首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The IkappaB kinase (IKK) complex includes the catalytic components IKKalpha and IKKbeta in addition to the scaffold protein IKKgamma/NEMO. Increases in the activity of the IKK complex result in the phosphorylation and subsequent degradation of IkappaB and the activation of the NF-kappaB pathway. Recent data indicate that the constitutive activation of the NF-kappaB pathway by the human T-cell lymphotrophic virus, type I, Tax protein leads to enhanced phosphorylation of IKKgamma/NEMO by IKKbeta. To address further the significance of IKKbeta-mediated phosphorylation of IKKgamma/NEMO, we determined the sites in IKKgamma/NEMO that were phosphorylated by IKKbeta, and we assayed whether IKKgamma/NEMO phosphorylation was involved in modulating IKKbeta activity. IKKgamma/NEMO is rapidly phosphorylated following treatment of cells with stimuli such as tumor necrosis factor-alpha and interleukin-1 that activate the NF-kappaB pathway. By using both in vitro and in vivo assays, IKKbeta was found to phosphorylate IKKgamma/NEMO predominantly in its carboxyl terminus on serine residue 369 in addition to sites in the central region of this protein. Surprisingly, mutation of these carboxyl-terminal serine residues increased the ability of IKKgamma/NEMO to stimulate IKKbeta kinase activity. These results indicate that the differential phosphorylation of IKKgamma/NEMO by IKKbeta and perhaps other kinases may be important in regulating IKK activity.  相似文献   

6.
7.
8.
Kamata H  Manabe T  Oka Si  Kamata K  Hirata H 《FEBS letters》2002,519(1-3):231-237
The cellular redox state regulates nuclear factor-kappaB (NF-kappaB) signaling systems. We investigated the effects of H2O2 on inhibitor of NF-kappaB (IkappaB) kinases (IKKalpha and IKKbeta), which phosphorylate IkappaB leading to its degradation and NF-kappaB activation. Tumor necrosis factor (TNF) stimulation increased IKK activity within 10 min, and then IKK activity decreased gradually within 30 min in HeLa cells. Stimulation of the cells with H2O2 induced a slight activation of IKK within 30 min. Furthermore, co-stimulation with TNF suppressed the downregulation of IKK and sustained the activation for more than 30 min. H2O2 also markedly activated IKK in cells that were pretreated with TNF or phorbol myristate acetate. Electrophoretic mobility shift assay revealed that H2O2 enhanced TNF-induced NF-kappaB activation. Studies using IKK mutants and an antibody against phosphorylated IKK proteins revealed that phosphorylation of serine residues, Ser180 of IKKalpha and Ser181 of IKKbeta, in the activation loops was essential for the H2O2-mediated activation of IKK. H2O2-induced activation of IKKalpha and IKKbeta was reduced by IKKbeta and IKKalpha kinase-negative mutants, respectively, indicating that IKKalpha and IKKbeta were stimulated by H2O2 in an interdependent manner. These results suggest that oxidative radical stress has stimulatory effects on NF-kappaB through the activation of IKK, which is mediated by the phosphorylation of serine residues in the activation loops.  相似文献   

9.
10.
The mammalian target of rapamycin (mTOR) is a mediator of cell growth, survival, and energy metabolism at least partly through its ability to regulate mRNA translation. mTOR is activated downstream of growth factors such as insulin, cytokines such as TNF, and Akt-dependent signaling associated with oncoprotein expression. mTOR is negatively controlled by the tuberous sclerosis complex 1/2 (TSC1/2), and activation of Akt induces phosphorylation of TSC2, which blocks the repressive TSC1/2 activity. Previously, we showed that activation of mTOR in PTEN-deficient cancer cells involves IkappaB kinase (IKK) alpha, a catalytic subunit of the IKK complex that controls NF-kappaB activation. Recently, a distinct IKK subunit, IKKbeta, was shown to phosphorylate TSC1 to promote mTOR activation in an Akt-independent manner in certain cells stimulated with TNF and in some cancer cells. In this study, we have explored the involvement of both IKKalpha and IKKbeta in insulin- and TNF-induced mTOR activation. Insulin activation of mTOR requires Akt in a manner that involves IKKalpha, preferentially to IKKbeta, and TSC2 phosphorylation. TNF, in most cells examined, activates Akt to use IKKalpha to control mTOR activation. In MCF7 cells, TNF does not activate Akt and requires IKKbeta to activate mTOR. The results show that Akt-dependent signaling, induced by cytokines or insulin, alters the IKK subunit-dependent control of mTOR.  相似文献   

