首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A study was made of linolenic acid-dependent oxidative chlorophyll bleaching (CHLOX) by thylakoid membranes from senescing leaf tissue of a normal cultivar (cv. Rossa) and a non-yellowing mutant genotype (Bf 993) of Festuca pratensis Huds. To overcome the problem of variation in levels of endogenous chlorophyll substrate in membranes from different sources, light-harvesting complex (LHC) was used to supplement thylakoid pigment. It was shown that CHLOX is associated with both Photosystem I and LHC-rich thylakoid subfractions but that purified LHC has negligible associated CHLOX activity and stimulates the rate of bleaching by isolated entire chloroplast membranes. Non-senescent tissue of Bf 993 and Rossa had essentially identical thylakoid CHLOX levels, which subsequently declined during senescence in darkness. The half-life of CHLOX from the mutant was three times greater than that of the normal genotype. In both cultivars, the amount of CHLOX assayed in thylakoids isolated at different times during senescence was more than adequate to support the corresponding in-vivo rate of pigment degradation as calculated from the half-life for chlorophyll. It was concluded that the non-yellowing mutation is not expressed through a lack of CHLOX activity. The role of linolenic acid metabolism in the regulation of thylakoid structure and function during senescence, and as a likely site of the non-yellowing lesion, are discussed.Abbreviations CHLOX linolenic acid-dependent oxidative chlorophyll bleaching activity - CHLPX chlorophyll peroxidase - CPI chlorophyll-protein complex I - LHC light-harvesting complex - LNA linolenic acid - PSI photosystem I - PSII photosystem II - S relative senescence rate - t 1/2 lialf time for degradation  相似文献   

2.
Suspension cultures from mature embryo-derived compact callus were initiated in seven meadow fescue (Festuca pratensis Huds.) cultivars. Four to six months after initiation, embryogenic suspension cultures with a moderate growth rate were established from three of them (cvs. Barmondo, Belimo and Leopard). These suspension cultures showed the capacity, maintained over six months, to regenerate green plants which could be grown to maturity under greenhouse conditions.Morphogenic suspension cultures from single genotypes of three F. pratensis cultivars (cvs. Barmondo, Belimo and Leopard) yielded large numbers of protoplasts, which upon culture in agarose beads using nurse cells formed microcalli with an overall plating efficiency in the range of 10-3 to 10-4. Mature plants were reproducibly regenerated and established in soil, from such protoplasts during a period of six months. The regeneration of fertile plants from protoplasts derived from suspension cultures of meadow fescue and its implications on gene transfer technology for this species are discussed.Abbreviations 2,4-D 2,4-dichlorophenoxy-acetic acid.  相似文献   

3.
High molecular weight ribosomal RNA components and their pattern of loss on ageing of excised leaf sections were the same in the non-yellowing mutant and the normal genotype of Festuca pratensis even though the mutant showed retarded chlorophyll loss. Thus it appears that the genetic lesion does not extend to changes in the ribosomal RNA components of chloroplasts or cytoplasm.  相似文献   

4.
In a mutant genotype of Festuca pratensis Huds., net degradation of a number of thylakoid membrane proteins during senescence is impaired. Previous studies have suggested that the highly hydrophobic intrinsic chlorophyll-binding proteins were the definitive subjects of the metabolic lesion. In the present study we find that cytochrome f, as determined by haem-staining, Western blotting, enzyme-linked immunosorbent assay, and immunogold electron microscopy, is also abnormally stable in the mutant. The structural feature common to all the proteins in the mutant so far recognized to be abnormally stable is possession of a tetrapyrrole prosthetic group. It is suggested that degradation of chlorophyll and haem may regulate degradation of the associated apoproteins, and hence has an important role to play in membrane protein turnover and in mobilisation of amino acids during chloroplast disassembly.  相似文献   

5.
Permanent pastures and meadows are species-rich vegetation systems that play an important role in the ecology and agriculture of temperate climates. Intensive management reduces species diversity and may also influence the genetic diversity within individual species and populations. The objective of this study was to assess genetic variability of meadow fescue, an important component of species-rich grasslands, and to determine whether fertilization and defoliation frequency influence genetic variability within natural populations. Genetic diversity of six natural populations and three cultivars of Festuca pratensis was investigated using randomly amplified polymorphic DNA (RAPD) markers and agronomic traits. Samples of natural populations were taken from two unrelated long-term experiments, where treatments had been applied for 11–38 years. RAPD analysis detected a clear genetic distinction of the cultivars from the natural populations. Genetic variability within cultivars was lower than within natural populations. Analysis of molecular variance ( AMOVA ) showed a significant effect of management on genetic variability. Fertilization and frequent defoliation led to a reduction in genetic variability within natural populations. Analysis of agronomic traits was only partially congruent with the results of RAPD analysis. This study shows that significant genetic variability exists within cultivars and natural populations of Festuca pratensis and can be reduced by intensive management.  相似文献   

