首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to quantify the three-dimensional spatial strain distribution of a scoliotic spine by nonhomogeneous transformation without using a statistically averaged reference spine. The shape of the scoliotic spine was determined from computed tomography images from a female patient with adolescent idiopathic scoliosis. The shape of the scoliotic spine was enclosed in a rectangular grid, and symmetrized using a thin-plate spline method according to the node positions of the grid. The node positions of the grid were determined by numerical optimization to satisfy symmetry. The obtained symmetric spinal shape was enclosed within a new rectangular grid and distorted back to the original scoliotic shape using a thin-plate spline method. The distorted grid was compared to the rectangular grid that surrounded the symmetrical spine. Cobb's angle was reduced from 35° in the scoliotic spine to 7° in the symmetrized spine, and the scoliotic shape was almost fully symmetrized. The scoliotic spine showed a complex Green–Lagrange strain distribution in three dimensions. The vertical and transverse compressive/tensile strains in the frontal plane were consistent with the major scoliotic deformation. The compressive, tensile and shear strains on the convex side of the apical vertebra were opposite to those on the concave side. These results indicate that the proposed method can be used to quantify the three-dimensional spatial strain distribution of a scoliotic spine, and may be useful in quantifying the deformity of scoliosis.  相似文献   

2.
Adolescent idiopathic scoliosis involves complex tridimensional deformities of the spine, rib cage and pelvis. Moderate curves generally are treated using an orthosis. This paper presents different studies performed over the last fifteen years related to the biomechanical evaluation and optimization of the orthopedic treatment of scoliotic deformities. Patient specific 3D models of the spine, pelvis and rib cage are computed from calibrated radiographs, and are used to calculate 2D and 3D clinical indices. The torso shape is acquired using surface topography. With such internal and external 3D models, the efficacy of the most frequently used orthoses can be analyzed and new treatments can be developed. Pressures generated by a brace on the patient's trunk were measured using a flexible matrix of pressure sensors and displayed over the patient's internal geometry in order to analyze the brace efficacy. Patient specific finite element models have been developed, including the osseo-ligamentous structures as well as the muscles, the neuro-control, trunk growth and its adaptation to the stress. These models were used to analyze the effects of the Boston brace. The electro-myographic activity also was measured to analyze the < active > correction mechanisms. Adjustment techniques and software are used to help the orthotists with real time feedback when the brace is being fabricated and adjusted to the patient. Residual growth potential is also being added to the computer model to simulate the long term effect of a brace. The improvement of the orthotic treatments of scoliotic deformities is very encouraging. The exploitation of such tools is expected to allow reaching optimal treatment personalized to each patient. double dagger.  相似文献   

3.
4.

Background

Loads acting on scoliotic spines are thought to be asymmetric and involved in progression of the scoliotic deformity; abnormal loading patterns lead to changes in bone and disc cell activity and hence to vertebral body and disc wedging. At present however there are no direct measurements of intradiscal stresses or pressures in scoliotic spines. The aim of this study was to obtain quantitative measurements of the intradiscal stress environment in scoliotic intervertebral discs and to determine if loads acting across the scoliotic spine are asymmetric. We performed in vivo measurements of stresses across the intervertebral disc in patients with scoliosis, both parallel (termed horizontal) and perpendicular (termed vertical) to the end plate, using a side mounted pressure transducer (stress profilometry)

Methods

Stress profilometry was used to measure horizontal and vertical stresses at 5 mm intervals across 25 intervertebral discs of 7 scoliotic patients during anterior reconstructive surgery. A state of hydrostatic pressure was defined by identical horizontal and vertical stresses for at least two consecutive readings. Results were compared with similar stress profiles measured during surgery across 10 discs of 4 spines with no lateral curvature and with data from the literature.

Results

Profiles across scoliotic discs were very different from those of normal, young, healthy discs of equivalent age previously presented in the literature. Hydrostatic pressure regions were only seen in 14/25 discs, extended only over a short distance. Non-scoliotic discs of equivalent age would be expected to show large centrally placed hydrostatic nuclear regions in all discs. Mean pressures were significantly greater (0.25 MPa) than those measured in other anaesthetised patients (<0.07 MPa). A stress peak was seen in the concave annulus in 13/25 discs. Stresses in the concave annulus were greater than in the convex annulus indicating asymmetric loading in these anaesthetised, recumbent patients.

