首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incompatibility group P plasmids demonstrate strong entry exclusion properties. Stringent incompatibility is also observed in the absence of entry exclusion. These observations have been facilitated by the study of a nontransmissible plasmid, RP1-S2, derived from RP1 by transductional shortening. RP1-S2 retains carbenicillin and tetracycline resistances as well as loci that cause either the loss of P plasmids (incp) or a locus specifying susceptibility to curing (sinp) in the presence of a P plasmid. RP1-S2 can be mobilized by an incompatibility group W plasmid, R388, and also freely forms recombinants with R388. P, N, and W incompatibility group plasmids all encode information for the receptor of the cell wall-adsorbing phage PRD1. Based on the premise that the location of this receptor is analogous to entry exclusion factors for F-like plasmids and hence a regulated transfer region determinant, we tested fertility inhibition relationships among these plasmid groups. We detected both reciprocal and nonreciprocal fertility inhibition relationships for bacteria containing various combinations of W, N, and P group plasmids. The nonreciprocal nature of some combinations, we believe, reflects the identity of the point mutation reading to derepression of the plasmid in question. Reciprocal fertility inhibition, on the other hand, may reflect the reconstruction of a fertility inhibition system through complementation. An X incompatibility group plasmid, known to affect the fertility of an N group plasmid, was also shown to inhibit P plasmid fertility. These observations may indicate a possible evolutionary relationship(s) of plasmids unrelated by the criteria of incompatibility, pilus phage specificity, or plasmid host range.  相似文献   

2.
A new drug resistance plasmid-dependent RNA containing phage resembling coliphage f2 in its particle size and density is described. The phage, PRR1, will only productively infect some R(+) hosts containing the Pseudomonas drug resistance plasmid R1822. The membrane filter-salt elution patterns, RNase sensitivity, inactivation in low ionic strength solutions, and host range serve to distinguish PRR1 from coliphage f2 and two other Pseudomonas RNA phages, 7s and PP7.  相似文献   

3.
R plasmid R772 was isolated from a strain of Proteus mirabilis and is a self-transmissible P-1 incompatibility group plasmid having a molecular weight of about 27 x 10(6). It renders bacterial hosts resistant to kanamycin. Phage PR772 was isolated as a phage dependent on the presence of R772 in bacterial hosts. It is hexagonal-shaped with a diameter of 53 nm, has a thick inner membrane and no tail. Vaguely defined appendages are sometimes apparent at some vertices and the phage possesses double-stranded DNA. The DNA has a guanine plus cytosine molar content of 48%. The phage is sensitive to chloroform and has a buoyant density of 1.26 g cm(-3). These observations suggested that the inner membrane of the phage could contain lipid. Phage PR772 differs in morphology from the double-stranded DNA plasmid-specific phages PR4 and PRR1 which adsorb to tips and sides, respectively, of sex pili coded for by P-1 incompatibility group plasmids. Phage PR772 formed clear plaques which varied in diameter. Serologically, phages PR772 and PR4 are possibly related though very distantly, but the two phages have identical host ranges. Phage PR772 adsorbed by one of its apices to tips of sex pili coded for by plasmid R772 in Escherichia coli. It also formed plaques on Salmonella typhimurium Proteus morganii and Providence strains harbouring this plasmid as well as strains of E. coli carrying plasmids of incompatibility groups N or W. The phage produced areas of partial clearing on lawns of P. mirabilis PM5006 harbouring plasmid R772, the P-1 incompatibility group plasmid RP4, the W group plasmid RSa or the N group plasmid N3, and on lawns of Providence strain P29 carrying plasmid RP4.  相似文献   

4.
Phage X: a plasmid-dependent, broad host range, filamentous bacterial virus   总被引:2,自引:0,他引:2  
Phage X was isolated from sewage as plating on Escherichia coli or Salmonella typhimurium strains harbouring the incompatibility group X plasmid R6K. It also plated on a strain of Serratia marcescens carrying this plasmid. It failed to form plaques on Proteus mirabilis, P. morganii or Providencia alcalifaciens harbouring R6K, but did multiply on them. No phage increase occurred with homologous R- strains. Phage X also plated or registered an increase in titre on E. coli or S. typhimurium strains carrying various plasmids of incompatibility groups M, N, P-1, U or W as well as the unassigned plasmid R775. It adsorbed to pili determined by a group P-10 plasmid in a Pseudomonas aeruginosa strain but did not multiply on this organism. The phage was filamentous and curly, resistant to ribonuclease and diethyl ether and sensitive to chloroform. It adsorbed to the tips of pili.  相似文献   