6.
7.
Howard Thomas 《Planta》1977,137(1):53-60
A study was made of the structure and function of senescent chloroplasts from a non-yellowing (NY) mutant of Festuca pratensis. Electron microscopy suggested that the stroma matrix was destroyed but that thylakoid membranes persisted in a loose, unstacked condition. By contrast, chloroplasts from the normal (Y) genotype lost both stroma and recognizable thylakoid systems. Fraction 1, the major protein of the stroma, disappeared from Y and NY at similar rates during senescence. The activities of photosystems I and II from NY also declined at a similar rate to Y photosystems. Polypeptides of chloroplast membranes were separated by SDS gel electrophoresis into at least 30 components. There was considerable heterogeneity in rates of breakdown of the different protein species of the membranes. Of the five major polypeptide components, two had kinetics of breakdown similar to those of stroma proteins and were lost from NY and Y at about the same rate, whereas the remaining three (one of which was tentatively identified as the apoprotein of the light-harvesting chlorophyll-protein complex) were more stable in NY than in Y. These results are discussed in relation to the mechanism and function of chloroplast disintegration during leaf senescence.Abbreviations RuDPC ribulose diphosphate carboxylase - NY and Y non-yellowing and normal genotypes of Festuca, respectively - PSI and PSII photosystems I and II, respectively - SDS sodium dodecyl sulphate - MW molecular weight - CF coupling factor  相似文献   

8.
9.
The “BF14/16×HF2/7” mapping population of meadow fescue (Festuca pratensis Huds.) was characterised for number of panicles produced by non-vernalised plants in the field, vernalisation requirement (number of weeks at 6°C and 8 h photoperiod), as well as days to heading, number of panicles and proportion of shoots heading after a 12 weeks vernalisation treatment. Quantitative trait loci (QTLs) were identified and compared to QTLs and genes related to the induction of flowering in cereals and grasses. A region on chromosome 1F affected days to heading and the proportion of shoots heading. Chromosome 4F appeared to have several genes with a strong effect on vernalisation requirement. The strongest effects were located in the proximal end of 4F and may correspond to the earliness per se (eps) QTL eps6L.2 in barley and a heading time QTL in perennial ryegrass. A part of the meadow fescue orthologue of VRN1 was sequenced and mapped to another region of 4F that also had a strong effect on vernalisation requirement. The proximal end of chromosome 5F had QTLs for days to heading and proportion of heading shoots. Syntenic regions in wheat and barley contain eps-loci. A QTL for number of panicles in the field and a QTL for proportion of heading shoots were present on chromosome 6. A region on 7F affected the variation in number of panicles among plants without a vernalisation requirement, and is syntenic to regions in perennial ryegrass, barley and rice containing orthologues of Arabidopsis thaliana CO.  相似文献   

10.
The lipid compositions of leaves from Festuca pratensis cv. Rossa (yellowing) were compared with those from a non-yellowing mutant, Bf 993. The leaves of Bf 993 contained a higher level of acyl lipids on both a fresh-weight and a dry-weight basis. Diacylgalactosylglycerol, diacylgalabiosylglycerol and phosphatidylinositol were relatively enriched in the Bf 993 mutant while phosphatidylcholine was relatively reduced. There were no differences in the fatty-acid compositions of individual lipids between the two varieties. During senescence, the lipids of cv. Rossa were progressively degraded over an 8-d period. In contrast little lipid degradation was observed in the Bf 993 mutant during the first 4 d. The results support the hypothesis that the slower senescence changes of the Bf 993 mutant may be due, in part, to an altered membrane lipid composition.II=Thomas (1982b)  相似文献   