Conclusion

Intradiscal pressures and stresses in scoliotic discs are abnormal, asymmetrical and high in magnitude even in the absence of significant applied muscle loading. The origin of these abnormal stresses is unclear.  相似文献   

5.
A biomechanical analog of curve progression and orthotic stabilization in idiopathic scoliosis has been developed using the classical theory of curved beam-columns. The interaction of the spinal musculature and other supporting structures is incorporated in the model using an equivalent flexural rigidity. The stability of a given scoliotic curve relative to a normal spine is described in terms of the so-called critical load ratio (Pc/Pe). This dimensionless quantity appears in the exact solution of the governing differential equation and boundary conditions. It is defined as the ratio of the load bearing capacity of a scoliotic spine (Pc) to that of a normal spine where the load bearing capacity of a normal spine is defined as Euler's buckling load (Pe). The computation of Pc/Pe is based upon a maximum allowable moment criterion. This model is used to study the effect of the degree of initial curvature and curve pattern in the frontal plane on the stability of untreated idiopathic scoliosis. Although restricted to two-dimensions, the model appears to demonstrate the synergistic effects of end support, transverse loading, and curve correction on improvement in relative stability of an orthotically supported scoliotic curve. The results of this study are in qualitative agreement with clinical findings that are based on long-term studies of natural history of idiopathic scoliosis and of patients undergoing orthotic management for scoliosis.  相似文献   

6.
Scoliosis is a three-dimensional deformation of the spine that can be treated by vertebral fusion using surgical instrumentation. However, the optimal configuration of instrumentation remains controversial. Simulating the surgical maneuvers with personalized biomechanical models may provide an analytical tool to determine instrumentation configuration during the pre-operative planning. Finite element models used in surgical simulations display convergence difficulties as a result of discontinuities and stiffness differences between elements. A kinetic model using flexible mechanisms has been developed to address this problem, and this study presents its use in the simulation of Cotrel-Dubousset Horizon surgical maneuvers. The model of the spine is composed of rigid bodies corresponding to the thoracic and lumbar vertebrae, and flexible elements representing the intervertebral structures. The model was personalized to the geometry of three scoliotic patients (with a thoracic Cobb angle of 45 degrees, 49 degrees and 39 degrees ). Binary joints and kinematic constraints were used to represent the rod-implant-vertebra joints. The correction procedure was simulated using three steps: (1) Translation of hooks and screws on the first rod; (2) 90 degrees rod rotation; (3) Hooks and screws look-up on the rod. After the simulation, slight differences of 0-6 degrees were found for the thoracic spine scoliosis and the kyphosis, and of 1-8 degrees for the axial rotation of the apical vertebra and for the orientation of the plane of maximum deformity, compared to the real post-operative shape of the patient. Reaction loads at the vertebra-implant link were mostly below 1000 N, while reaction loads at the boundary conditions (representing the overall action of the surgeon) were in the range 7-470 N and maximum torque applied to the rod was 1.8 Nm. This kinetic modeling approach using flexible mechanisms provided a realistic representation of the surgical maneuvers. It may offer a tool to predict spinal geometry correction and assist in the pre-operative planning of surgical instrumentation of the scoliotic spine.  相似文献   

7.
8.
This in vivo study investigated the mechanical properties of apical scoliotic vertebrae using computed tomography (CT) and finite element (FE) meshing. CT examination was performed on seven scoliotic girls. FE meshing of each vertebral body allowed automatic mapping of the CT scan and the visualisation of the bone density distribution. Centroids and mass centres were compared to analyse the mechanical properties distribution. Compared to the centroid, the mass centre migrated into the concavity of the curvature. The three vertebrae of a same patient had the same body migration behaviour because they were located at the curvature apex. This observation was verified in the coronal plane, but not in the sagittal plane. These results represent new data over few geometrical analyses of scoliotic vertebrae. Same in vivo personalisation of mechanical properties should be performed on intervertebral discs or ligaments to personalise stiffness properties of the spine for the biomechanical modelling of human torso. Moreover, do this mechanical deformation of scoliotic vertebrae, that appears before the vertebral wedging, could be a predictive tool in scoliosis treatment?  相似文献   

