首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybridization between Escherichia coli and Shigella   总被引:61,自引:79,他引:61       下载免费PDF全文
  相似文献   

2.
3.
Escherichia coli B synthesized beta-galactosidase and an enzyme system for D-xylose when exposed to lactose and xylose respectively in nitrogen-free media. The amount of beta-galactosidase formed in the absence of external nitrogen depended upon the nature of the medium in which the cells had originally been grown. Half as much of this enzyme was synthesized without exogenous nitrogen by cells taken from a nitrogen-rich medium as was formed by cells under favorable conditions with an external supply of nitrogen. Escherichia coli B contained a pool of nitrogen compounds soluble in 80 per cent ethanol and made up of several ninhydrin-positive components. One of these was identified chromatographically as glycine using an authentic radioactive sample. Another substance behaved like serine on the chromatograms. The internal pool of amino acids and peptides was large enough to account for the beta-galactosidase synthesized by cells exposed to lactose in a medium free of nitrogen. Some degree of interaction of the syntheses of the beta-galactosidase and xylose enzyme systems was observed in nitrogen-free media. This interaction produced a greater effect on the formation of beta-galactosidase and was attributed to a limiting factor(s) in the internal nitrogenous pool or to a limiting intermediate in enzyme synthesis.  相似文献   

4.
5.
6.
The study of several Escherichia coli intestinal commensal isolates per individual in 265 healthy human subjects belonging to seven populations distributed worldwide showed that the E. coli population is highly structured, with major differences between the tropical and temperate populations.  相似文献   

7.
Shigella flexneri restricts Escherichia coli deoxyribonucleic acid (DNA) and can modify phage DNA so that it is restricted in E. coli.  相似文献   

8.
Shigella, which still stands as a genus with four species today, in reality belongs to the extremely diverse species Escherichia coli. There are several lineages of Shigella strains derived through independent acquisition of the pINV virulence plasmid. The chromosomally determined phenotypic properties of Shigella result from convergent evolution during niche adaptation, most due to loss of function, some from negative selection pressure.  相似文献   

9.
The effects of competence-inducing treatments on the composition and organization of membrane lipids in Escherichia coli K-12, DH1, DH5, HB101, and RR1 were investigated for two widely used protocols in which transformability is developed at low temperatures in Ca2+ buffers. At stages during each procedure, the lipid compositions of the cells were determined, and the thermotropic lipid phase transitions were observed in whole cell culture by fluorescence assay with the hydrophobic probe N-phenyl-1-naphthylamine. Competence was evaluated by determining transformation efficiencies with plasmid pBR322 DNA. The competence-inducing procedures effected only slight changes in phospholipid compositions which did not correlate with transformability. However, the induction of competence was coincident with de novo synthesis and incorporation of poly-beta-hydroxybutyrate into the cytoplasmic membranes and with the appearance of a sharp lipid phase transition above physiological temperatures. Transformation efficiencies correlated with poly-beta-hydroxybutyrate concentrations and with the intensity of the new phase transition. Transformability, poly-beta-hydroxybutyrate synthesis and the new phase transition were not significantly affected by inhibition of protein synthesis with chloramphenicol or inhibition of respiration or ATP synthesis with azide, cyanide, arsenate, or 2,4-dinitrophenol; however, when poly-beta-hydroxybutyrate synthesis was inhibited with acetaldehyde, the new phase transition was not observed, and competence failed to develop. These studies suggest that genetic transformability in E. coli may be physiologically regulated.  相似文献   

10.
11.
Escherichia coli is an important member of the gastrointestinal tract of humans and warm-blooded animals (primary habitat). In the external environment outside the host (secondary habitat), it is often considered to be only a transient member of the microbiota found in water and soil, although recent evidence suggests that some strains can persist in temperate soils and freshwater beaches. Here we quantified the population genetic structure of E. coli from a longitudinal collection of environmental strains isolated from six freshwater beaches along Lake Huron and the St. Clair River in Michigan. Multilocus enzyme electrophoresis (MLEE) and multilocus sequence typing (MLST) revealed extensive genetic diversity among 185 E. coli isolates with an average of 40 alleles per locus. Despite evidence for extensive recombination generating new alleles and genotypic diversity, several genotypes marked by distinct MLEE and MLST profiles were repeatedly recovered from separate sites at different times. A PCR-based phylogrouping technique showed that the persistent, naturalized E. coli belonged to the B1 group. These results support the hypothesis that persistent genotypes have an adaptive advantage in the secondary habitat outside the host.  相似文献   