11.
Howard Thomas 《Planta》1982,154(3):212-218
Soluble and thylakoid membrane polypeptides from senescing leaf tissue of Rossa, a normal yellowing Festuca pratensis genotype, were fractionated by sodium dodecyl sulphate polyacrylamide gel electrophoresis and compared with those of the non-yellowing mutant Bf 993. Subunits of ribulose-1,5-bisphosphate carboxylase were the major soluble polypeptides and declined to low levels in senescing leaves of both genotypes. The major thylakoid polypeptides were those associated with the chlorophyllprotein complexes CPI and CPII. The levels of all thylakoid polypeptide species fell during senescence of Rossa leaf tissue but Bf993 lamellae retained CPI, CPII and a number of other hydrophobic low molecular weight polypeptides. The increasing hydrophobicity and decreasing protein complement of Bf 993 thylakoids were reflected in a fall in membrane density from 1.16 to 1.13 g cm-3 over 8 d of senescence and a decline in the extractability of chlorophyll-containing membranes in the same period. In Bf993 the molar ratio of chlorophyll to hydrophobic membrane protein increased from 92 at day 0 to 296 at day 8. In the same time the ratio for Rossa increased from 88 to 722 and 8 d-senesced Rossa tissue yielded less than 2% of the solvent-soluble protein it contained at day 0 as compared with 24% for the protein of Bf993. These results are discussed in relation to the nature of the non-yellowing lesion.Abbreviations RuBPC ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - EDTA ethylenediaminetetraacetate - SDS sodium dodecyl sulphate - CP chlorophyll-protein complex  相似文献   

12.
Flowering requirements of Scandinavian Festuca pratensis   总被引:1,自引:0,他引:1  
Flowering requirements of three Scandinavian cultivars of Festuca pratensis Huds, have been studied in controlled environments. At 3 and 6°C, primary induction was independent of photoperiod, while short days (8 h) were more effective than long days (24 h) at higher temperatures. The critical temperature for induction was about 15°C in short days and about 12°C in long days. Saturation of induction required 18–20 weeks of exposure to optimal conditions. At temperatures below 12°C both induction and initiation of inflorescence primordia took place in long days, while a transition to long days was required for inflorescence initiation after primary induction in short days. A minimum of 8 long-day cycles were required for flowering of plants primary induced in short days and saturation of flowering required more than 16 cycles. The critical photoperiod for secondary induction was about 13 h. High temperature (21°C) had some devernalization effect in primary induced plants, suppressing flowering compared with 15°C.  相似文献   

13.
A cytological and molecular analysis was performed to assess the genetic uniformity and true-to-type character of plants regenerated from 20 week-old embryogenic suspension cultures of meadow fescue (Festuca pratensis Huds.), and compared to protoplastderived plants obtained from the same cell suspension. Cytological variation was not observed in a representative sample of plants regenerated directly from the embryogenic suspensions and from protoplasts isolated therefrom. Similarly, no restriction fragment length polymorphisms (RFLPs) were detected in the mitochondrial, plastid and nuclear genomes in the plants analyzed. Randomly amplified polymorphic DNA markers (RAPDs) have been used to characterise molecularly a set of mature meadow fescue plants regenerated from these in vitro cultures. RAPD markers using 18 different short oligonucleotide primers of arbitrary nucleotide sequence in combination with polymerase chain reaction (PCR) allowed the detection of pre-existing polymorphisms in the donor genotypes, but failed to reveal newly generated variation in the protoplast-derived plants compared to their equivalent suspensionculture regenerated materials.The genetic stability of meadow fescue plants regenerated from suspension cultures and protoplasts isolated therefrom and its implications on gene transfer technology for this species are discussed.Abbreviations PCR polymerase chain reaction - RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism.  相似文献   

14.
The composition and amount of pigments were studied in temperature-dependent chlorophyll-deficient seedlings of wild type (control) and several mutant lines of Festuca pratensis Huds. at room (25°C) and high (35°C) temperatures. In seedlings of all mutant lines grown at 25°C, chlorophyll b content was lower and the concentration of carotenoids was higher than in control seedlings. At 35°C, the concentration of all pigments decreased in a row from dark-green to xantha phenotypes, and this trend was retained when the temperature was lowered to 25°C. The phenotype xantha completely lacked violaxanthin and neoxanthin. The observed effects are related to the protective dissipative function of the xanthophyll cycle.  相似文献   

15.
Chlorophyll levels in l-cm sections of the youngest fully expanded leaves of normal (Y) Festuca pratensis L. declined almost to zero over a period of 6 days after excision. Chlorophyll in a mutant genotype (NY) remained near the initial level for the whole of this period. Abscisic acid promoted pigment loss in Y but had no significant effect on chlorophyll in NY. Kinetin retarded pigment loss in Y but was ineffective in NY. Other biochemical changes associated with leaf senescence—reduction in protein content and the appearance of novel isoenzymes of α-naphthyl acetate esterases—occurred in both genotypes. Abscisic acid accelerated protein breakdown, whereas kinetin inhibited the loss of protein in both genotypes. The mutation thus appears to be expressed as a highly specific lesion in pigment metabolism. We concluded that pigment breakdown, which is widely used as an index of leaf senescence, may not be an inevitable part of the aging process.  相似文献   