9.
M Hasegawa  Y Watanabe 《Biorheology》1988,25(1-2):147-156
The tension-strain, stress-strain and stress relaxation curves of longitudinal and circumferential strips of proximal thoracic aortas in normal and WHHL rabbits of different ages were determined using a tensile testing instrument. Wall distensibility of longitudinal and circumferential strips was the greatest in the normal aorta and decreased with advancing age in the atherosclerotic aorta. The wall thickness of the atherosclerotic aorta was positively related to age with a correlation coefficient of 0.66(p less than 0.01). The incremental elastic moduli calculated from the stress-strain curves increased with advancing age in the atherosclerotic aorta. Accordingly, the decreased distensibility of the atherosclerotic wall may be due to the increased wall thickness caused by the intimal thickening as well as to the increase in wall stiffness caused by the increased elastic modulus. The viscoelasticity of the atherosclerotic aorta was larger than that of the normal aorta. This reflects the mechanical effect of atherosclerotic changes that occurred in the thickened intima.  相似文献   

10.

This in vivo study investigated the mechanical properties of apical scoliotic vertebrae using computed tomography (CT) and finite element (FE) meshing. CT examination was performed on seven scoliotic girls. FE meshing of each vertebral body allowed automatic mapping of the CT scan and the visualisation of the bone density distribution. Centroids and mass centres were compared to analyse the mechanical properties distribution. Compared to the centroid, the mass centre migrated into the concavity of the curvature. The three vertebrae of a same patient had the same body migration behaviour because they were located at the curvature apex. This observation was verified in the coronal plane, but not in the sagittal plane. These results represent new data over few geometrical analyses of scoliotic vertebrae. Same in vivo personalisation of mechanical properties should be performed on intervertebral discs or ligaments to personalise stiffness properties of the spine for the biomechanical modelling of human torso. Moreover, do this mechanical deformation of scoliotic vertebrae, that appears before the vertebral wedging, could be a predictive tool in scoliosis treatment?  相似文献   

11.
Connective tissue matrix components were investigated using skin fibroblasts from normal or inbred scoliotic lines of chickens. Specifically, the fibroblasts were obtained from either an isogenic line or a backcross, derived by crossing the isogenic line with a pure line of scoliotic birds. From the backcross, both affected (35-45%) and non-affected (55-65%) progeny were produced. The affected birds had spinal curves greater than 20 degrees. Several abnormalities of connective tissue were observed when cells from scoliotic chicks were grown in culture: increased collagen extractability, decreased aggregatability of proteoglycans under associative conditions and lower than normal levels of hyaluronic acid. There was also less collagen deposited in the cell layer with proportionately increased amounts of collagen secreted into the culture media by cells from scoliotic versus normal chick fibroblasts. Values for collagen matrix stability, as estimated by extractability and net deposition, were intermediate for cells from the backcrossed, but non-affected, birds. Moreover, hyaluronidase, an enzyme that degrades hyaluronic acid, was abnormally elevated in the fibroblast cultures from scoliotic chicks. It is proposed that the increase in hyaluronidase contributes to the abnormalities observed in extracellular matrix components and may be a factor in the expression of scoliosis in susceptible birds.  相似文献   

12.
An upright, muscle-relaxed human spine, suffering from a mild functional scoliosis, caused by a small difference in leg length, is modeled as an anisotropic, elastic beam. The lower end of the beam is built-in in a fixed body, i.e., the laterally tilted pelvis. The upper end is rigidly attached to a rigid body, i.e., the supported upper part of the trunk, which is supposed to move freely in the frontal plane. It is shown that the characteristic scoliotic curvature of the spine, observed on an X-ray picture, can be reproduced by means of buckling analysis of the beam model, using realistic values of geometric and loading parameters and a properly chosen bending stiffness, which is found to be in reasonable agreement with earlier experimental findings. The analysis also shows that the muscle-relaxed upright equilibrium position of the spine is mechanically unstable.  相似文献   

