首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
To investigate eosinophil stimulation by chemokines we developed a sensitive assay of leukocyte shape change, the gated autofluorescence/forward scatter assay. Leukocyte shape change responses are mediated through rearrangements of the cellular cytoskeleton in a dynamic process typically resulting in a polarized cell and are essential to the processes of leukocyte migration from the microcirculation into sites of inflammation. We examined the actions of the chemokines eotaxin, eotaxin-2, monocyte chemoattractant protein-1 (MCP-1), MCP-3, MCP-4, RANTES, macrophage inflammatory protein-1alpha (MIP-1alpha), and IL-8 on leukocytes in mixed cell suspensions and focused on the responses of eosinophils to C-C chemokines. Those chemokines acting on CCR3 induced a rapid shape change in eosinophils from all donors; of these, eotaxin and eotaxin-2 were the most potent. Responses to MCP-4 were qualitatively different, showing marked reversal of shape change responses with agonist concentration and duration of treatment. In contrast, MIP-1alpha induced a potent response in eosinophils from a small and previously undescribed subgroup of donors via a non-CCR3 pathway likely to be CCR1 mediated. Incubation of leukocytes at 37 degrees C for 90 min in the absence of extracellular calcium up-regulated responses to MCP-4 and MIP-1alpha in the majority of donors, and there was a small increase in responses to eotaxin. MIP-1alpha responsiveness in vivo may therefore be a function of both CCR1 expression levels and the regulated efficiency of coupling to intracellular signaling pathways. The observed up-regulation of MIP-1alpha signaling via non-CCR3 pathways may play a role in eosinophil recruitment in inflammatory states such as occurs in the asthmatic lung.  相似文献   

2.
Chemokines are attractants and regulators of cell activation. Several CXC family chemokine members induce angiogenesis and promote tumor growth. In contrast, the only CC chemokine, reported to play a direct role in angiogenesis is monocyte-chemotactic protein-1. Here we report that another CC chemokine, eotaxin (also known as CCL11), also induced chemotaxis of human microvascular endothelial cells. CCL11-induced chemotactic responses were comparable with those induced by monocyte-chemotactic protein-1 (CCL2), but lower than those induced by stroma-derived factor-1alpha (CXCL12) and IL-8 (CXCL8). The chemotactic activity was consistent with the expression of CCR3, the receptor for CCL11, on human microvascular endothelial cells and was inhibited by mAbs to either human CCL11 or human CCR3. CCL11 also induced the formation of blood vessels in vivo as assessed by the chick chorioallantoic membrane and Matrigel plug assays. The angiogenic response induced by CCL11 was about one-half of that induced by basic fibroblast factor, and it was accompanied by an inflammatory infiltrate, which consisted predominantly of eosinophils. Because the rat aortic sprouting assay, which is not infiltrated by eosinophils, yielded a positive response to CCL11, this angiogenic response appears to be direct and is not mediated by eosinophil products. This suggests that CCL11 may contribute to angiogenesis in conditions characterized by increased CCL11 production and eosinophil infiltration such as Hodgkin's lymphoma, nasal polyposis, endometriosis, and allergic diathesis.  相似文献   

3.
Following infection, naive T cells are activated in the secondary lymphoid tissue, but then need to move to the infected tissue in the periphery to mediate their effector functions. The acquisition of inflammatory chemokine receptors, such as CCR5 and CCR6, may contribute to the efficient relocation of activated T cells to inflamed sites in the periphery. In keeping with this idea, the present study has demonstrated that CCR5 and CCR6 are up-regulated on CD4+ T cells upon activation in the MLR. The observed increase in expression correlated well with the acquisition of an activated/memory phenotype and was largely (CCR5) or completely (CCR6) separated temporally from the initiation of cell division. In contrast, the regulation of two other chemokine receptors, CXCR3 and CXCR4, occurred in close parallel with the cell division process. Increased mRNA levels are likely to contribute to the enhanced surface expression of CCR5 and CCR6, but in the case of CCR6, translocation of intracellular stores of protein to the cell surface may be an additional mechanism of regulation. The up-regulation of CCR5 was more extensive than that of CCR6, as only approximately half the activated CCR5+ T cells coexpressed CCR6. The increased expression of CCR5 resulted in enhanced chemotaxis toward the CCR5 ligand macrophage-inflammatory protein-1beta/CCL4, but up-regulation of CCR6 did not result in altered chemotactic responsiveness to macrophage-inflammatory protein-3alpha/CCL20, suggesting an alternative function for this receptor.  相似文献   