12.
The structure of the O-specific polysaccharide of the somatic antigen (lipopolysaccharide) of Shigella boydii, type 12, was established by 1H- and 13C-NMR, methylation analysis and partial acid hydrolysis methods. The polysaccharide consists of pentasaccharide repeating units of the following structure: (formula; see text) The amount of O-acetyl groups was far less than stoichiometric, only about 2 for 3-4 repeating units. Nevertheless, the results of serological studies revealed 3-O-acetyl-alpha-L-rhamnose residue to be the major immunodominant group. In spite of the presence of similar trisaccharide fragments, the lipopolysaccharide and polysaccharide from Shigella boydii type 12 gave no crossreaction with lipopolysaccharide and polysaccharide from Escherichia coli 07. The possible reasons of the absence of serological relatedness between the Sh. boydii, type 12, and E. coli 07 cells were discussed.  相似文献   

13.
14.
We describe a rapid and easily automated phylogenetic grouping technique based on analysis of bacterial genome single-nucleotide polymorphisms (SNPs). We selected 13 SNPs derived from a complete sequence analysis of 11 essential genes previously used for multilocus sequence typing (MLST) of 30 Escherichia coli strains representing the genetic diversity of the species. The 13 SNPs were localized in five genes, trpA, trpB, putP, icdA, and polB, and were selected to allow recovery of the main phylogenetic groups (groups A, B1, E, D, and B2) and subgroups of the species. In the first step, we validated the SNP approach in silico by extracting SNP data from the complete sequences of the five genes for a panel of 65 pathogenic strains belonging to different E. coli pathovars, which were previously analyzed by MLST. In the second step, we determined these SNPs by dideoxy single-base extension of unlabeled oligonucleotide primers for a collection of 183 commensal and extraintestinal clinical E. coli isolates and compared the SNP phylotyping method to previous well-established typing methods. This SNP phylotyping method proved to be consistent with the other methods for assigning phylogenetic groups to the different E. coli strains. In contrast to the other typing methods, such as multilocus enzyme electrophoresis, ribotyping, or PCR phylotyping using the presence/absence of three genomic DNA fragments, the SNP typing method described here is derived from a solid phylogenetic analysis, and the results obtained by this method are more meaningful. Our results indicate that similar approaches may be used for a wide variety of bacterial species.  相似文献   

15.
16.
The rfb gene cluster which determines the biosynthesis of the Shigella flexneri serotype 6 O-antigen specificity has been cloned in pHC79, generating plasmids pPM3115 and pPM3116. These plasmids mediate expression, in Escherichia coli K-12, of lipopolysaccharides (LPS) immunologically similar to the S. flexneri type 6 LPS as judged by SDS-PAGE and Western-immunoblot analysis using S. flexneri type 6 specific antisera. Thus, unlike other S. flexneri serotypes, no additional loci are required for serotype specificity. This expression is independent of E. coli K-12 rfb genes. Southern-hybridization analysis using the 16.2-kb BglII probe from S. flexneri type 6 rfb region detected very little sequence homology in S. flexneri serotypes 1-5, however, some homology was detected with E. coli O2 and O18, but not in E. coli 0101 strains, Salmonella and Vibrio cholerae.  相似文献   

17.
18.
Two collections of Escherichia coli from human hosts and one from free-ranging African yellow baboons were examined for the ability to utilize various sugars (biotype) and for resistance to antibiotics. The frequency of antibiotic resistance in the E. coli flora of baboons that feed regularly in village garbage dumps was found to be no greater than that in baboons not associated with human habitation. The frequency of antibiotic resistance in E. coli isolated from baboons is similar to that in E. coli isolated from humans before the widespread use of antibiotics but significantly lower than that in recent isolates from humans. The biotype data indicate that the amount and distribution of genetic variation in the E. coli among free-ranging baboon troops are similar to those in isolates from humans. However, E. coli isolates from baboons are able to utilize a greater variety of sugars as their sole carbon source, possibly because of a greater variety of sugars in the baboon diet.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号