13.
目的:对比一期后路半椎体切除短节段植骨融合内固定术与一期前路半椎体切除短节段植骨融合内固定术治疗先天性半椎体畸形的疗效。方法:抽取兰州军区兰州总医院骨科中心脊柱外科46例住院手术治疗先天性半椎体畸形的患者,随机化分为2组,每组23例,分别行一期后路半椎体切除短节段植骨融合内固定术和一期前路半椎体切除短节段植骨融合内固定术,观察比较两纽的手术时间、出血量、术后住院时间、术前和术后6个月侧凸cobb角、后凸cobb角及矫正率。结果:两组间的手术时间、出血量、术后住院时间、术后6个月后凸cobb角及后凸矫正率对比差异有统计学意义。结论:一期后路半椎体切除短节段植骨融合内固定术在后凸畸形矫正方面优于一期前路半椎体切除短节段植骨融合内固定术,且其手术创伤较小、术后恢复较快。  相似文献   

14.

Background

Spinal cord compression and associate neurological impairment is rare in patients with scoliosis and neurofibromatosis. Common reasons are vertebral subluxation, dislocation, angulation and tumorous lesions around the spinal canal. Only twelve cases of intraspinal rib dislocation have been reported in the literature. The aim of this report is to present a case of rib penetration through neural foramen at the apex of a scoliotic curve in neurofibromatosis and to introduce a new clinical sign for its detection.

Methods

A 13-year-old girl was evaluated for progressive left thoracic kyphoscoliotic curve due to a type I neurofibromatosis. Clinical examination revealed multiple large thoracic and abdominal "cafe-au-lait" spots, neurological impairment of the lower limbs and the presence of a thoracic gibbous that was painful to pressure at the level of the left eighth rib (Painful Rib Hump). CT-scan showed detachment and translocation of the cephalic end of the left eighth rib into the adjacent enlarged neural foramen. The M.R.I. examination of the spine showed neither cord abnormality nor neurogenic tumor.

Results

The patient underwent resection of the intraspinal mobile eighth rib head and posterior spinal instrumentation and was neurologically fully recovered six months postoperatively.

Conclusion

Spine surgeons should be aware of intraspinal rib displacement in scoliotic curves in neurofibromatosis. Painful rib hump is a valuable diagnostic tool for this rare clinical entity.  相似文献   

15.
A three-dimensional mathematical model useful for studies of the mechanics of the human skeletal thorax is described. To construct this model, rib cage elements are incorporated into a previously reported model of the thoracolumbar spine. The vertebrae and bony portions of the ribs and sternum are idealized as rigid bodies. The behavior of the discs, ligaments and costal cartilages are modelled by deformable elements. Appropriate geometric and stiffness property data are assigned to the elements of the model. In constructing the model, it was found that the mechanical response of the costo-vertebral joint is strongly influenced by articulation geometry. Although rigid bodies were used to model calcified portions of the ribs, the model predicted rib cage deformations in close agreement with those measured experimentally. These studies indicate that the rigid body motion of calcified portions of the rib makes a major contribution to the deformation of the rib cage in response to certain types of loadings. Quantitative results are also reported on the roles the rib cage plays in bending responses of the spine, the lateral stability of the spine, and the production and correction of several scoliotic deformities.  相似文献   

16.

Background

Although it is speculated that scoliosis may induce cardiac dysfunction, there is no report about evaluation of cardiac function, especially right cardiac function in patients with scoliosis. Therefore, we evaluated right ventricular function in idiopathic scoliotic patients with mild to severe curves and compared them with healthy children and adolescents matched in age, then explored relationship between scoliosis and right ventricular function.

Methods

Thirty-seven patients diagnosed with idiopathic scoliosis with a mean age of 16y/o (range, 8-25y/o) and an average spine curve of 77.5°Cobb (range, 30-157°) were studied by echocardiography. TAD was obtained using M-mode echocardiography. Similar examination was performed in a control group of 17 healthy individuals in matched-age. According to the different curve degree, all patients were divided into 3 groups (mild, moderate and severe). Comparison was done among the groups and the relationship between TAD and spine curve of Cobb was analyzed.