4.
Immune responses are initiated by dendritic cells (DC) that form a network comprising different populations. In particular, Langerhans cells (LC) appear as a unique population of cells colonizing epithelial surfaces. We have recently shown that macrophage-inflammatory protein-3alpha/CCL20, a chemokine secreted by epithelial cells, induces the selective migration of LC among DC populations. In this study, we investigated the effects of cytokines on the expression of the CCL20 receptor, CCR6, during differentiation of LC. We found that both IL-4 and IFN-gamma blocked the expression of CCR6 and CCL20 responsiveness at different stages of LC development. The effect of IL-4 was reversible and most likely due to the transient blockade of LC differentiation. In contrast, IFN-gamma-induced CCR6 loss was irreversible and was concomitant to the induction of DC maturation. When other cytokines involved in DC and T cell differentiation were tested, we found that IL-10, unlike IL-4 and IFN-gamma, maintained CCR6 expression. The effect of IL-10 was reversible and upon IL-10 withdrawn, CCR6 was lost concomitantly to final LC differentiation. In addition, IL-10 induced the expression of CCR6 and responsiveness to CCL20 in differentiated monocytes that preserve their ability to differentiate into mature DC. Finally, TGF-beta, which induces LC differentiation, did not alter early CCR6 expression, but triggered its irreversible down-regulation, in parallel to terminal LC differentiation. Taken together, these results suggest that the recruitment of LC at epithelial surface might be suppressed during Th1 and Th2 immune responses, and amplified during regulatory immune responses involving IL-10 and TGF-beta.  相似文献   

5.
We have investigated the chemokine receptor expression and migratory behavior of a new subset of nickel-specific skin-homing regulatory CD4(+) T cells (Th(IL-10)) releasing high levels of IL-10, low IFN-gamma, and undetectable IL-4. These cells inhibit in a IL-10-dependent manner the capacity of dendritic cells to activate nickel-specific Tc1 and Th1 lymphocytes. RNase protection assay and FACS analysis revealed the expression of a vast repertoire of chemokine receptors on resting Th(IL-10), including the Th1-associated CXCR3 and CCR5, and the Th2-associated CCR3, CCR4, and CCR8, the latter at higher levels compared with Th2 cells. The most active chemokines for resting Th(IL-10), in terms of calcium mobilization and in vitro migration, were in order of potency: CCL2 (monocyte chemoattractant protein-1, CCR2 ligand), CCL4 (macrophage-inflammatory protein-1beta, CCR5 ligand), CCL3 (macrophage-inflammatory protein-1alpha, CCR1/5 ligand), CCL17 (thymus and activation-regulated chemokine, CCR4 ligand), CCL1 (I-309, CCR8 ligand), CXCL12 (stromal-derived factor-1, CXCR4), and CCL11 (eotaxin, CCR3 ligand). Consistent with receptor expression down-regulation, activated Th(IL-10) exhibited a reduced or absent response to most chemokines, but retained a significant migratory capacity to I-309, monocyte chemoattractant protein-1, and thymus and activation-regulated chemokine. I-309, which was ineffective on Th1 lymphocytes, attracted more efficiently Th(IL-10) than Th2 cells. I-309 and CCR8 mRNAs were not detected in unaffected skin and were up-regulated at the skin site of nickel-allergic reaction, with an earlier expression kinetics compared with IL-10 and IL-4. Results indicate that skin-homing regulatory Th(IL-10) lymphocytes coexpress functional Th1- and Th2-associated chemokine receptors, and that CCR8/I-309-driven recruitment of both resting and activated Th(IL-10) cells may be critically involved in the regulation of Th1-mediated skin allergic disorders.  相似文献   