11.
12.
To understand the mechanism of activation of the IkappaB kinase (IKK) complex in the tumor necrosis factor (TNF) receptor 1 pathway, we examined the possibility that oligomerization of the IKK complex triggered by ligand-induced trimerization of the TNF receptor 1 complex is responsible for activation of the IKKs. Gel filtration analysis of the IKK complex revealed that TNFalpha stimulation induces a large increase in the size of this complex, suggesting oligomerization. Substitution of the C-terminal region of IKKgamma, which interacts with RIP, with a truncated DR4 lacking its cytoplasmic death domain, produced a molecule that could induce IKK and NF-kappaB activation in cells in response to TRAIL. Enforced oligomerization of the N terminus of IKKgamma or truncated IKKalpha or IKKbeta lacking their serine-cluster domains can also induce IKK and NF-kappaB activation. These data suggest that IKKgamma functions as a signaling adaptor between the upstream regulators such as RIP and the IKKs and that oligomerization of the IKK complex by upstream regulators is a critical step in activation of this complex.  相似文献   

13.
14.
A singular feature of human neutrophils is that they constitutively express substantial amounts of NF-kappaB/Rel proteins and IkappaB-alpha in the nucleus. In this study, we show that in these cells, IkappaB kinase alpha (IKKalpha), IKKbeta, and IKKgamma also partially localize to the nucleus, whereas IKK-related kinases (IKKepsilon, TANK-binding kinase-1) are strictly cytoplasmic, and the NF-kappaB-inducing kinase is strictly nuclear. Following neutrophil activation, IKKbeta and IKKgamma become transiently phosphorylated in both the cytoplasm and nucleus, whereas IKKalpha transiently vanishes from both compartments in what appears to be an IKKbeta-dependent process. These responses are paralleled by the degradation of IkappaB-alpha, and by the phosphorylation of RelA on serine 536, in both compartments. Although both proteins can be IKK substrates, inhibition of IKK prevented IkappaB-alpha phosphorylation, while that of RelA was mostly unaffected. Finally, we provide evidence that the nuclear IKK isoforms (alpha, beta, gamma) associate with chromatin following neutrophil activation, which suggests a potential role in gene regulation. This is the first study to document IKK activation and the phosphorylation of NF-kappaB/Rel proteins in primary neutrophils. More importantly, our findings unveil a hitherto unsuspected mode of activation for the IKK/IkappaB signaling cascade within the cell nucleus.  相似文献   

15.
16.
The IkappaB kinase (IKK) complex, composed of two catalytic subunits (IKKalpha and IKKbeta) and a regulatory subunit (IKKgamma), is the key enzyme in activation of nuclear factor kappaB (NF-kappaB). To study the mechanism and structure of the complex, we wanted to recombinantly express IKK in a model organism that lacks IKK. For this purpose, we have recombinantly reconstituted all three subunits together in yeast and have found that it is biochemically similar to IKK isolated from human cells. We show that there is one regulatory subunit per kinase subunit. Thus, the core subunit composition of IKKalpha.beta.gamma complex is alpha(1)beta(1)gamma(2), and the core subunit composition of IKKbeta.gamma is beta(2)gamma(2). The activity of the IKK complex (alpha+beta+gamma or beta+gamma) expressed in yeast (which lack NF-kappaB and IKK) is 4-5-fold higher than an equivalent amount of IKK from nonstimulated HeLa cells. In the absence of IKKgamma, IKKbeta shows a level of activity similar to that of IKK from nonstimulated HeLa cells. Thus, IKKgamma activates IKK complex in the absence of upstream stimuli. Deleting the gamma binding domain of IKKbeta or IKKalpha prevented IKKgamma induced activation of IKK complex in yeast, but it did not prevent the incorporation of IKKgamma into IKK and large complex formation. The possibility of IKK complex being under negative control in mammalian cells is discussed.  相似文献   

17.
18.
19.
Activation of NF-kappaB by the pro-inflammatory cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1) requires the IkappaB kinase (IKK) complex, which contains two kinases named IKKalpha and IKKbeta and a critical regulatory subunit named NEMO. Although we have previously demonstrated that NEMO associates with both IKKs, genetic studies reveal that only its interaction with IKKbeta is required for TNF-induced NF-kappaB activation. To determine whether NEMO and IKKalpha can form a functional IKK complex capable of activating the classical NF-kappaB pathway in the absence of IKKbeta, we utilized a panel of mouse embryonic fibroblasts (MEFs) lacking each of the IKK complex subunits. This confirmed that TNF-induced IkappaBalpha degradation absolutely requires NEMO and IKKbeta. In contrast, we consistently observed intact IkappaBalpha degradation and NF-kappaB activation in response to IL-1 in two separate cell lines lacking IKKbeta. Furthermore, exogenously expressed, catalytically inactive IKKbeta blocked TNF- but not IL-1-induced IkappaBalpha degradation in wild-type MEFs, and reconstitution of IKKalpha/beta double knockout cells with IKKalpha rescued IL-1- but not TNF-induced NF-kappaB activation. Finally, we have shown that incubation of IKKbeta-deficient MEFs with a cell-permeable peptide that blocks the interaction of NEMO with the IKKs inhibits IL-1-induced NF-kappaB activation. Our results therefore demonstrate that NEMO and IKKalpha can form a functional IKK complex that activates the classical NF-kappaB pathway in response to IL-1 but not TNF. These findings further suggest NEMO differentially regulates the fidelity of the IKK subunits activated by distinct upstream signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号