首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
固醇调节元件结合蛋白1及其靶基因网络   总被引:2,自引:0,他引:2  
固醇调节元件结合蛋白1(Sterol regulatory element-binding protein 1, SREBP-1)是重要的核转录因子之一, 能调控内源性胆固醇、脂肪酸、甘油三酯和磷脂合成所需酶的表达, 以维持血脂动态平衡。研究表明, SREBP-1及其靶基因网络的异常可引起胰岛素抵抗、Ⅱ型糖尿病、心功能紊乱、血管并发症和肝脂肪变等一系列代谢性疾病。近年高通量组学技术的发展极大扩展了对SREBP-1靶基因及其转录调控模式的了解。文章对SREBP-1蛋白结构、活化过程、DNA结合位点及其调控的靶基因等方面的研究进展进行了综述, 并着重介绍了基于组学数据的转录调控网络的构建, 这将有助于更好的认识SREBP-1在脂类代谢中的作用, 为深入探讨脂质代谢性疾病的治疗提供新线索。  相似文献   

3.
Adipose tissue is a major source of inflammatory and thrombotic cytokines. This study investigated the relationship of abdominal subcutaneous adipose tissue cytokine gene expression to body composition, fat distribution, and metabolic risk during obesity. We determined body composition, abdominal fat distribution, plasma lipids, and abdominal subcutaneous fat gene expression of leptin, TNF-alpha, IL-6, PAI-1, and adiponectin in 20 obese, middle-aged women (BMI, 32.7 +/- 0.8 kg/m2; age, 57 +/- 1 yr). A subset of these women without diabetes (n = 15) also underwent an OGTT. In all women, visceral fat volume was negatively related to leptin (r = -0.46, P < 0.05) and tended to be negatively related to adiponectin (r = -0.38, P = 0.09) gene expression. Among the nondiabetic women, fasting insulin (r = 0.69, P < 0.01), 2-h insulin (r = 0.56, P < 0.05), and HOMA index (r = 0.59, P < 0.05) correlated positively with TNF-alpha gene expression; fasting insulin (r = 0.54, P < 0.05) was positively related to, and 2-h insulin (r = 0.49, P = 0.06) tended to be positively related to, IL-6 gene expression; and glucose area (r = -0.56, P < 0.05) was negatively related to, and insulin area (r = -0.49, P = 0.06) tended to be negatively related to, adiponectin gene expression. Also, adiponectin gene expression was significantly lower in women with vs. without the metabolic syndrome (adiponectin-beta-actin ratio, 2.26 +/- 0.46 vs. 3.31 +/- 0.33, P < 0.05). We conclude that abdominal subcutaneous adipose tissue expression of inflammatory cytokines is a potential mechanism linking obesity with its metabolic comorbidities.  相似文献   

4.
5.
Recently, vaspin was identified as an adipokine with insulin-sensitizing effects, which is predominantly secreted from visceral adipose tissue in a rat model of type 2 diabetes. In this study, we examined whether vaspin mRNA expression is a marker of visceral obesity and correlates with anthropometric and metabolic parameters in paired samples of visceral and subcutaneous adipose tissue from 196 subjects with a wide range of obesity, body fat distribution, insulin sensitivity, and glucose tolerance. Vaspin mRNA expression was only detectable in 23% of the visceral and in 15% of the subcutaneous (SC) adipose tissue samples. Vaspin mRNA expression was not detectable in lean subjects (BMI<25) and was more frequently detected in patients with type 2 diabetes. No significant correlations were found between visceral vaspin gene expression and visceral fat area or SC vaspin expression. However, visceral vaspin expression significantly correlates with BMI, % body fat, and 2 h OGTT plasma glucose. Subcutaneous vaspin mRNA expression is significantly correlated with WHR, fasting plasma insulin concentration, and glucose infusion rate during steady state of an euglycemic-hyperinsulinemic clamp. Multivariate linear regression analysis revealed % body fat as strongest predictor of visceral vaspin and insulin sensitivity as strongest determinant of SC vaspin mRNA expression. In conclusion, our data indicate that induction of human vaspin mRNA expression in adipose tissue is regulated in a fat depot-specific manner and could be associated with parameters of obesity, insulin resistance, and glucose metabolism.  相似文献   

6.

Background

Protein expression studies based on the two major intra-abdominal human fat depots, the subcutaneous and the omental fat, can shed light into the mechanisms involved in obesity and its co-morbidities. Here we address, for the first time, the identification and validation of reference proteins for data standardization, which are essential for accurate comparison of protein levels in expression studies based on fat from obese and non-obese individuals.