5.
Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance.  相似文献   

6.
Generalized transducing phage similar to phage P1 in Escherichia coli was isolated from E. coli W39, an antigenic test strain of the O121 group. This phage, designated phi w39, was reciprocally heteroimmune to phages P1 and P7, but nonreciprocally heteroimmune to phage D6. Transduction experiments using various R plasmids with different molecular weights suggested that phage phi w39 could transduce at least 65 megadaltons DNA. As in the case of P1 prophage, phi w39 prophage existed as a plasmid belonging to incompatibility group Y and carried a dnaB-like function. The molecular weight of phi w39 plasmid was nearly the same as that of plasmid, i.e., 58.6 megadaltons. Despite the pronounced structural and functional similarity of phages phi w39 and P1, restriction cleavage patterns of their genomes differed considerably.  相似文献   

7.
Shigeru Iida 《Plasmid》1980,3(3):278-290
Restriction cleavage analysis identified a P1CmSmSuTc plasmid isolated by Mise and Arber (1976) (Virology 69, 191–205) as a cointegrate between bacteriophage P1 and the R plasmid R100. Cointegration occurred by reciprocal recombination between the IS1 element of P1 and IS1b of R100. It involved neither gain nor loss of genetic material, so that the cointegrate carries three IS1 elements in the same orientation. The cointegrate propagates with relatively high stability as plasmid in Escherichia coli host bacteria. It displays the Tra+ functions of R100, incompatibility FII of R100, and incompatibility Y of P1, Res+ (P1), Mod+ (P1) functions of P1 and P1 immunity. Production of P1 phage particles is inducible as for wild type P1. However, because of the large genome size of 180 kb, progeny phage particles contain only a fraction (about 100 kb) of the cointegrate genome. Because of cyclic permutation all genome regions are equally represented in a population of the phage particles of an induced lysate. Occasionally, reciprocal recombination between IS1 elements allows the restoration of the P1 genome. These segregants are found as plaque formers at a rate of about 1 per 300 phage particles in induced lysates.  相似文献   

8.
Chloramphenicol-resistant Myxococcus virescens were obtained by infecting myxococci with Escherichia coli specialized transducing phage P1CM. The drug-resistant myxococci were phenotypically unstable. They contained more than one type of plasmid; these plasmids were not found in the parent strain. Chloramphenicol-resistant E. coli were obtained by transformation with either a fraction of myxococcal DNA containing the plasmids or with P1CM prophage DNA. These transformants contained plasmids. Escherichia coli transformed by DNA from the myxococci contained both P1CM and myxococcal genes. Individual transformant clones differed in the genetic make-up of their plasmids. Among the myxococcal genes expressed in these plasmid-harbouring E. coli strains were a capacity for self-transmissibility and a pattern of phage sensitivity characteristic of R factor incompatibility group W. Escherichia coli transformed with P1CM prophage contained incomplete P1CM genomes; none of the chloramphenicol-resistant transformants produced P1CM phage particles. The significance of these findings for an understanding of mechanisms for the generation of R factors is discussed.  相似文献   

9.
Preliminary studies have shown that bacteriophages PR3 and PR4, originally isolated on Pseudomonas aeruginosa, resemble the lipid-containing phage PM2 in appearance. Their host range extends intergenerically to species carrying drug-resistance plasmids of the P and N compatibility groups. In this paper, the serological identity of the two isolates is established and it is concluded that they are the same virus, but with some differences in growth characteristics. They contain double-stranded DNA and are probably icosahedra (65 nm) with short (47 nm) noncontractile tails. Their sensitivity to chloroform and low buoyant density in CsCl(1.265 g/ml) indicate that they contain lipid which is probably located in the thickened inner layer of the capsid. A study is made of their adsorption efficiencies to sensitive and resistant bacteria, and it is found that, unlike most sex-specific phages, they adsorb directly to the cell surface and not to sex pili. Their host range is shown to include strains harboring a drug-resistance plasmid of the W compatibility group.  相似文献   