6.
Although chemokines CCL3/MIP-1alpha and CCL5/RANTES are considered to be primary CCR1 ligands in inflammatory responses, alternative CCR1 ligands have also been described. Indeed, four such chemokines, CCL6/C10/MIP-related protein-1, CCL9/MIP-1gamma/MIP-related protein-2, CCL15/MIP-1delta/hemofiltrate CC chemokine-2/leukotactin-1, and CCL23/CKbeta8/myeloid progenitor inhibitory factor-1, are unique in possessing a separately encoded N-terminal domain of 16-20 residues and two additional precisely positioned cysteines that form a third disulfide bridge. In vitro, these four chemokines are weak CCR1 agonists, but potency can be increased up to 1000-fold by engineered or expression-associated N-terminal truncations. We examined the ability of proinflammatory proteases, human cell supernatants, or physiological fluids to perform N-terminal truncations of these chemokines and thereby activate their functions. Remarkably, most of the proteases and fluids removed the N-terminal domains from all four chemokines, but were relatively unable to cleave the truncated forms further. The truncated chemokines exhibited up to 1000-fold increases in CCR1-mediated signaling and chemotaxis assays in vitro. In addition, N-terminally truncated CCL15/MIP-1delta and CCL23/CKbeta8, but not CCL3/MIP-1alpha or CCL5/RANTES, were detected at relatively high levels in synovial fluids from rheumatoid arthritis patients. These data suggest that alternative CCR1 ligands are converted into potent chemoattractants by proteases released during inflammatory responses in vivo.  相似文献   

7.
Chemokines play a key role in the recruitment of activated CD4(+) T cells and eosinophils into the lungs in animal models of airway inflammation. Inhibition of inflammation by N-terminally modified chemokines is well-documented in several models but is often reported with limited dose regimens. We have evaluated the effects of doses ranging from 10 ng to 100 micro g of two CC chemokine receptor antagonists, Met-RANTES/CC chemokine ligand 5 (CCL5) and aminooxypentane-RANTES/CCL5, in preventing inflammation in the OVA-sensitized murine model of human asthma. In the human system, aminooxypentane-RANTES/CCL5 is a full agonist of CCR5, but in the murine system neither variant is able to induce cellular recruitment. Both antagonists showed an inverse bell-shaped inhibition of cellular infiltration into the airways and mucus production in the lungs following allergen provocation. The loss of inhibition at higher doses did not appear to be due to partial agonist activity because neither variant showed activity in recruiting cells into the peritoneal cavity at these doses. Surprisingly, neither was able to bind to the major CCR expressed on eosinophils, CCR3. However, significant inhibition of eosinophil recruitment was observed. Both analogues retained high affinity binding for murine CCR1 and murine CCR5. Their ability to antagonize CCR1 and CCR5 but not CCR3 was confirmed by their ability to prevent RANTES/CCL5 and macrophage inflammatory protein-1beta/CCL4 recruitment in vitro and in vivo, while they had no effect on that induced by eotaxin/CCL11. These results suggest that CCR1 and/or CCR5 may be potential targets for asthma therapy.  相似文献   

8.
9.
We have investigated the involvement of chemokine receptor CCR1-positive cells in bleomycin-induced lung injury, a model of pulmonary fibrosis. After bleomycin challenge in C57BL/6J mice, the expression of CCR1 mRNA increased and peaked at day 7, which paralleled to the expression of its ligands, macrophage-inflammatory protein-1 alpha and RANTES. Immunohistochemical study showed that CCR1-positive cells accumulated in the interstitial inflammatory site. Furthermore, the treatment of anti-CCR1 Ab significantly reduced the accumulation of inflammatory cells and collagen deposition, resulting in dramatic improvement of survival. These results suggest that CCR1-positive cells play significant roles in the pathogenesis of pulmonary fibrosis subsequent to bleomycin-induced lung injury, and that CCR1 could be a novel molecular target for intervention therapy against pulmonary fibrosis.  相似文献   