Results

Patients with severe scoliosis showed depressed TAD. There was good correlation between TAD and spine curve of Cobb.

Conclusions

Patients with severe scoliosis showed a significant lower right ventricular systolic function.  相似文献   

17.
The amounts of lysine-derived crosslinks in collagens from tendon, cartilage, intervertebral disc, and bone and changes in the composition of sternal cartilage glycosaminoglycans were estimated in two lines of chickens, a control-isogenic line and a line that develops scoliosis. In the scoliotic line, scoliosis first appears at 3-4 weeks and progressively increases in severity and incidence so that 90% of the birds express the lesion by week 10. We have reported previously that cartilage, tendon, and bone collagens from scoliotic birds are more soluble than corresponding collagens from normal birds. Herein, collagen crosslinking and altered proteoglycan metabolism are examined as possible mechanisms for the differences in collagen solubility. At 1 week of age there were fewer reducible crosslinking amino acids (hydroxylysinonorleucine, dihydroxylysinonorleucine, and lysinonorleucine) in collagens from sternal cartilage and tendon in the scoliotic line than in the isogenic line. However, by week 3 and at weeks 5 or 7 values were similar in both groups. The amounts of hydroxypyridinium in vertebral bone and intervertebral disc collagen were also similar in both groups of birds. Consequently, differences in collagen crosslinking do not appear to be a persistent developmental defect underlying the expression of scoliosis in the model. However, differences were observed in cartilage proteoglycans and glycosaminoglycans from the scoliotic line that were not present in cartilage from the isogenic line. The average molecular weight of the uronide-containing glycosaminoglycans was 30% less in the scoliotic line than in the isogenic line, i.e., 12,000 compared to 18,000. The size distribution of cartilage proteoglycans from the scoliotic line also differed from that of proteoglycans from the isogenic line.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The paper studies the age-related X-ray features of the spine in patients with achondroplasia. It gives the time course of changes in the shape of vertebrae, the specific features of apophyseal ossification, provides a quantitative account of the shorter caudal lumbar vertebral arch root distance symptom. The time course of changes in the size of the lumbosacral angle was examined. The findings suggest that there are not only considerable static changes in the spine of patients with achondroplasia, but also significant age-related features of vertebral tissue growth and differentiation.  相似文献   

19.
The blood flow velocity near the central axis of the canine ascending aorta was measured with a hot-film anemometer. The cardiac output and the heart rate were controlled at will by means of an extracorporeal circulation and by atrial pacing. The turbulent component of the blood flow velocity was calculated using an ensemble average technique. Ensemble average turbulent intensity was also calculated to show the time course of turbulence in the aorta. The ratio of the mean turbulence intensity to the time mean sectional average velocity in the aorta was constant in most animals regardless of the changes in fluid mechanical parameters. The correlation between the frequency parameter and the relative mean turbulence intensity was weakly positive. The power spectrum of the turbulence was also calculated.  相似文献   

20.
In spinal deformation studies, three-dimensional reconstruction of the spine is frequently represented as a curve in space fitted to the vertebral centroids. Conventional interpolation techniques such as splines, Bezier and the least squares method are limited since they cannot describe precisely the great variety of spinal morphologies. This article presents a more general technique called dual kriging, which includes two mathematical constituents (drift and covariance) to adjust the interpolated functions to spinal deformity better. The cross-validation technique was used to compare the parametric representations of spinal curves with different combinations of drift and covariance functions. Model validation was performed from a series of analytic curves reflecting typical scoliotic spines. Calculation of geometric torsion, a sensitive parameter, was done to evaluate the accuracy of the kriging models. The best model showed an absolute mean difference of 1.2 x 10(-5) (+/- 7.1 x 10(-5) ) mm(-1) between the analytical and estimated geometric torsions compared to 5.25 x 10(-3) (+/- 3.7 x 10(-2) ) mm(-1) for the commonly used least-squares Fourier series method, a significant improvement in spinal torsion evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号