10.
Genetic and physical characteristics of an enterotoxin plasmid.   总被引:16,自引:6,他引:10       下载免费PDF全文
We are engaged in the genetic and physical characterization of an enterotoxin (Ent) plasmid, Ent P307, which contains genes for the production of a hear-labile and a heat-stable enterotoxin. We are using an Escherichia coli K-12 strain, 711 (P307), constructed by S. Falkow, which contains no other plasmids besides Ent P307. Our genetic studies have shown that the plasmid is incompatible with the sex factor F, both in the integrated (Hfr) and the autonomous (F-prime) state. Ent P307 can thus be assigned to incompatibility group FI. An R factor, R386, which belongs to the same incompatibility group, was also found to be incompatibile with Ent P307, whereas five other R factors belonging to different incompatibility groups were compatible with Ent P307. In the presence of Ent P307, conjugal transfer and sensitivity to a male-specific phage of a derepressed F-like R factor, R1drd19, were repressed. Ent P307 is, thus, finO+. Presumably, it also causes repression of its own transfer genes since conjugal transfer of Ent P307 could not be demonstrated. Unlike F, it does not restrict the growth of female-specific phage phiII. From physical studies on extracted deoxyribonucleic acid, the molecular weight of Ent P307 was determined to be 54 X 10(6). By electron microscope heteroduplex analysis, the plasmid was found to be homologous with F in four regions, encompassing about half of its length. One long region and two short ones contain genes for conjugal transfer; the other short region carries genes for replication and incompatibility.  相似文献   

11.
Incompatibility of the R plasmid Rts1 and its replication mutant pTW2 was studied in recA host cells of Escherichia coli. When the R plasmid R401, belonging to the same incompatibility group as Rts1, was used as a test plasmid, R401 was eliminated preferentially from (Rts-R401)+ cells irrespective of the direction of transfer. In contrast, pTW2 and R401 were mutually excluded. The decreased incompatibility of pTW2 was confirmed by a direct incompatibility test in which a derivative of Rts1 expelled pTW2 exclusively. Alkaline sucrose gradients of pTW2 and Rts1 DNA indicated that approximately one-fourth of the Rts1 genome was deleted in pTW2. In addition, both the various temperature-dependent properties of Rts1 and the inhibitory effect on phage T4 development were also lost in pTW2. A possible mechanism that regulates the stringent replication of Rts1 is discussed.  相似文献   

12.
Holin proteins are phage-induced integral membrane proteins which regulate the access of lytic enzymes to host cell peptidoglycan at the time of release of progeny viruses by host cell lysis. We describe the identification of the membrane-containing phage PRD1 holin gene (gene XXXV). The PRD1 holin protein (P35, 12.8 kDa) acts similarly to its functional counterpart from phage lambda (gene S), and the defect in PRD1 gene XXXV can be corrected by the presence of gene S of lambda. Several nonsense, missense, and insertion mutations in PRD1 gene XXXV were analyzed. These studies support the overall conclusion that the charged amino acids at the protein C terminus are involved in the timing of host cell lysis.  相似文献   

13.
R factors fi(+) and fi(-), with various combinations of drug-resistance markers and isolated from independent sources, were transduced by phage P1kc in Escherichia coli and by phage P22 in Salmonella typhimurium. Usually the entire R factor was transduced by P1kc in E. coli, as indicated by the absence of segregation of the drug-resistance markers from their conjugal transferability. In contrast, the patterns of segregation of the drug-resistance markers and their conjugal transferability differed considerably among various R factors after transduction by P22 in S. typhimurium. Transduction frequencies varied among R factors in both transduction systems.  相似文献   

14.
The lipid-containing bacteriophage PRD1 infects a variety of gram-negative cells by injecting its linear double-stranded DNA genome into the host cell cytoplasm, while the protein capsid is left outside. The virus membrane and several structural proteins are involved in phage DNA entry. In this work we identified a new infectivity protein of PRD1. Disruption of gene XXXII resulted in a mutant phenotype defective in phage reproduction. The absence of the protein P32 did not compromise the particle assembly but led to a defect in phage DNA injection. In P32-deficient particles the phage membrane is unable to undergo a structural transformation from a spherical to a tubular form. Since P32(-) particles are able to increase the permeability of the host cell envelope to a degree comparable to that found with wild-type particles, we suggest that the tail-tube formation is needed to eject the DNA from the phage particle rather than to reach the host cell interior.  相似文献   

15.
Bacteriophage PRD1 encodes two proteins (P7 and P15) that are associated with a muralytic activity. Protein P15 is a soluble beta-1,4-N-acetylmuramidase that causes phage-induced host cell lysis. We demonstrate here that P15 is also a structural component of the PRD1 virion and that it is connected to the phage membrane. Small viral membrane proteins P20 and P22 modulate incorporation of P15 into the virion and may connect it to the phage membrane. The principal muralytic protein involved in PRD1 DNA entry seems to be the putative lytic transglycosylase protein P7, as the absence of protein P15 did not delay initiation of phage DNA replication in the virus-host system used. The incorporation of two different lytic enzymes into virions may reflect the broad host range of bacteriophage PRD1.  相似文献   