10.
C-C chemokines such as CCL11, CCL5, and CCL3 are central mediators in the pathogenesis of asthma. They are mainly associated with the recruitment and the activation of specific inflammatory cells, such as eosinophils, lymphocytes, and neutrophils. It has recently been shown that they can also activate structural cells, such as airway smooth muscle and epithelial cells. The aims of this study were to examine the expression of the CCL3 receptor, CCR1, on human airway smooth muscle cells (ASMC) and to document the regulation of this receptor by cytokines involved in asthma pathogenesis. We first demonstrated that CCR1 mRNA is increased in the airways of asthmatic vs control subjects and showed for the first time that ASMC express CCR1 mRNA and protein, both in vitro and in vivo. Calcium mobilization by CCR1 ligands confirmed its functionality on ASMC. Stimulation of ASMC with TNF-alpha and, to a lesser extent, IFN-gamma resulted in an up-regulation of CCR1 expression, which was totally suppressed by both dexamethasone or mithramycin. Taken together, our data suggest that CCR1 might be involved in the pathogenesis of asthma, through the activation of ASMC by its ligands.  相似文献   

11.
In this work, we explore the responses of specific gene-deleted mice to infection with the paramyxovirus pneumonia virus of mice (PVM). We have shown previously that infection of wild type mice with PVM results in pulmonary neutrophilia and eosinophilia accompanied by local production of macrophage-inflammatory protein-1 alpha (MIP-1 alpha). Here we examine the role of MIP-1 alpha in the pathogenesis of this disease using mice deficient in MIP-1 alpha or its receptor, CCR1. The inflammatory response to PVM in MIP-1 alpha-deficient mice was minimal, with approximately 10-60 neutrophils/ml and no eosinophils detected in bronchoalveolar lavage fluid. Higher levels of infectious virus were recovered from lung tissue excised from MIP-1 alpha-deficient than from fully competent mice, suggesting that the inflammatory response limits the rate of virus replication in vivo. PVM infection of CCR1-deficient mice was also associated with attenuated inflammation, with enhanced recovery of infectious virus, and with accelerated mortality. These results suggest that the MIP-1 alpha/CCR1-mediated acute inflammatory response protects mice by delaying the lethal sequelae of infection.  相似文献   

12.

Background

Chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1), belongs to the CC chemokine family that is associated with the disease status and outcomes of osteoarthritis (OA). Here, we investigated the intracellular signaling pathways involved in CCL2-induced vascular cell adhesion molecule-1 (VCAM-1) expression in human OA synovial fibroblasts (OASFs).

Methodology/Principal Findings

Stimulation of OASFs with CCL2 induced VCAM-1 expression. CCL2-mediated VCAM-1 expression was attenuated by CCR2 inhibitor (RS102895), PKCδ inhibitor (rottlerin), p38MAPK inhibitor (SB203580), and AP-1 inhibitors (curcumin and tanshinone IIA). Stimulation of cells with CCL2 increased PKCδ and p38MAPK activation. Treatment of OASFs with CCL2 also increased the c-Jun phosphorylation and c-Jun binding to the AP-1 element on the VCAM-1 promoter. Moreover, CCL2-mediated CCR2, PKCδ, p38MAPK, and AP-1 pathway promoted the adhesion of monocytes to the OASFs monolayer.