Methodology and Findings

To uncover adipose tissue proteins equally expressed either in omental and subcutaneous fat depots (study 1) or in omental fat from non-obese and obese individuals (study 2), we have reanalyzed our previously published data based on two-dimensional fluorescence difference gel electrophoresis. Twenty-four proteins (12 in study 1 and 12 in study 2) with similar expression levels in all conditions tested were selected and identified by mass spectrometry. Immunoblotting analysis was used to confirm in adipose tissue the expression pattern of the potential reference proteins and three proteins were validated: PARK7, ENOA and FAA. Western Blot analysis was also used to test customary loading control proteins. ENOA, PARK7 and the customary loading control protein Beta-actin showed steady expression profiles in fat from non-obese and obese individuals, whilst FAA maintained steady expression levels across paired omental and subcutaneous fat samples.

Conclusions

ENOA, PARK7 and Beta-actin are proper reference standards in obesity studies based on omental fat, whilst FAA is the best loading control for the comparative analysis of omental and subcutaneous adipose tissues either in obese and non-obese subjects. Neither customary loading control proteins GAPDH and TBB5 nor CALX are adequate standards in differential expression studies on adipose tissue. The use of the proposed reference proteins will facilitate the adequate analysis of proteins differentially expressed in the context of obesity, an aim difficult to achieve before this study.  相似文献   

7.
Brown adipose tissue (BAT) plays essential role in metabolic- and thermoregulation and displays morphological and functional plasticity in response to environmental and metabolic challenges. BAT is a heterogeneous tissue containing adipocytes and various immune-related cells, however, their interaction in regulation of BAT function is not fully elucidated. Fractalkine is a chemokine synthesized by adipocytes, which recruits fractalkine receptor (CX3CR1)-expressing leukocytes into the adipose tissue. Using transgenic mice, in which the fractalkine receptor, Cx3cr1 gene was replaced by Gfp, we evaluated whether deficiency in fractalkine signaling affects BAT remodeling and function in high-fat-diet - induced obesity. Homo- and heterozygote male CX3CR1-GFP mice were fed with normal or fat enriched (FatED) diet for 10 weeks. Interscapular BAT was collected for molecular biological analysis. Heterozygous animals in which fractalkine signaling remains intact, gain more weight during FatED than CX3CR1 deficient gfp/gfp homozygotes. FatED in controls resulted in macrophage recruitment to the BAT with increased expression of proinflammatory mediators (Il1a, b, Tnfa and Ccl2). Local BAT inflammation was accompanied by increased expression of lipogenic enzymes and resulted in BAT “whitening”. By contrast, fractalkine receptor deficiency prevented accumulation of tissue macrophages, selectively attenuated the expression of Tnfa, Il1a and Ccl2, increased BAT expression of lipolytic enzymes (Atgl, Hsl and Mgtl) and upregulated genes involved thermo-metabolism (Ucp1, Pparg Pgc1a) in response to FatED. These results highlight the importance of fractalkine-CX3CR1 interaction in recruitment of macrophages into the BAT of obese mice which might contribute to local tissue inflammation, adipose tissue remodeling and regulation of metabolic-related genes.  相似文献   

8.
We previously reported that adenosine monophosphate-activated protein kinase (AMPK) activity is lower in adipose tissue of morbidly obese individuals who are insulin resistant than in comparably obese people who are insulin sensitive. However, the number of patients and parameters studied were small. Here, we compared abdominal subcutaneous, epiploic, and omental fat from 16 morbidly obese individuals classified as insulin sensitive or insulin resistant based on the homeostatic model assessment of insulin resistance. We confirmed that AMPK activity is diminished in the insulin resistant group. A custom PCR array revealed increases in mRNA levels of a wide variety of genes associated with inflammation and decreases in PGC-1α and Nampt in omental fat of the insulin resistant group. In contrast, subcutaneous abdominal fat of the same patients showed increases in PTP-1b, VEGFa, IFNγ, PAI-1, and NOS-2 not observed in omental fat. Only angiotensinogen and CD4(+) mRNA levels were increased in both depots. Surprisingly, TNFα was only increased in epiploic fat, which otherwise showed very few changes. Protein carbonyl levels, a measure of oxidative stress, were increased in all depots. Thus, adipose tissues of markedly obese insulin resistant individuals uniformly show decreased AMPK activity and increased oxidative stress compared with insulin sensitive patients. However, most changes in gene expression appear to be depot-specific.  相似文献   