16.
Amino acid sequence analyses have indicated that the amino-terminal part of bacteriophage PRD1 structural protein P7 carries a conserved transglycosylase domain. We analysed wild-type PRD1 and different mutant particles in zymograms and found a glycolytic activity that was associated with protein P7. This is the first time a putative bacteriophage or plasmid lytic transglycosylase has been shown to have an enzymatic activity. In the absence of protein P7, the phage DNA replication and host cell lysis were delayed. Gene VII of PRD1 is known to encode proteins P7 and P14. In this investigation, the open reading frame coding for P14 was mapped to the 3' end of gene VII. Proteins P7 and P14 probably form a heteromultimeric complex, which is located at the particle vertices and is involved in the early steps of the PRD1 life cycle  相似文献   

17.
Phage t was isolated from sewage from Pretoria. It formed plaques only on Escherichia coli and Salmonella typhimurium strains that carried plasmids belonging to incompatibility group T. Five of six group T plasmids permitted visible lysis of R+ host strains. There was no visible lysis of E. coli J53-2 or S. typhimurium LT2trpA8 carrying the T plasmid Rts1 although the strains supported phage growth as indicated by at least a 10-fold increase in phage titre. The latter strains transferred the plasmid at high frequency to E. coli strain CSH2 and the resulting transconjugants plated the phage. Proteus mirabilis strain PM5006(R402) failed to support phage growth although it transferred the plasmid and concomitant phage sensitivity to E. coli J53-2. The phage was hexagonal in outline, RNA-containing, resistant to chloroform and adsorbed to the shafts of pili determined by T plasmids.  相似文献   

18.
The formation in vivo of recombinants between a plasmid of incompatibility group N (R1010-10) and plasmids of groups P (R751) and W (R388) is described. From examination of the molecular weights of these recombinant plasmids, they appear to be cointegrates. These cointegrates have the incompatibility properties of both 'parent' plasmids.  相似文献   

19.
Hirota, Yukinori (University of Osaka, Osaka, Japan), Toshio Fujii, and Yukinobu Nishimura. Loss and repair of conjugal fertility and infectivity of the resistance factor and sex factor in Escherichia coli. J. Bacteriol. 91:1298-1304. 1966.-The drug-resistance factor, R, and the sex factor, F, have homologous traits, including contagious transmission, mediation of sexuality of the host cell, and autonomous replication in their host bacteria. Cooperation between F and R factors was found with a mutant R factor, which is nontransmissible in F(-) bacteria, becoming transmissible when introduced into bacteria carrying F. Conversely, the chromosome of a sterile male strain carrying the mutant sex factor, F(r), becomes transmissible when an R factor is introduced into the cell. The genetic determinants of R factors have been analyzed by isolation of mutant R factors, by sexual conjugation of the host bacteria, and by transduction of R factors with phage P1kc. The fertility determinant of the R factor, m, is inseparable from the determinant for its infectivity, but can be separated from the loci for autonomous replication of the R factor. R and F thus carry genetic determinants governing the same functions.  相似文献   

20.
Phage F0lac is an RNA-containing phage which plates only on strains carrying the plasmid EDP208, a pilus derepressed derivative of the unique incompatibility plasmid F0lac. A host range mutant, phage F0lac h, was selected which plated on strains carrying the ungrouped plasmid pPLS::Tn5 and lysed strains carrying another ungrouped plasmid TP224::Tn10 or the Com9 plasmid R71. An RNA-containing phage, SR, was isolated from sewage on bacteria harbouring plasmid pPLS::Tn5. It was antigenically distinct from the above two phages but had the same host range as phage F0lac h. Phages F0lac h and SR adsorbed unevenly to the shafts of the conjugative pili. Another phage, SF, was filamentous and plated or propagated on strains carrying any of the above plasmids as well as on strains harbouring IncD or F-complex plasmids. Plasmids TP224::Tn10 and pPLS::Tn5 were compatible with representative plasmids of all Inc groups also encoding thick flexible pili. The four plasmids EDP208, R71, TP224::Tn10 and pPLS::Tn5 were compatible with one another except for the reaction of TP224::Tn10 in the presence of pPLS::Tn5 which was slightly ambiguous. The host ranges of the bacteriophages, together with the serological relatedness of the thick flexible pili determined by these four compatible plasmids, suggested that they constitute a new complex, here designated S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号