Conclusions/Significance

Our results suggest that CCL2 increases VCAM-1 expression in human OASFs via the CCR2, PKCδ, p38MAPK, c-Jun, and AP-1 signaling pathway. The CCL2-induced VCAM-1 expression promoted monocytes adhesion to human OASFs.  相似文献   

13.
Selective eosinophil recruitment is the result of orchestrated events involving cell adhesion molecules, chemokines, and their receptors. The mechanisms by which chemokines regulate eosinophil adhesion and migration via integrins are not fully understood. In our study, we examined the effect of CCR3-active chemokines on eosinophil adhesion to VCAM-1 and BSA under both static and flow conditions. When eotaxin-2 or other CCR3-active chemokines were added to adherent eosinophils, it induced rapid and sustained eosinophil detachment from VCAM-1 in a concentration-dependent manner. Adhesion was detectably reduced within 3 min and was further reduced at 10-60 min. Simultaneously, eotaxin-2 enhanced eosinophil adhesion to BSA. Preincubation of eosinophils with the CCR3-blocking mAb 7B11 completely prevented chemokine-induced changes in adhesion to VCAM-1 and BSA. Using a different protocol, pretreatment of eosinophils with chemokines for 0-30 min before their use in adhesion assays resulted in inhibition of VCAM-1 adhesion and enhancement of BSA adhesion. By flow cytometry, expression of alpha4 integrins and a beta1 integrin activation epitope on eosinophils was decreased by eotaxin-2. In a flow-based adhesion assay, eotaxin-2 reduced eosinophil accumulation and the strength of attachment to VCAM-1. These results show that eotaxin-2 rapidly reduced alpha4 integrin function while increasing beta2 integrin function. These findings suggest that chemokines facilitate migration of eosinophils by shifting usage away from beta1 integrins toward beta2 integrins.  相似文献   

14.
Leukotactin-1 (Lkn-1)/CCL15 is a CC chemokine that binds to the CCR1 and CCR3. Lkn-1 functions as an essential factor in the migration of monocytes, lymphocytes, and neutrophils. Although eosinophils express both receptors, the role of Lkn-1 in immature eosinophils remains to be elucidated. In this present study, we investigated the contribution of the CCR1-binding chemokines to chemotactic activity and in the differentiation in the human eosinophilic leukemia cell line EoL-1. Lkn-1 induced the stronger migration of EoL-1 cells than other CCR1-binding chemokines such as RANTES/CCL5, MIP-1α/CCL3 and HCC-4/CCL16. Lkn-1-induced chemotaxis was inhibited by pertussis toxin, an inhibitor of Gi/Go protein; U73122, an inhibitor of phospholipase C and rottlerin, an inhibitor of protein kinase C delta (PKCδ). Lkn-1 increased PKCδ activity, which was partially blocked by the pertussis toxin and U73122. Lkn-1 enhanced the butyric acid-induced differentiation via PKCδ after binding to the increased CCR1 because Lkn-1 caused EoL-1 cells to change morphologically into mature eosinophil-like cells. Likewise, Lkn-1 increased the expression of both eosinophil peroxidase (EPO) and the major basic protein (MBP). PKCδ activation due to Lkn-1 is involved in migration, as well as the butyric acid-induced differentiation. This finding contributes to an understanding of CC chemokines in eosinophil biology and to the development of novel therapies for the treatment of eosinophilic disorders. This study suggests the pivotal roles of Lkn-1 in the regulation of the movement and development of eosinophils.  相似文献   