9.
10.
11.
Obesity is a complex disorder caused by several factors. Thus, the aim of the present study was to assess whether the expression of genes in the omental white adipose tissue (AT) of subjects with insulin resistance (IR) or metabolic syndrome (MetS) is associated with an elevation in serum branched-chain amino acids (BCAAs) and whether this response depends on specific genetic variants. Serum BCAA concentration, the adipocyte area, and gene variants of PPARγ, ABCA1, FTO, TCF7L2, GFOD2,BCAT2, and BCKDH were determined in 115 Mexican subjects. The gene expression in the AT and adipocytes of BCAT, BCKDH E1α, C/EBPα, PPARγ2, SREBP-1, PPARα, UCP1, leptin receptor, leptin, adiponectin, and TNFα was measured in 51 subjects. Subjects with IR showed higher values for the BMI, HOMA-IR, and adipocyte area and higher levels of serum glucose, insulin, leptin, and C-reactive protein, as well as an elevation of the AT gene expression of SREBP-1, leptin, and TNFα and a significant reduction in the expression of adiponectin, BCAT2, and BCKDH E1α, compared with non-IR subjects. The presence of MetS was associated with higher HOMA-IR as well as higher serum BCAA concentrations. Subjects with the genetic variants for BCAT2 and BCKDH E1 α showed a lower serum BCAA concentration, and those with the ABCA1 and FTO gene variant showed higher levels of insulin and HOMA-IR than non-IR subjects. AT dysfunction is the result of a combination of the presence of some genetic variants, altered AT gene expression, the presence of MetS risk factors, IR, and serum BCAA concentrations.  相似文献   

12.
13.
14.
Adipokines are predominantly secretory protein hormones from adipose tissue but may also originate in placenta and other organs. Cross-sectionally, we monitored maternal plasma concentration of adiponectin, resistin, and leptin and their mRNA expression in abdominal subcutaneous adipose tissue and placenta from preeclamptic (PE; n = 15) and healthy pregnant (HP; n = 23) women undergoing caesarean section. The study groups were similar in age and BMI, whereas HOMA-IR tended to be higher in the PE group. In fasting plasma samples, the PE group had higher concentrations of adiponectin (18.3 +/- 2.2 vs. 12.2 +/- 1.1 microg/ml, P = 0.011), resistin (5.68 +/- 0.41 vs. 4.65 +/- 0.32 ng/ml, P = 0.028), and leptin (34.4 +/- 3.2 vs. 22.7 +/- 2.1 ng/ml, P = 0.003) compared with the HP group. Adiponectin and leptin concentrations were still different between PE and HP after controlling for BMI and HOMA-IR, whereas resistin concentrations differed only after controlling for BMI but not HOMA-IR. We found similar mean mRNA levels of adiponectin, resistin, and leptin in abdominal subcutaneous adipose tissue in PE and HP women. When data were pooled from PE and HP women, resistin mRNA levels in adipose tissue also correlated with HOMA-IR (r = 0.470, P = 0.012) after controlling for BMI and pregnancy duration. Resistin mRNA levels in placenta were not significantly different between PE and HP, whereas leptin mRNA levels were higher in PE placenta compared with HP. Thus increased plasma concentrations of adiponectin and resistin in preeclampsia may not relate to altered expression levels in adipose tissue and placenta, whereas both plasma and placenta mRNA levels of leptin are increased in preeclampsia.  相似文献   

15.
16.
17.
Brown adipose tissue in humans   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
20.
Adipocytes secrete many proteins that regulate metabolic functions. The gene inter-α (globulin) inhibitor H5 (ITIH-5) encodes a secreted protein and is known to be expressed abundantly in the placenta. However, using gene expression profiles data we observed high expression of ITIH-5 in adipose tissue. The aim of this study was to test the hypothesis that ITIH-5 is strongly expressed in human adipocytes and adipose tissue, and is related to obesity and clinical metabolic variables. ITIH-5 adipose tissue mRNA expression was analyzed with DNA microarray and real-time PCR, and its association with clinical variables was examined. ITIH-5 protein expression was analyzed using western blot. ITIH-5 mRNA expression was abundant in human adipose tissue, adipocytes, and placenta, and higher in subcutaneous (sc) compared to omental adipose tissue (P < 0.0001). ITIH-5 mRNA and protein expression in sc adipose tissue were higher in obese compared to lean subjects (P < 0.0001 and P < 0.001, respectively). ITIH-5 mRNA expression was reduced after diet-induced weight loss (P < 0.0001). ITIH-5 mRNA expression was associated with anthropometry and clinical metabolic variables. In conclusion, ITIH-5 is highly expressed in sc adipose tissue, increased in obesity, down regulated after weight loss, and associated with measures of body size and metabolism. Together, this indicates that ITIH-5 merits further investigation as a regulator of human metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号