16.
Fluorescent compounds (FCs) with spectral properties comparable to those of lipofuscin-like compounds are present in aqueous methanolic extracts of senescent meadow fescue, Festuca pratensis Huds., leaves. An HPLC system for the separation of FC from other fluorescent materials was developed. The chromatograms suggest that the FC-fraction consists of a large number of chemically related compounds. FCs are accumulated during senescence in leaves of a yellowing genotype, cv. Rossa. In leaves of a non-yellowing genotype, Bf 993, only traces of FCs appear at advanced stages of senescence.
FCs are regarded as final products of lipid peroxidation. Since both yellowing and non-yellowing genotypes are competent with regard to the degradation of galactolipids (the potential sources of polyunsaturated fatty acids) as well as regarding lipoxygenase (EC 1.13.11.12; a key enzyme of lipid peroxidation), and since incompentence to degrade chlorophyll is associated with lack of FC accumulation in the mutant genotype, it is hypothesized that the polar FCs present in senescent F. pratensis leaves represent catabolites of chlorophyll.  相似文献   

17.
The loss of pigments was assessed in detached leaves of Festuca pratensis Huds. kept in permanent darkness. Two genotypes, a normal yellowing cultivar Rossa and a non-yellowing mutant Bf 993 were compared with each other. Analysis of individual pigments, chlorophylls. β-carotene, lutein, violaxanthin and neoxanthin was performed using HPLC. In the non-yellowing genotype the high retention of chlorophylls was associated with an equally high retention of total carotenoids. Although the two genotypes differ markedly with regard to the rate of pigment loss, the ratios of yellow to green pigments did not change significantly during dark-induced senescence. At the end of the senescence period β-carotene was retained to a higher degree than the xanthophylls, particularly in the yellowing genotype. In the mutant leaves the ratio of chlorophyll a to b remained nearly constant, whereas in leaves of the normal genotype a preferential retention of chlorophyll b was observed towards the end of the senescence period. It is concluded that the thylakoids of the non-yellowing genotype retain all the principal components of protein-pigment complexes, i.e. chlorophylls, carotenoids and apoproteins. Possible explanations for the stability of these complexes in the mutant are discussed.  相似文献   

18.
19.
Introgression in Festulolium is a potentially powerful tool to isolate genes for a large number of traits which differ between Festuca pratensis Huds. and Lolium perenne L. Not only are hybrids between the two species fertile, but the two genomes can be distinguished by genomic in situ hybridisation and a high frequency of recombination occurs between homoeologous chromosomes and chromosome segments. By a programme of introgression and a series of backcrosses, L. perenne lines have been produced which contain small F. pratensis substitutions. This material is a rich source of polymorphic markers targeted towards any trait carried on the F. pratensis substitution not observed in the L. perenne background. We describe here the construction of an F. pratensis BAC library, which establishes the basis of a map-based cloning strategy in L. perenne. The library contains 49,152 clones, with an average insert size of 112 kbp, providing coverage of 2.5 haploid genome equivalents. We have screened the library for eight amplified fragment length polymorphism (AFLP) derived markers known to be linked to an F. pratensis gene introgressed into L. perenne and conferring a staygreen phenotype as a consequence of a mutation in primary chlorophyll catabolism. While for four of the markers it was possible to identify bacterial artificial chromosome (BAC) clones, the other four AFLPs were too repetitive to enable reliable identification of locus-specific BACs. Moreover, when the four BACs were partially sequenced, no obvious coding regions could be identified. This contrasted to BACs identified using cDNA sequences, when multiple genes were identified on the same BAC.  相似文献   

20.
The senescence of leaves is characterized by yellowing as chlorophyll pigments are degraded. Proteins of the chloroplasts also decline during this phase of development. There exists a non-yellowing mutant genotype of Festuca pratensis Huds. which does not suffer a loss of chlorophyll during senescence. The fate of chloroplast membrane proteins was studied in mutant and wild-type plants by immune blotting and immuno-electron microscopy. Intrinsic proteins of photosystem II, exemplified by the light-harvesting chlorophyll a/b-binding protein (LHCP-2) and D1, were shown to be unusually stable in the mutant during senescence, whereas the extrinsic 33-kilodalton protein of the oxygen-evolving complex was equally lable in both genotypes. An ultrastructural study revealed that while the intrinsic proteins remained in the internal membranes of the chloroplasts, they ceased to display the heterogenous lateral distribution within the lamellae which was characteristic of nonsenescent chloroplasts. These observations are discussed in the light of possible mechanisms of protein turnover in chloroplasts.Abbreviations kDa kilodalton - LHCP-2 light-harvesting chlorophyll a/b-binding protein - Mr relative molecular mass - PSII photosystem II - SDS sodium dodecyl sulphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号