15.
In this study, we demonstrate that in addition to T lymphocytes, human naïve eosinophils and the differentiated eosinophil-like cell line, AML14.3D10 express CCR8 and respond to CCL1 through CCR8 engagement. The responsiveness of cells was dependent on maturation stage, since CCL1 induced pronounced chemotaxis only in differentiated CCR8 positive AML14.3D10 cells. Despite the low CCR8 surface expression, human naïve eosinophils respond with a chemotaxis to high concentration CCL1. We further describe that Th2 clones in a maturation dependent fashion produce autocrine CCL1, which renders them unresponsive to further stimulation. An innovative method to enrich primary CCR8 reactive T cells was developed which demonstrates that primary peripheral CCR8 expressing T cells respond significantly to CCL1.We have developed novel small molecule CCR8 antagonists that are effective in inhibiting calcium mobilization and chemotaxis in differentiated AML cells as well as in human primary CCR8 positive T cells. Importantly, we demonstrate that the compounds can be divided into two subgroups: (i) compounds that are functional agonists for calcium mobilization and chemotaxis (ii) compounds that are pure antagonists. We demonstrate that agonism of these compounds does not correlate with their antagonistic potency. Taken together, we have identified a novel set of CCR8 compounds with antagonistic properties that inhibit CCL1 driven chemotaxis in both CCR8 expressing eosinophils as well as primary human T cells.  相似文献   

16.
CCR6 is the only known receptor for the chemokine macrophage-inflammatory protein (MIP)-3alpha/CC chemokine ligand (CCL)20. We have shown previously that CCR6 is expressed on peripheral blood B cells, but CCR6 activity on these cells is low in in vitro assays. We report that MIP-3alpha/CCL20-induced calcium flux and chemotaxis can be enhanced significantly on peripheral blood and tonsillar B cells after activation by cross-linking surface Ag receptors. Of particular interest is the fact that the enhanced activity on B cells was not associated with an increase in CCR6 expression as assessed by levels of receptor mRNA, surface staining, or MIP-3alpha/CCL20 binding sites, or by a change in the affinity of the receptor for ligand. These data convincingly demonstrate that responses to a chemokine can be regulated solely by changes in the downstream pathways for signal transduction resulting from Ag receptor activation, and establish CCR6 as an efficacious receptor on human B cells.  相似文献   

17.
To investigate human basophil responses to chemokines, we have developed a sensitive assay that uses flow cytometry to measure leukocyte shape change as a marker of cell responsiveness. PBMC were isolated from the blood of volunteers. Basophils were identified as a single population of cells that stained positive for IL-3Ralpha (CDw123) and negative for HLA-DR, and their increase in forward scatter (as a result of cell shape change) in response to chemokines was measured. Shape change responses of basophils to chemokines were highly reproducible, with a rank order of potency: monocyte chemoattractant protein (MCP) 4 (peak at <1 nM) >/= eotaxin-2 = eotaxin-3 >/= eotaxin > MCP-1 = MCP-3 > macrophage-inflammatory protein-1alpha > RANTES = MCP-2 = IL-8. The CCR4-selective ligand macrophage-derived chemokine did not elicit a response at concentrations up to 10 nM. Blocking mAbs to CCR2 and CCR3 demonstrated that responses to higher concentrations (>10 nM) of MCP-1 were mediated by CCR3 rather than CCR2, whereas MCP-4 exhibited a biphasic response consistent with sequential activation of CCR3 at lower concentrations and CCR2 at 10 nM MCP-4 and above. In contrast, responses to MCP-3 were blocked only in the presence of both mAbs, but not after pretreatment with either anti-CCR2 or anti-CCR3 mAb alone. These patterns of receptor usage were different from those seen for eosinophils and monocytes. We suggest that cooperation between CCRs might be a mechanism for preferential recruitment of basophils, as occurs in tissue hypersensitivity responses in vivo.  相似文献   

