反应机理的初始步骤的情况十分一致.相互作用能表明8个酶中残基Cys42,Cys47,GIu443B,Glu444B,His438B,Ser14,Thr447B和Lys51是固定或激活GSSG的关键残基,这跟以前的实验事实相吻合.此外,根据相互作用能我们还新发现7个重要残基(Arg449B,Pro439B,Thr440B,Thr310,Va143,Gly46 and Va148).所有这些残基在其它物种中的相应物中也都是保守的.这些结果有助于进一步的实验研究和理解其催化机理,进而揭示这种细菌的抗毒机理,服务于工业应用.  相似文献   

16.
Tyrosyl-tRNA synthetase catalyzes the attachment of tyrosine to the 3′ end of tRNATyr, releasing AMP, pyrophosphate, and l-tyrosyl-tRNA as products. Because this enzyme plays a central role in protein synthesis, it has garnered attention as a potential target for the development of novel antimicrobial agents. Although high-throughput assays that monitor tyrosyl-tRNA synthetase activity have been described, these assays generally use stoichiometric amounts of tRNA, limiting their sensitivity and increasing their cost. Here, we describe an alternate approach in which the Tyr-tRNA product is cleaved, regenerating the free tRNA substrate. We show that cyclodityrosine synthase from Mycobacterium tuberculosis can be used to cleave the l-Tyr-tRNA product, regenerating the tRNATyr substrate. Because tyrosyl-tRNA synthetase can use both l- and d-tyrosine as substrates, we replaced the cyclodityrosine synthase in the assay with d-tyrosyl-tRNA deacylase, which cleaves d-Tyr-tRNA. This substitution allowed us to use the tyrosyl-tRNA synthetase assay to monitor the aminoacylation of tRNATyr by d-tyrosine. Furthermore, by making Tyr-tRNA cleavage the rate-limiting step, we are able to use the assay to monitor the activities of cyclodityrosine synthetase and d-tyrosyl-tRNA deacylase. Specific methods to extend the tyrosyl-tRNA synthetase assay to monitor both the aminoacylation and post-transfer editing activities in other aminoacyl-tRNA synthetases are discussed.  相似文献   

17.
The crystal structures of threonyl-tRNA synthetase (ThrRS) from Staphylococcus aureus, with ATP and an analogue of threonyl adenylate, are described. Together with the previously determined structures of Escherichia coli ThrRS with different substrates, they allow a comprehensive analysis of the effect of binding of all the substrates: threonine, ATP and tRNA. The tRNA, by inserting its acceptor arm between the N-terminal domain and the catalytic domain, causes a large rotation of the former. Within the catalytic domain, four regions surrounding the active site display significant conformational changes upon binding of the different substrates. The binding of threonine induces the movement of as much as 50 consecutive amino acid residues. The binding of ATP triggers a displacement, as large as 8A at some C(alpha) positions, of a strand-loop-strand region of the core beta-sheet. Two other regions move in a cooperative way upon binding of threonine or ATP: the motif 2 loop, which plays an essential role in the first step of the aminoacylation reaction, and the ordering loop, which closes on the active site cavity when the substrates are in place. The tRNA interacts with all four mobile regions, several residues initially bound to threonine or ATP switching to a position in which they can contact the tRNA. Three such conformational switches could be identified, each of them in a different mobile region. The structural analysis suggests that, while the small substrates can bind in any order, they must be in place before productive tRNA binding can occur.  相似文献   

18.
In the first stage of a diffusion-controlled enzymatic reaction, aminoacyl-tRNA synthetases (aaRSs) interact with cognate tRNAs forming non-specific encounters. The aaRSs catalyzing the same overall aminoacylation reaction vary greatly in subunit organization, structural domain composition and amino acid sequence. The diffusional association of aaRS and tRNA was found to be governed by long-range electrostatic interactions when the homogeneous negative potential of tRNA fits to the patches of positive potential produced by aaRS; one patch for each tRNA substrate molecule. Considering aaRS as a molecule with anisotropic reactivity and on the basis of continuum electrostatics and Smoluchowski's theory, the reaction conditions for tRNA-aaRS diffusional encounters were formulated. The domains, categorized as enzymatically relevant, appeared to be non-essential for field sculpturing at long distances. On the other hand, a set of complementary domains exerts primary control on the aaRS isopotential surface formation. Subdividing the aaRS charged residues into native, conservative and non-conservative subsets, we evaluated the contribution of each group to long-range electrostatic potential. Surprisingly, the electrostatic potential landscapes generated by native and non-conservative subsets are fairly similar, thus suggesting the non-conservative subset is developed specifically for efficient tRNA attraction.  相似文献   

19.
Little is known about the process whereby the emetic toxin (or cereulide) of Bacillus cereus is produced. Two cereulide-producing strains of B. cereus were cloned and sequenced following polymerase chain reaction (PCR) amplification with primers that were specific for conserved regions of non-ribosomal peptide synthetase (NRPS) genes. The cloned regions of the B. cereus strains were highly homologous to conserved regions of other peptide synthetase nucleotide sequences. Primers were designed for two variable regions of the NRPS gene sequence to ensure specificity for the emetic strains. A total of 86 B. cereus strains of known emetic or non-emetic activity were screened using these primers. All of the emetic strains (n=30) displayed a 188 bp band following amplification and gel electrophoresis. We have developed an improved method of identifying emetic strains of B. cereus and provided evidence that cereulide is produced by peptide synthetases.  相似文献   

20.
An enhanced method to measure the concentration of individual naturally occurring free amino acids in solution is described. This relatively simple but robust method combines two previously reported procedures: the use of scintillation proximity assay (SPA) technology to measure aminoacyl-tRNA synthetase (aaRS) activity and the use of aaRS activity to measure amino acid concentration using the enzymatic isotope dilution technique. The format described is called an aaRS competitive scintillation proximity assay (cSPA). This cSPA takes advantage of competition between a fixed concentration of radiolabeled amino acid and an unknown concentration of the same nonradiolabeled amino acid for its cognate tRNA catalyzed by the aaRS specific for that amino acid. Under equilibrium conditions, in the case of limiting tRNA, the rate of the enzyme-catalyzed reaction relative to substrate concentration becomes irrelevant and the enzymatic isotopic dilution technique becomes the simple isotopic dilution technique. Due to the exquisite specificity of the reaction, a crude mixture of tRNAs and aaRSs can be used to detect the concentration of a particular amino acid without interference from noncognate amino acids. When used to monitor aminopeptidase M activity, this assay produced similar results in time course and inhibition experiments as compared with a traditional fluorescent assay. High-throughput compatibility was demonstrated by screening 12,000 compounds against aminopeptidase M in 384-well microtiter plates with Z factors ranging from 0.53 to 0.70. This competitive assay can be used as a general method to detect amino acids at concentrations less than 100 nM and to monitor enzyme activity in biological samples, and it is amenable to high-throughput screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号