18.
We describe a small molecule chemokine receptor antagonist, UCB35625 (the trans-isomer J113863 published by Banyu Pharmaceutical Co., patent WO98/04554), which is a potent, selective inhibitor of CCR1 and CCR3. Nanomolar concentrations of UCB35625 were sufficient to inhibit eosinophil shape change responses to MIP-1alpha, MCP-4, and eotaxin, while greater concentrations could inhibit the chemokine-induced internalization of both CCR1 and CCR3. UCB35625 also inhibited the CCR3-mediated entry of the human immunodeficiency virus-1 primary isolate 89.6 into the glial cell line, NP-2 (IC(50) = 57 nm). Chemotaxis of transfected cells expressing either CCR1 or CCR3 was inhibited by nanomolar concentrations of the compound (IC(50) values of CCR1-MIP-1alpha = 9.6 nm, CCR3-eotaxin = 93.7 nm). However, competitive ligand binding assays on the same transfectants revealed that considerably larger concentrations of UCB35625 were needed for effective ligand displacement than were needed for the inhibition of receptor function. Thus, it appears that the compound may interact with a region present in both receptors that inhibits the conformational change necessary to initiate intracellular signaling. By virtue of its potency at the two major eosinophil chemokine receptors, UCB35625 is a prototypic therapy for the treatment of eosinophil-mediated inflammatory disorders, such as asthma and as an inhibitor of CCR3-mediated human immunodeficiency virus-1 entry.  相似文献   

19.
The chemokine receptor CCR5 is predominantly expressed on monocytes and Th1-polarized T cells, and plays an important role in T cell and monocyte recruitment in inflammatory diseases. To investigate the functional role of CCR5 in renal inflammation, we induced a T cell-dependent model of glomerulonephritis (nephrotoxic serum nephritis) in CCR5(-/-) mice. Induction of nephritis in wild-type mice resulted in up-regulation of renal mRNA expression of the three CCR5 chemokine ligands, CCL5 (15-fold), CCL3 (4.9-fold), and CCL4 (3.4-fold), in the autologous phase of the disease at day 10. The up-regulated chemokine expression was paralleled by infiltration of monocytes and T cells, followed by renal tissue injury, albuminuria, and loss of renal function. Nephritic CCR5(-/-) mice showed a 3- to 4-fold increased renal expression of CCL5 (61.6-fold vs controls) and CCL3 (14.1-fold vs controls), but not of CCL4, in comparison with nephritic wild-type mice, which was accompanied by augmented renal T cell and monocyte recruitment and increased lethality due to uremia. Furthermore, CCR5(-/-) mice showed an increased renal Th1 response, whereas their systemic humoral and cellular immune responses were unaltered. Because the CCR5 ligands CCL5 and CCL3 also act via CCR1, we investigated the effects of the pharmacological CCR1 antagonist BX471. CCR1 blockade in CCR5(-/-) mice significantly reduced renal chemokine expression, T cell infiltration, and glomerular crescent formation, indicating that increased renal leukocyte recruitment and consecutive tissue damage in nephritic CCR5(-/-) mice depended on functional CCR1. In conclusion, this study shows that CCR5 deficiency aggravates glomerulonephritis via enhanced CCL3/CCL5-CCR1-driven renal T cell recruitment.  相似文献   

20.
We investigated the actions of a panel of nonsteroidal anti-inflammatory drugs on eosinophils, basophils, neutrophils, and monocytes. Indomethacin alone was a potent and selective inducer of eosinophil and basophil shape change. In eosinophils, indomethacin induced chemotaxis, CD11b up-regulation, respiratory burst, and L-selectin shedding but did not cause up-regulation of CD63 expression. Pretreatment of eosinophils with indomethacin also enhanced subsequent eosinophil shape change induced by eotaxin, although treatment with higher concentrations of indomethacin resulted in a decrease in the expression of the major eosinophil chemokine receptor, CCR3. Indomethacin activities and cell selectivity closely resembled those of prostaglandin D(2) (PGD(2)). Eosinophil shape change in response to eotaxin was inhibited by pertussis toxin, but indomethacin- and PGD(2)-induced shape change responses were not. Treatment of eosinophils with specific inhibitors of phospholipase C (U-73122), phosphatidylinositol 3-kinase (LY-294002), and p38 mitogen-activated protein kinase (SB-202190) revealed roles for these pathways in indomethacin signaling. Indomethacin and its analogues may therefore provide a structural basis from which selective PGD(2) receptor small molecule antagonists may be designed and which may have utility in the treatment of allergic inflammatory disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号